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Abstract

As an enhancement on the hypercube Qn, the augmented cube AQn, proposed by Choudum and Sunitha [S.A. Chou-
dum, V. Sunitha, Augmented cubes, Networks, 40(2) (2002), 71–84], not only retains some of the favorable properties
of Qn but also possesses some embedding properties that Qn does not. For example, AQn contains cycles of all lengths
from 3 to 2n, but Qn contains only even cycles. In this paper, we obtain two stronger results by proving that AQn con-
tains paths, between any two distinct vertices, of all lengths from their distance to 2n � 1; and AQn still contains cycles
of all lengths from 3 to 2n when any (2n � 3) edges are removed from AQn. The latter is optimal since AQn is (2n � 1)-
regular.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that interconnection networks play an important role in parallel computing/communica-
tion systems. One of the central issues in evaluating a network is to study the graph embedding problem [3,4].
The graph embedding problem asks if a guest graph is a subgraph of a host graph, and an important benefit of
graph embeddings is that we can apply existing algorithms for guest graphs to host graphs. This problem has
attracted a burst of studies in recent years. Cycle networks are suitable for designing simple algorithms with
low communication costs. Since some parallel applications, such as those in image and signal processing, are
originally designated on a cycle architecture, it is important to have effective cycle embedding in a network.
The cycle embedding properties of many interconnection networks have been investigated in the literature
(see, for example, [1,6,11,14,18,20–22]).
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Edge and/or vertex failures are inevitable when a large parallel computer system is put in use. Therefore,
the fault-tolerant capacity of an interconnection network is a critical issue in parallel computing. Fault-toler-
ant properties have been widely studied in many networks, such as [2,7–10,12,15,17,19].

It is well known that the hypercube has been one of the most popular interconnection networks for parallel
computer/communication system. This is partly due to its attractive properties such as regularity, recursive
structure, node and edge symmetry, maximum connectivity, as well as effective routing and broadcasting algo-
rithms [13].

As an enhancement on the hypercube Qn, the augmented cube AQn, proposed by Choudum and Sunitha
[5], not only retains some of the favorable properties of Qn but also possesses some embedding properties
that Qn does not. For example, AQn contains cycles of all lengths from 3 to 2n, but Qn contains only even
cycles.

In this paper, we obtain two stronger results: AQn contains paths, between any two distinct vertices, of all
lengths from their distance to 2n � 1; and AQn still contains cycles of all lengths from 3 to 2n when any (2n � 3)
edges are removed from AQn. The latter is optimal since AQn is (2n � 1)-regular.

The rest of this paper is organized as follows. Section 2 gives some basic definitions used in our dis-
cussion. The proofs of our main results are in Section 3 and in Section 4. Some conclusions are given in
Section 5.

2. Basic definitions

An interconnection network is usually represented by an undirected simple graph G = (V,E), where V and
E are the vertex set and the edge set, respectively, of G. In this paper, we use a graph and a network inter-
changeably. For graph terminology and notation not defined here we follow [16].

Two vertices u and v are adjacent if (u,v) 2 E(G). A path is a finite sequence of adjacent vertices, written as
hu,u1, . . .,vi, in which all the vertices u,u1, . . .,v are distinct except possibly u = v. A path joining u and v is
called a uv-path, and the distance between u and v is the length of a shortest uv-path, denoted by dG(u,v),
or simply d(u,v). The diameter D(G) of G is the maximum distance between any two vertices of G. A path
is called a hamiltonian path if it contains every vertex of G exactly once. A uv-path of length ‘ is denoted
by P‘(u,v) = hu,u1, . . .,vi, where the vertices u and v are end vertices of P and ‘ is the number of edges in
P. P‘(u,v) is called a cycle of length ‘ if u = v and ‘ is at least three. We use C‘ to denote a cycle of length
‘. A cycle is called a hamiltonian cycle of G if it contains every vertex of G exactly once. A graph G is ham-
iltonian if G contains a hamiltonian cycle.

A graph G is pancyclic if it contains a cycle of length ‘ for each ‘ with 3 6 ‘ 6 jVj. A graph G is hamiltonian
connected if there exists a hamiltonian path joining any two vertices of G. A graph G is panconnected if for
any two distinct vertices u and v of G and for each integer ‘ with d(u,v) 6 ‘ 6 jVj � 1, there is a uv-path of
length ‘ in G. If a graph G is panconnected then clearly it is hamiltonian connected and pancyclic.

A graph G is k (respectively, k-edge)-fault-tolerant hamiltonian if G � F is still hamiltonian for any
F � E(G) [ V(G) (respectively, F � E(G)) with jFj 6 k [8]. Similarly, k-fault-tolerant hamiltonian connected
graphs and k-edge-fault-tolerant pancyclic graphs can be defined.

The n-dimensional augmented cube AQn (n P 1) can be defined recursively as follows: AQ1 is a complete
graph K2 with the vertex set {0,1}. For n P 2, AQn is obtained by taking two copies of the augmented cube
AQn�1, denoted by AQ0

n�1 and AQ1
n�1, and adding 2 · 2n�1 edges between the two as follows.

Let V ðAQ0
n�1Þ ¼ f0un�1 . . . u2u1 : ui ¼ 0 or 1g and V ðAQ1

n�1Þ ¼ f1un�1 . . . u2u1 : ui ¼ 0 or 1g. A vertex
u = 0un�1 . . .u2u1 of AQ0

n�1 is joined to a vertex v = 1vn�1 . . .v2v1 of AQ1
n�1 if and only if either

(i) ui = vi for 1 6 i 6 n � 1; in this case, v (respectively, u) is called a hypercube neighbor of u (respectively,
v), setting v = uh or u = vh, or

(ii) ui ¼ �vi for 1 6 i 6 n � 1; in this case, v (respectively, u) is called a complement neighbor of u (respec-
tively, v), setting v = uc or u = vc.

The graphs shown in Fig. 1 are the augmented cubes AQ1, AQ2 and AQ3, respectively.
Obviously, AQn is a (2n � 1)-regular graph with 2n vertices.



Fig. 1. Three augmented cubes AQ1, AQ2 and AQ3
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3. Panconnectivity of augmented cubes

According to the definition of augmented cubes, we write this recursive construction of AQn symbolically as
AQn = L � R, where L ffi AQ0

n�1 and R ffi AQ1
n�1. We call the edges between L and R crossed edges, denoted by

Ec. Clearly every vertex of AQn is incident with two crossed edges. The following properties are derived
directly from the definition.

Property 1. If (u, v) 2 E(L), then (uh, vh) 2 E(R) and (uc, vc) 2 E(R). For any two distinct vertices u 5 v in L,

uh 5 vh and uc 5 vc.

Property 2. For any vertex u 2 V(L), (uh,uc) 2 E(R). If v = uh 2 V(R), then the subgraph in AQn induced by

{u,uc, v, vc} is a complete graph K4.

Although many interconnection networks have been shown to be hamiltonian or pancyclic, only a few of
them have been shown to be panconnected. In this section, we show that the augmented cube is panconnected.
The following result, which can be found in [5], is useful for us.

Lemma 1. Let u and v be any two vertices in AQn with n P 2. Then dAQn
ðu; vÞ ¼ dLðu; vÞ if both u and v are in

L. Similarly, dAQn
ðu; vÞ ¼ dRðu; vÞ if both u and v are in R. If u 2 L and v 2 R, then there exist a shortest uv-path

P1 in AQn with all its vertices (except v) in L and a shortest uv-path P2 in AQn with all its vertices (except u) in

R.

Theorem 1. For any integer n P 1, the augmented cube AQn is panconnected.

Proof. We prove the theorem by induction on n P 1. Obviously, AQ1 and AQ2 are panconnected (see Fig. 1).
Assume that AQn�1 is panconnected for n P 3. We now consider the graph AQn. Let u and v be any two ver-
tices in AQn = L � R. We will prove that there is a uv-path of length ‘, for each ‘ with dAQn

ðu; vÞ 6 ‘ 6 2n � 1.
Consider the following two cases.

Case 1 Both u and v are in L or R. Without loss of generality, we may assume both u and v are in L.
For dAQn

ðu; vÞ 6 ‘ 6 2n�1 � 1, according to Lemma 1, dAQn
ðu; vÞ ¼ dLðu; vÞ. By the induction hypothesis,

there exists a uv-path of length ‘ in L, also in AQn.
For 2n�1

6 ‘ 6 2n � 1, we can write ‘ = ‘1 + ‘2 + 1 where DðLÞ ¼ dn�1
2 e < 2n�1 � 2 6 ‘1 6 2n�1 � 1 and

1 6 ‘2 6 2n�1 � 1. Since dL(u,v) 6 D(L), by the induction hypothesis, there exists a uv-path of length ‘1 in L.
Let P ‘1

¼ hu; u1; . . . ; vi be a uv-path of length ‘1 in L. Let uh and uh
1 be the hypercube neighbors of u and u1 in

R, respectively. By Property 1, ðuh; uh
1Þ 2 EðRÞ, i.e., dRðuh; uh

1Þ ¼ 1. By the induction hypothesis, there is a uhuh
1-

path P ‘2
of length ‘2 in R. Hence P ¼ hu; uh; P ‘2

; uh
1; u1; . . . ; vi is a uv-path of length ‘ in AQn (see Fig. 2a).

Case 2 u 2 L and v 2 R.
Subcase 2.1 dAQn

ðu; vÞ ¼ 1. Then v = uc or v = uh. Without loss of generality, we assume v = uh. By Property
2, we have (uh,uc) 2 E(R). Then P = hu,uc,uh = vi is a uv-path of length 2 in AQn (see Fig. 2b).

For 3 6 ‘ 6 2n � 1, we can write ‘ = ‘1 + ‘2 + 1 where 1 6 ‘1 6 2n�1 � 1 and 1 6 ‘2 6 2n�1 � 1. Note that
vh = u; by Property 2, (u,vc) 2 E(L) and (vc,uc) 2 E(AQn). By the induction hypothesis, there exist a uvc-path
P ‘1

of length ‘1 in L and a ucv-path P ‘2
of length ‘2 in R. Then P ¼ hu; P ‘1

; vc; uc; P ‘2
; vi is a uv-path of length ‘

in AQn (see Fig. 2c).
Subcase 2.1 dAQn

ðu; vÞP 2. By Lemma 1, there exists a shortest uv-path P = hu, . . .,u 0,vi in AQn with all its
vertices (except v) in L. Let PL = hu, . . .,u 0i be the segment of path P in L. Then the length of PL is d(u,v) � 1
and v is a neighbor of u 0 in R. Assume the other neighbor of u 0 in R is v 0; by Property 2, we have (v 0,v) 2 E(R).



∈ ∈

u v

Fig. 2. Illustrations for the proof of Theorem 1. (A straight line or a dashed line represents an edge and a curve line represents a path
between two vertices.)
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For dAQn
ðu; vÞ þ 1 6 ‘ 6 2n, we can write ‘ = ‘1 + ‘2 + 1 where dAQn

ðu; vÞ � 1 6 ‘1 6 2n�1 � 1 and
1 6 ‘2 6 2n�1 � 1. By the induction hypothesis, there exist a uu 0-path P ‘1

of length ‘1 in L and a v 0v-path
P ‘2

of length ‘2 in R. Then P ¼ hu; P ‘1
; u0; v0; P ‘2

; vi is a uv-path of length ‘ in AQn (see Fig. 2d). h
4. Edge-fault-tolerant pancyclicity

Let F � E(AQn). An edge (u,v) is called a faulty edge if (u,v) 2 F. A subgraph H of AQn is called fault-free if
H contains no faulty edges (i.e., E(H) \ F = ;). For convenience of discussion, we define the following subsets
of F: FL = F \ E(L), FR = F \ E(R) and Fc = F \ Ec. Note that F = FL [ FR [ Fc.

The following results proved in [10] are useful in the proof of Theorem 2.

Lemma 2. Let {u, v,x,y} be any four distinct vertices of AQn(n P 2). Then there exist a ux-path and a vy-path

such that they are disjoint and contain all vertices of AQn.

Lemma 3. The augmented cube AQn is (2n � 3)-fault-tolerant hamiltonian and (2n � 4)-fault-tolerant hamilto-

nian connected for any integer n 62 {1,3}.

The above lemma states that with up to (2n � 3) faulty edges and faulty vertices, AQn(n 62 {1,3}) still con-
tains a hamiltonian cycle, and with up to (2n � 4) faulty edges and faulty vertices, AQn(n 62 {1,3}) is still ham-
iltonian connected. It is shown in [10] that there are 3 faulty vertices F in AQ3 such that AQ3 � F is non-
hamiltonian and there are 2 faulty vertices F in AQ3 such that AQ3 � F is non-hamiltonian connected. If
the faulty elements contain no vertices, we prove the following two lemmas. The proofs of these lemmas
are omitted here since they can be directly verified in a straight forward manner as AQ3 contains just 8 vertices.

Lemma 4. The augmented cube AQ3 is 2-edge-fault-tolerant hamiltonian connected.
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Lemma 5. The augmented cube AQ3 is 3-edge-fault-tolerant pancyclic, hence it is 3-edge-fault-tolerant

hamiltonian.

Theorem 2. The augmented cube AQn is (2n � 3)-edge-fault-tolerant pancyclic for any integer n P 2.

Proof. We prove the theorem by induction on n P 2. Obviously, AQ2 is 1-edge-fault-tolerant pancyclic since
AQ2 is a complete graph K4. By Lemma 5, the conclusion is true for AQ3. Assume that the theorem is true for
AQn�1 with n P 4. We now consider AQn. Let F � AQn be a set of faulty edges in AQn = L � R with
jFj = 2n � 3. Without loss of generality, we may assume jFLjP jFRj. We will prove that there is a cycle of
length ‘ for each ‘ with 3 6 ‘ 6 2n in AQn � F. Consider the following three cases.

Case 1 jFLj 6 2n � 5. Then jFRj 6 2n � 6 for n P 4, because jFLjP jFRj and jFLj + jFRj 6 2n � 3.
For 3 6 ‘ 6 2n�1, by the induction hypothesis R is (2n � 5)-edge-fault-tolerant pancyclic, and so there is a

cycle of length ‘ in R � FR since jFRj 6 2n � 6.
For ‘ = 2n�1 + 1, since 2n�1 > 2n � 3, there is a vertex u in L such that the two crossed edges (u,uh) and

(u,uc) are both fault-free. By Lemmas 3 and 4, R � FR is still hamiltonian connected. There is a hamiltonian
uhuc-path P h

R in R � FR. Then C ¼ hu; uh; P h
R; u

c; ui is a fault-free cycle of length 2n�1 + 1 (see Fig. 3a).
For 2n�1 + 2 6 ‘ 6 2n, we can write ‘ = 2n�1 + 1 + ‘1, where 1 6 ‘1 6 2n�1 � 1. By Lemmas 3 and 4, R is

(2n � 6)-edge-fault-tolerant hamiltonian connected and L is (2n � 5)-edge-fault-tolerant hamiltonian. Thus
there is a hamiltonian cycle C ¼ hu0; u1; . . . ; u2n�1�1; u0i in L � FL. We claim that there exists a uiuj-path P ‘1

of
length ‘1 on the cycle C such that (j � i)(mod2n�1) = ‘1 (that is j � i = ‘1 + k Æ 2n�1 where k 2 {0,1,�1}) and
one of the two sets of edges fðui; uh

i Þ, ðuj; uh
j Þg, fðui; uc

i Þ, ðuj; uc
jÞg is fault-free. For every vertex ui on the cycle C,

there are two different paths uiuj-path and uiuj0-path both of length ‘1. Hence, there are 2n�1 different paths of
length ‘1 on the cycle C. Suppose to the contrary that there do not exist such ui and uj. Then there are at least
2n�2 faults in fðui; uh

i Þ; i ¼ 0; 1; . . . ; 2n�1 � 1g and at least 2n�2 faults in fðui; uc
i Þ; i ¼ 0; 1; . . . ; 2n�1 � 1g. Thus

there are at least 2n�1 faults outside L. However 2n�1 > 2n � 3 for n P 4, and so we obtain a contradiction.
Hence, there exist such two vertices ui and uj. Without loss of generality, assume fðui; uh

i Þ, ðuj; uh
j Þg are fault-

free. Since R � FR is hamiltonian connected, there is a hamiltonian uh
i uh

j -path P h
R in R � FR. Then

C ¼ hui; P ‘1
; uj; uh

j ; P
h
R; u

h
i ; uii is a cycle of length ‘in AQn � F (see Fig. 3b).

Case 2 jFLj = 2n � 4. Then jFRj 6 1 and jFcj 6 1.
For 3 6 ‘ 6 2n�1 + 1, we can construct a cycle of length ‘ similar to as in Case 1.
For 2n�1 + 2 6 ‘ 6 2n, we can write ‘ = 2n�1 + 1 + ‘1, where 1 6 ‘1 6 2n�1 � 1. By Lemmas 3 and 4, R is

(2n � 6)-edge-fault-tolerant hamiltonian connected and L is (2n � 5)-edge-fault-tolerant hamiltonian. Thus
there is a hamiltonian path P h

L ¼ hu0; u1; . . . ; u2n�1�1i in L � FL. For any two vertex u0 and ui on P h
L, one of the

two sets of edges fðu0; uh
0Þ, ðui; uh

i Þg, fðu0; uc
0Þ, ðui; uc

i Þg is fault-free since jFcj 6 1. Fix i = ‘1. Without loss of
generality, assume fðu0; uh

0Þ, ðui; uh
i Þg is fault-free. Since R � FR is hamiltonian connected, there is a

hamiltonian uh
0uh

i -path P h
R in R � FR. Then C ¼ hu0; P i; ui; uh

i ; P
h
R; u

h
0; u0i is a cycle of length ‘ in AQn � F (see

Fig. 3c).
Case 3 jFLj = 2n � 3. The faulty edges are all in L.
For 3 6 ‘ 6 2n�1 + 1, we can construct a cycle of length ‘ similar as in Case 1.
For 2n�1 + 2 6 ‘ 6 2n, if there is a fault-free hamiltonian path in L, we can construct the required cycles

with the method similar to that of Case 2. Thus suppose there does not exist a fault-free hamiltonian path in L.
We can mark any two edges (u1,v1) and (u2,v2) in FL as temporarily fault-free. By the induction hypothesis
applied to this amended L, there is a hamiltonian cycle C in L � {FL � {(u1,v1), (u2,v2)}} and both (u1,v1) and
(u2,v2) are on the cycle C (if at least one of (u1,v1) and (u2,v2) is not on the cycle, then there is a fault-free
hamiltonian path in the original L). Thus C � {(u1,v1), (u2,v2)} contains two fault-free paths P1 and P2 in the
original L such that P1 [ P2 span L. We denote the length of P1 and P2 as ‘ 0 and ‘00, respectively. We may
assume ‘ 0 6 ‘00.

Subcase 3.1 All faulty edges are incident with a vertex u. In this case the path P1 is only a vertex u, hence
‘ 0 = 0 and ‘00 = 2n�1 � 2.

For 2n�1 + 2 6 ‘ 6 2n � 1, we can construct the required cycle using the path P2 similarly as in Case 2.
For ‘ = 2n, since 2n � 3 > 3 for n P 4, we can choose two faulty edges (u,v1) and (u,v2) such that the

neighbors uh and uc of u in R are not adjacent with v1 and v2. By Lemma 2, there exist a uhvh
1-path P R1

and a



Fig. 3. Illustrations for the proof of Theorem 2. (A straight line represents an edge and a curve line represents a path between two
vertices.)
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ucvh
2-path P R2

such that they are disjoint and contain all vertices of R. Then C ¼ hu; uh; P R1
; vh

1; v1; P 2; v2;
vh

2; P R2
; uc; ui is a cycle of length 2n in AQn � F (see Fig. 3d).

Subcase 3.2 There are two edges (u1,v1) and (u2,v2) in FL such that they are not adjacent (remember, 2n � 3 > 3).
Using these two edges, our two paths P1 and P2 in L � FL non-trivial and such that P1 [ P2 span L. Then ‘ 0 P 1
and ‘00 P 2n�2 � 1 > 2. Without loss of generality, we may assume P1 is a u1u2-path and P2 is a v1v2-path.

For 2n�1 + 2 6 ‘ 6 2n�1 + ‘ 0 + 1, we can construct the required cycle using the path P1 with the method
similar to that of Case 2.

For ‘ = 2n�1 + ‘ 0 + 2, since the length of P2 is greater than 2, there are at least 3 vertices on P2. There exists
a vertex v on P2 such that the neighbors vh and vc of v in R are not adjacent with the vertices u1 and u2. By
Lemma 2, there exist a uh

1vh-path P R1
and a uh

2vc-path P R2
such that they are disjoint and contain all the vertices

of R. Then C ¼ hu1; uh
1; P R1

; vh; v; vc; P R2
; uh

2; u2; P 1; u1i is a cycle of length 2n�1 + ‘ 0 + 2 in AQn � F (see Fig. 3e).
For 2n�1 + ‘ 0 + 3 6 ‘ 6 2n, we can write ‘ = 2n�1 + ‘ 0 + 2 + ‘1 where 1 6 ‘1 6 2n�1 � 3. Note that

‘1 = ‘ � 2n�1 � ‘ 0 � 2 6 2n�1 � ‘ 0 � 2 = ‘00. Choose v1w-path P ‘1
of length ‘1 on the path P2. By Lemma 2,
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there exist a uh
1vh

1-path P R1
and a uh

2wh-path P R2
such that they are disjoint and contain all vertices of R. Then

C ¼ hu1; uh
1; P R1

; vh
1; v1; P ‘1

; vj; vh
j ; P R2

; uh
2; u2; P 1; u1i is a cycle of length ‘ in AQn � F (see Fig. 3f).

The theorem follows. h
5. Conclusions

Linear arrays (paths) and rings (cycles), two of the most fundamental networks for parallel and distributed
computation, are suitable for developing simple algorithms with low communication cost. The fault-tolerant
pancyclicity of an interconnection network is a measure of its capability of implementing ring-structured par-
allel algorithms in a communication-efficient fashion in the presence of faults. In this paper, we prove that
every augmented cube AQn is panconnected. In other words, for any two distinct vertices u and v of AQn

and for each integer ‘ with d(u,v) 6 ‘ 6 2n � 1, there is a uv-path of length ‘ in AQn. We also show that the
augmented cube AQn is (2n � 3)-edge-fault-tolerant pancyclic. This result is optimal since AQn is (2n � 1)-
regular.

In view of the fact that hypercube networks are not pancyclic, augmented cubes are superior to hypercubes
in terms of the panconnectivity and fault-tolerant pancyclicity. Our further work is to determine the pancyc-
licity of augmented cubes in the presence of hybrid faults.
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