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Abstract

In this paper, we explore the 2-extra connectivity and 2-extra-edge-connectivity of the folded hypercube FQn. We show
that j2(FQn) = 3n � 2 for n P 8; and k2(FQn) = 3n � 1 for n P 5. That is, for n P 8 (resp. n P 5), at least 3n � 2 vertices
(resp. 3n � 1 edges) of FQn are removed to get a disconnected graph that contains no isolated vertices (resp. edges). When
the folded hypercube is used to model the topological structure of a large-scale parallel processing system, these results can
provide more accurate measurements for reliability and fault tolerance of the system.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that when the underlying topology of an interconnection network is modelled by a con-
nected graph G = (V,E), where V is the set of processors and E is the set of communication links in the net-
work, the connectivity j(G) and the edge-connectivity k(G) are the two important features determining
reliability and fault tolerance of the network [1,2,8,19]. These two parameters, however, have an obvious defi-
ciency, that is, they tacitly assume that either all vertices adjacent to or all edges incident with the same vertex
of G can potentially fail at the same time, which happens almost impossible in the practical applications of
networks. In other words, in the definitions of j and k, absolutely no restrictions are imposed on the compo-
nents of G � S. Consequently, these two measurements are inaccurate for large-scale processing systems in
which all processors adjacent to or all links incident with the same processor cannot fail at the same time.
To compensate for this shortcoming, it would seem natural to generalize the notion of the classical connec-
tivity by imposing some conditions or restrictions on the components of G � S. Haray [9] first considered this
problem by introducing the concept of the conditional connectivity.
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Given a graph G and a graph-theoretical property P, he defined the conditional connectivity jðG;PÞ (resp.
edge-connectivity kðG;PÞ) as the minimum cardinality of a set of vertices (resp. edges), if any, whose deletion
disconnects G and every remaining component has property P. Clearly, j(G) (resp. k(G)) is a special case of
jðG;PÞ (resp. kðG;PÞ) when no condition is restricted to P. The existence and value of jðG;PÞ (kðG;PÞ) vary
depending on the different choice of the property P.

Fàbrega and Fiol [7] considered jðG;PhÞ (resp. kðG;PhÞ) for a non-negative integer h and a graph G, where
Ph is the property of having more than h vertices. They called this type of connectivity as the h-extraconnec-
tivity (resp. h-edge-extraconnectivity) of G, denoted by jh(G) (resp. kh(G)). In other words, jh(G) (resp. kh(G))
is the minimum cardinality of a set of vertices (resp. edges) of G, if any, whose deletion disconnects G and
every remaining component has more then h vertices.

Clearly, j0(G) = j(G) and k0(G) = k(G) for any graph G if G is not a complete graph. Thus, the h-extra con-
nectivity is a generalization of the classical connectivity and can provide more accurate measures for the reli-
ability and the tolerance of a large-scale parallel processing system, and so has received much research
attention (see, for example, [5,6,10–12,16,21–23,26]) for h = 1 in recent years. However, a few results for
h P 2 are known in the present literature, for example, [28].

The well-known n-dimensional hypercube is a graph Qn = (V,E) with jVj = 2n and jEj = n2n�1. Each vertex
can be represented by an n-bit binary string. There is a link between two vertices whenever their binary string
representation differ in only one bit position. As a variant of the hypercube, the n-dimensional folded hyper-
cube FQn, proposed first by El-Amawy and Latifi [4], is a graph obtained from the hypercube Qn by adding
2n�1 edges, called complementary edges, each of them is between vertices. x ¼ ðx1; x2; . . . ; xnÞ and x ¼
ðx1; x2; . . . ; xnÞ, where xi ¼ 1� xi.

The graphs shown in Fig. 1 are the folded hypercubes FQ3 and FQ4.
It has been shown that FQn is (n + 1)-regular (n + 1)-connected. Moreover, like the Qn, FQn is a Cayley

graph and so FQn is vertex-transitive. FQn is also superior to Qn in some properties. For example, it has diam-
eter dn

2
e, about a half of the diameter of Qn [4]. Thus, the folded hypercube FQn is an enhancement on the

hypercube Qn. In particular, there are n + 1 internally disjoint paths of length at most dn
2
e þ 1 between any
Fig. 1. The folded hypercubes FQ3 and FQ4, where the heavy edges are complementary edges.
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pair of vertices in FQn, the deletion of less than dn
2
e � 2 vertices or edges does not increase the diameter of FQn,

and the deletion of up to n vertices or edges increases the diameter by at most one [15,17]. These properties
mean that interconnection networks modelled by FQn are extremely robust. As a result, the study of the folded
hypercube has recently attracted the attention of many researchers [3,13,14,18,24,25].

In [28], we determined j1(FQn) = 2n for n P 4. Since FQn is vertex-transitive and contains no triangles, by
Theorem 6 in [26] we immediately have k1(FQn) = 2n for n P 2. Also in [28], we determined that the 2-extra-
edge-connectivity of hypercubes, twisted cubes, crossed cubes and Möbius cubes are all 3n � 4 when for
n P 4. In this paper, we prove j2(FQn) = 3n � 2 for n P 8 and k2(FQn) = 3n � 1 for n P 5.

The rest of this paper is organized as follows. In Section 2, we give some notations and lemmas which will
be frequently used in the proofs of our main results in Section 3.

2. Preliminaries

For all the terminology and notation not defined here, we follow [20]. For a graph G = (V,E) and S � V(G)
or S � G, we use NG(S) (resp. EG(S)) to denote the set of neighbors (resp. edges) of S in G � S. We use g(G) to
denote the girth of G, the minimum length of all cycles in G.

By the definition of the folded hypercube, it is easy to see that any (n + 1)-dimensional folded hypercube
FQn+1 can be viewed as GðQ0

n;Q
1
n; M0 þMÞ, where Q0

n and Q1
n are two n-dimensional hypercubes with the prefix

1 and 0 of each vertex, respectively, and M0 ¼ f0u1uj 0u 2 V ðQ0
nÞ and 1u 2 V ðQ1

nÞg, M ¼ f0u1uj 0u 2
V ðQ0

nÞ and 1u 2 V ðQ1
nÞg.

For an n-bit binary string u, we use ui to denote the binary string which differs in the ith bit position with u.
Similarly, we use uij to denote the n-bit binary string which differs in the jth position with ui. Clearly, uii = u.
We use u to denote the n-bit binary string which differs with u in every bit position. We use eðuÞ 2 M to denote
the edge in M incident with u, and ei(u) to denote the edge (u,ui) for i 2 {1,2, . . . ,n}.

In the following discussion, we use 0u to denote a vertex of FQn+1, which means that 0u 2 V ðQ0
nÞ. Similarly,

we write 1u, which means that 1u 2 V ðQ1
nÞ. Moreover, for the sake of convenience, we consider FQn+1 rather

than FQn.

Lemma 2.1. Any two vertices in V(FQn+1) exactly have two common neighbors for n P 3 if they have.

Proof. We prove that any two vertices in FQnþ1 ¼ GðQ0
n;Q

1
n; M0 þMÞ exactly have two common neighbors for

n P 3, if they have, according to their location. It is known that any two vertices in Qn exactly have two com-
mon neighbors if they have.

Case 1: Both vertices are located in V ðQ0
nÞ (or V ðQ1

nÞ), say, without loss of generality, in V ðQ0
nÞ. We suppose

that the two vertices are 0u and 0v.
Suppose that 0u and 0v have two common neighbors in Q0

n. By the definition of Q0
n, 0u and 0v differ in

exactly two bit positions. Then f1u; 1ug \ f1v; 1vg ¼ / for n P 3. Thus 0u and 0v have no common neighbors
in Q1

n, and so 0u and 0v have exactly two common neighbors in FQn+1.
Suppose that 0u and 0v have no common neighbors in Q0

n below. If u ¼ v, then f1u; 1ug ¼ f1v; 1vg. So 0u

and 0v exactly have two common neighbors in FQn+1. If u 6¼ v, then f1u; 1ug \ f1v; 1vg ¼ /. So 0u and 0v have
no common neighbors in FQn+1.

Case 2: One of the two vertices is in V ðQ0
nÞ, and the other is in V ðQ1

nÞ. Without loss of generality, we suppose
that 0u 2 V ðQ0

nÞ and 1v 2 V ðQ1
nÞ.

If there exists an i such that v 2 fui; uig, then jNFQnþ1
ð0uÞ \ NFQnþ1

ð1vÞj ¼ jf0u1; 0u2; . . . ; 0un; 1u; 1ug\
f1v1; 1v2; . . . ; 1vn; 0v; 0vgj ¼ 2. So 0u and 1v exactly have two common neighbors in FQn+1.

If v 62 fui; uig for any i 2 {1,2, . . . ,n}, then u 62 fvi; vij1 6 i 6 ng. Thus jN FQnþ1
ð0uÞ \ N FQnþ1

ð1vÞj ¼
jf0u1; 0u2; . . . 0un; 1u; 1ug \ f1v1; 1v2; . . . 1vn; 0v; 0vgj ¼ 0, which implies that 0u and 1v have no common
neighbors in FQn+1. h

Lemma 2.2. g(FQn+1) = 4 for n P 2.
Proof. Since FQn+1 can be viewed as GðQ1
n;Q

2
n; M0 þMÞ and g(Qn) = 4 for n P 2, we only need to prove that

any edge in M0 or M is not contained in a triangle.
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Let e0 = (0u, 1u) be an edge in M0. Then e0 is not contained in a triangle since 1u is adjacent to neither 1u for
n P 2 nor 0ui for i 2 {1,2, . . . ,n}. Similarly any edge e ¼ ð0u; 1uÞ is not contained in a triangle. h

Lemma 2.3. Let F � V(FQn+1), F 0 ¼ F \ V ðQ0
nÞ and F 1 ¼ F \ V ðQ1

nÞ. If jFj 6 3n and there are neither isolated

vertices nor isolated edges in FQn+1 � F, then every vertex in Q0
n � F 0 is connected to a vertex in Q1

n � F 1.
Proof. Suppose that 0u is a vertex in Q0
n � F 0. If 1u 62 F or 1u 62 F , then we are done. So suppose that both 1u

and 1u are in F below. For some i 2 {1, 2, . . . ,n}, if 0ui 62 F and 1ui 62 F, then we are done. So we suppose for
each i, at least one of 0ui and 1ui belongs to F. Let A = {0ui, 1uiji 2 {1, 2, . . . ,n}} \ F. Then jAjP n. Since there
are no isolated vertices in FQn+1 � F, there exists some j such that 0uj 62 F. If 1uj 62 F , then we are done. So
assume 1uj 2 F . For each i 2 {1,2, . . . ,n} and i 5 j, if 0uji 62 F and 1uji 62 F, then we are done. So we suppose
that for each j, at least one of 0uji and 1uji belongs to F. Let B = {0uji, 1ujiji 2 {1,2, . . . ,n} and i 5 j} \ F. Then
jBjP n � 1. Since there are no isolated edges in FQn+1 � F, then NFQnþ1

ð0u; 0ujÞ � F ¼ N Q0
n
ð0u; 0ujÞ � F 6¼ /.

Let 0v be a vertex in N Q0
n
ð0u; 0ujÞ � F . Then 0v is adjacent to 0u or 0uj. Without loss of generality, we suppose

0v is adjacent to 0u. Assume 0v = 0uk for some k. If 1uk 62 F , then we are done. So we suppose 1uk 2 F . Let
C = {0uki, 1ukiji 2 {1,2, . . . ,n}, i 5 k, j} and D ¼ f1u; 1u; 1uj; 1ukg. It is clear that any two sets in {A,B,C,D}
are disjoint to each other. Thus jC \ Fj 6 jF � (A [ B [ D)j = jFj � jAj � jBj � jDj 6 n � 3. Since there are
n � 2 pairs of vertices in C, so there exists an i 2 {1,2, . . . ,n} with i 5 k, j such that 0uki 62 F and 1uki 62 F. Thus
0u can be connected to a vertex in Q1

n � F 1, we are done. h

Lemma 2.4. Let F � E(FQn+1), F 0 ¼ F \ EðQ0
nÞ, F 1 ¼ F \ EðQ1

nÞ, F M0
¼ F \M0 and F M ¼ F \M . If F 6

3n + 1 and there are neither isolated vertices nor isolated edges in FQn+1 � F, then any vertex in Q0
n � F 0 (resp.

Q1
n � F 1) is connected to a vertex in Q1

n � F 1 (resp. Q0
n � F 0).
Proof. Without loss of generality we only need to prove that any vertex in Q1
n � F 1 is connected to a vertex in

Q0
n � F 0.
Let 1u be any vertex in Q1

k � F 1. If e0(1u) or eð1uÞ 62 F , then we are done. So assume e0(1u) 2 F and
eð1uÞ 2 F . We define A = {ei(1u), e0(1ui)ji 2 {1,2, . . . ,n}} \ F. If jAj < n, then there exists some i such that
ei(1u) 62 F and e0(1ui) 62 F, and so we are done. So assume jAjP n. Since there are no isolated vertices in G � F,
then there exists some i 0 2 {1,2, . . . ,n} such that ei0 ð1uÞ 62 F . If e0ð1ui0 Þ 62 F or eð1ui0 Þ 62 F , then we are done. So
assume e0ð1ui0 Þ 2 F and eð1ui0 Þ 2 F . Let B ¼ fejð1ui0 Þ; e0ð1ui0jÞjj 2 f1; 2; . . . ; ng; j 6¼ i0g. If jBj < n � 1, then
there exists some j 2 {1,2, . . . ,n}, j 5 i 0 such that ejð1ui0 Þ 62 F and e0ð1ui0jÞ 62 F , we are done. So assume
jBjP n � 1. Since there are no isolated edges in FQk+1 � F, there exist some j 0 such that ej0 ð1ui0 Þ 62 F . If
e0ð1ui0j0 Þ 62 F or eð1ui0j0 Þ 62 F , then we are done. So assume that e0ð1ui0j0 Þ 2 F and eð1ui0j0 Þ 2 F . Let C ¼
felð1ui0j0 Þ; e0ð1ui0j0lÞjl 2 f1; 2; . . . ; ng � fi0; j0gg. Then jC \ F j 6 jF � ðA [ B [ fe0ð1uÞ; eð1uÞ; e0ð1ui0 Þ; eð1ui0 Þ;
e0ð1ui0j0 Þ; eð1ui0j0 ÞgÞj 6 n� 4. Since there exist n � 2 pairs of edges in B, so there exists a pair of edges
elð1ui0j0 Þ; e0ð1ui0j0lÞ (l 2 {1,2, . . . ,n} � {i 0,j 0}) which is not in F. Thus 1u can be connected to Q0

n � F 0. h

Lemma 2.5 [27]. j1(Qn) = 2n � 2 for n P 3 and j2(Qn) = 3n � 5 for n P 5.
3. Main results
Theorem 3.1. j2(FQn+1) = 3n + 1 for n P 7.

Proof. On the one hand, we can choose a cycle C of length four and a path P in C with length two and with-
out complementary edges such that NFQnþ1

ðP Þ ¼ 3nþ 1 since, by Lemmas 2.2 and 2.1, g(FQn+1) = 4 and
any two non-adjacent vertices in P have common neighbors exactly two for n P 3. It is easy to check that
FQnþ1� N FQnþ1

ðP Þ contains neither isolated vertices nor isolated edges for n P 6, which implies that
j2(FQn+1) P 3n + 1.

On the other hand, let F be a subset of vertices in FQnþ1 ¼ GðQ0
n;Q

1
n; M0 þMÞ with jFj 6 3n and there are

no isolated vertices or isolated edges in FQn+1 � F. Let F 0 ¼ F \ V ðQ0
nÞ, F 1 ¼ F \ V ðQ1

nÞ. Without loss of
generality, we may suppose that jF0 jP jF1j, then jF 1j 6 3n

2 <
4n�6

2 ¼ 2n� 3 (n P 7) since F0 \ F1 = /.
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By Lemma 2.3, any vertex in Q0
n � F 0 can be connected to a vertex in Q1

n � F 1. So we only need to prove
that Q1

n � F 1 is connected.
If there are no isolated vertices in Q1

n � F 1 then, since jF 1j < 2n� 3 < j1ðQ1
nÞ by Lemma 2.5, so Q1

n � F 1 is
connected.

Suppose below that there exists an isolated vertex 1u in Q1
n � F 1. Since any two vertices in Q1

n can share at
most two common neighbors, so at least 2n � 2 vertices are to be removed to get two isolated vertices in Q1

n.
Since jF1j < 2n � 3, so there is just one isolated vertex 1u in Q1

n � F 1. Let F 01 ¼ F 1 [ f1ug. Since jF 01j <
2n� 3þ 1 < 2n� 2 6 j1ðQ1

nÞ by Lemma 2.5 and there are no isolated vertices in Q1
n � F 01, so Q1

n � F 01 is
connected.

In the following we will prove that 1u is connected to Q1
n � F 01 in FQn+1 � F. Since there are no isolated

vertices in FQn+1 � F, at least one of 0u and 0u is not in F. In the following discussion we consider two cases:
(1) 0u 62 F and 0u 62 F ; (2) 0u 2 F, 0u 62 F , or 0u 62 F, 0u 2 F .

Subcase (2.1): 0u 62 F and 0u 62 F .
Since the distance between 0u and 0u in Q0

n is n, so when n P 3 they have no common neighbors in Q0
n. Thus

jN FQnþ1
ð0uÞ [ NFQnþ1

ð0uÞ � 1uj ¼ 2nþ 1 since 0u and 0u have exactly two common neighbors. But there are at

most jF j � jNQ1
n
ð1uÞj 6 2n elements of F that may be in these 2n + 1 vertices. So at least one of them does not

belong to F. If 1u 62 F , then we are done. So we suppose that 1u 2 F . So at least one of the vertices in
NQ0

n
ð0uÞ [ NQ0

n
ð0uÞ does not belong to F0. Without loss of generality, we suppose 0ui is such a vertex.

Since jF1j < 2n � 3 and 1uj 2 F1(j = 1,2, . . . ,n), at most n � 4 of 1uj can be in F1. For each vertex 1uj 62 F 1,
if one of 0uj or 0uj is not in F0, then 1u can be connected to Q1

n � F 01, we are done. So we suppose that for any
vertex 1uj 62 F 1 both 0uj and 0uj are in F0. In this case, there are at least 4 * 2 + n � 4 = n + 4 vertices in F. Let
B ¼ F \ ðNQ0

n
ð0uÞ [ NQ0

n
ð0uÞ [ NQ1

n
ð1uÞÞ, then jBjP n + 4.

For each j 2 {1,2, . . . ,n} and j 5 i, it is clear that both 0uij 62 B [ N Q1
n
ð1uÞ and 1uij 62 B [ NQ1

n
ð1uÞ. So at

most jF j � jBj � jNQ1
n
ð1uÞj 6 n� 4 vertices of F may be in these n � 1 pairs of vertices, and so there exists an j

such that both 0uij 62 F and 1uij 62 F. Thus 1u can be connected to Q1
n � F 0.

Subcase (2.2): 0u 2 F and 0u 62 F , or 0u 62 F and 0u 2 F .
Without loss of generality, we suppose that 0u 2 F and 0u 62 F .
Since there are no isolated edges in G � F, then either 1u 62 F or 0u has a neighbor in Q0

n which is not in F. If
1u 62 F , then we are done. So we suppose that 1u 2 F , thus 0u has a neighbor in Q0

n that is not in F. Suppose
that 0ui is such a vertex. If 1ui 62 F , we are done. So we suppose that 1ui 2 F . For any vertex 0v 2 N Q0

n
ð0u; 0uiÞ,

it is clear that both 0v and 1v do not belong to NQ1
n
ð1uÞ [ f0u; 1u; 1uig. Since there are 2n � 2 pairs of vertices

like (0v, 1v), but at most jF j � jN Q1
n
ð1uÞ [ f0u; 1u; 1uigj 6 2n� 3 vertices of F may be in these 2n � 2 pairs of

vertices, so at least one pair of vertices does not belong to F. Thus 1u can be connected to Q1
n � F 01.

Thus we have proved that all vertices in Q1
n � F 1 are connected to each other in G � F. h

Theorem 3.2. k2(FQn+1) = 3n + 2 for n P 4.

Proof. On the one hand, suppose that P is a path of length 2 in FQn+1, then, it is clear that k2ðFQnÞ 6
jEFQn

ðP Þj ¼ 3nþ 2 for n P 2.
On the other hand, let F � E(FQn+1) with jFj = 3n + 1 such that there are neither isolated vertices nor

isolated edges in FQn+1 � F. We want to prove that FQn+1 � F is connected. Let FQnþ1 ¼ GðQ0
n;Q

1
n; M0 þMÞ

be a decomposition of FQn+1.
For each i = 1,2, . . . ,n, let Mi be the set of edges in EðFQnþ1 �MÞ whose two end-vertices differ in the ith bit

position. Then M0,M1, . . . Mn and M is a partition of E(FQn+1). Since 2(n + 2) < 3n + 1 for n P 4, at least one
of jM0j, jM1j, . . . , jMnj and jM j is greater than 3. Thus we can relabel the vertices of FQn+1 such that jF\
ðM0 [MÞjP 3.

Let F 0 ¼ F \ EðQ0
nÞ, F 1 ¼ F \ EðQ1

nÞ, F M0
¼ F \M0, F M ¼ F \M . So jF0j + jF1j 6 3n + 1 � 3 = 3n � 2.

Since 3n � 2 < 4n � 4 for n P 3, at least one of jF0j and jF1j is less than 2n � 2. Without loss of generality,
we suppose that jF0j < 2n � 2.

Case 1: There are no isolated vertices in Q0
n � F 0. Then Q0

n � F 0 is connected since jF 0j < 2n� 2 ¼ k0ðQ0
nÞ.

By Lemma 2.4, any vertex in Q1
n � F 1 is connected to a vertex in Q0

n � F 0. Thus FQn+1 � F is connected.
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Case 2: There is an isolated vertex 0u in Q0
n � F 0. Since kðQ0

n � 0uÞP jðQ0
n � 0uÞP n� 1 and jEðQ0

n�
0uÞ \ F 0j 6 jF 0j � jEQ0

n
ð0uÞj < n� 2, Q0

n � F 0 � 0u is connected. We only need to prove that 0u is connected to
Q0

n � F 0 � 0u in FQn+1 � F. Since there are no isolated vertices in FQn+1 � F, we have either e0(0u) 62 F or
eð0uÞ 62 F .

Without loss of generality we may suppose that e0(0u) = (0u, 1u) 62 F. If eð1uÞ 62 F , then we are done. So we
suppose that eð1uÞ 2 F . Let A = {ei(1u),e0(1ui)ji 2 {1,2, . . . ,n}} \ F. If jAj < n, then there exists an i such that
both ei(1u) 62 F and e0(1ui) 62 F, then we are done. So we suppose jAjP n. Since there are no isolated edges in
G � F, there exist an i 0 2 {1,2, . . . ,n} such that ei0 ð1uÞ 62 F . If e0ð1ui0 Þ 62 F or eð1ui0 Þ 62 F , then we are done. So
we suppose e0ð1ui0 Þ 2 F and eð1ui0 Þ 2 F . Let B ¼ fejð1ui0 Þ; e0ð1ui0jÞ j j 2 f1; 2; . . . ; ng; j 6¼ i0g. Then jB \ F j 6
jF � ðN Q0

n
ð0uÞ [ A [ feð1uÞ; e0ð1ui0 Þ; eð1ui0 ÞgÞj 6 n� 2. Since there exist n � 1 pairs of edges in B, so at least

one pair of edges does not belong to F, thus 0u can be connected to Q0
n � F 0 � 0u in FQn+1 � F.

Thus the vertices in Q0
n � F 0 are connected to each other in FQn+1 � F. By Lemma 2.4, any vertex in

Q1
n � F 1 is connected to a vertex in Q0

n � F 0. Thus FQn+1 � F is connected. h
4. Conclusions

In this paper, we consider two new measurement parameters for the reliability and the tolerance of net-
works, i.e., the 2-extra connectivity j2(G) and the 2-extra edge-connectivity k2(G) of a connected graph G,
which not only compensate for some shortcomings but also generalize the classical connectivity j(G) and
the classical edge-connectivity k(G), and so can provide more accurate measures for the reliability and the tol-
erance of a large-scale parallel processing system. For the folded hypercube FQn, an important variant of the
hypercube Qn, we determine that j2(FQn) = 3n � 2 for n P 8; and k2(FQn) = 3n � 1 for n P 5. In other words,
for n P 8 (resp. n P 5), at least 3n � 2 vertices (resp. 3n � 1 edges) of FQn have to be removed to disconnect
FQn with each of the remaining components containing no isolated vertices (resp. edges). The two results show
that the folded hypercube has a very strong reliability and fault tolerance when it is used to model the topo-
logical structure of a large-scale parallel processing system.
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