Feedback numbers of Kautz digraphs ${ }^{\text {T }}$

Jun-Ming Xu*, Ye-Zhou Wu, Jia Huang, Chao Yang
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China

Received 1 November 2005; received in revised form 13 August 2006; accepted 2 September 2006
Available online 24 October 2006

Abstract

A subset of vertices (resp. arcs) of a graph G is called a feedback vertex (resp. arc) set of G if its removal results in an acyclic subgraph. Let $f(d, n)\left(f_{a}(d, n)\right)$ denote the minimum cardinality over all feedback vertex (resp. arc) sets of the Kautz digraph $K(d, n)$. This paper proves that for any integers $d \geqslant 2$ and $n \geqslant 1$

$$
\begin{aligned}
& f(d, n)= \begin{cases}\frac{d}{(\varphi \odot \theta)(n)} \\
n & \text { for } n=1 \\
\frac{d^{n}}{n}+\frac{(\varphi \odot \theta)(n-1)}{n-1}+\mathrm{O}\left(n d^{n-4}\right) & \text { for } 2 \leqslant n \leqslant 7\end{cases} \\
& f_{a}(d, n)=f(d, n+1) \text { for } n \geqslant 8
\end{aligned},
$$

where $(\varphi \odot \theta)(n)=\sum_{i \mid n} \varphi(i) \theta(n / i), i \mid n$ means i divides $n, \theta(i)=d^{i}+(-1)^{i} d, \varphi(1)=1$ and $\varphi(i)=i \cdot \prod_{j=1}^{r}\left(1-1 / p_{j}\right)$ for $i \geqslant 2$, where p_{1}, \ldots, p_{r} are the distinct prime factors of i, not equal to 1 .
© 2006 Elsevier B.V. All rights reserved.

MSC: 05C85; 68R10
Keywords: Feedback vertex set; Feedback number; Kautz digraphs; Cycles; Acyclic subgraph

1. Introduction

The minimum feedback vertex (or arc) set problem is as follows. Given a digraph or an undirected graph $G=(V, E)$, find a smallest subset $F \subset V$ (or $F^{\prime} \subset E$) whose removal induces an acyclic subgraph.

The problem was originally formulated in the area of combinatorial circuit design [13]. Other applications of the problem are connected with resource allocation mechanisms in operating systems that prevent deadlocks, to the constraint satisfaction problem and Bayesian inference in artificial intelligence, to the study of monopolies in synchronous distributed systems and to converter placement problems in optical networks (see [5,6]).

[^0]0012-365X/\$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2006.09.010

The minimum feedback set problem is known to be NP-hard for general graphs [8] and the best known approximation algorithm is one with an approximation ratio two [1]. The problem has been studied for some graphs, such as hypercubic graphs, meshes, toroids, butterflies, cube-connected cycles, hypercubes and directed split-stars (see [1-3,5-7,10, 11, 13-15]). In particular, Kralovic and Ruzicka [9] proved that the cardinality of a minimum feedback set of the Kautz undirected graph $\operatorname{UK}(2, n)$ is 2^{n-1}.

In this paper, we consider the Kautz digraph $K(d, n)(d \geqslant 2, n \geqslant 1)$. The vertex-set of $K(d, n)$ is defined as the set

$$
\begin{aligned}
V(d, n)= & \left\{x_{1} x_{2} \cdots x_{n} \mid x_{i} \in\{1,2, \ldots, d+1\} \text { for } i=1,2, \ldots, n,\right. \text { and } \\
& \left.x_{i} \neq x_{i+1} \text { for } i=1,2, \ldots, n-1\right\} .
\end{aligned}
$$

There are d arcs from one vertex $x_{1} x_{2} \cdots x_{n}$ to d other vertices $x_{2} x_{3} \cdots x_{n} \alpha$, where $\alpha \in\{1,2, \ldots, d+1\} \backslash\left\{x_{n}\right\}$. Clearly, $|V(d, n)|=d^{n}+d^{n-1}$.
The Kautz digraphs have many attractive features superior to the hypercube (see, for example, Section 3.3 in [16]) and, thus, been thought of as a good candidate for the next generation of parallel system architectures, after the hypercube network [4].

Denote the minimum cardinality over all feedback vertex (resp. arc) sets of $K(d, n)$ by $f(d, n)$ (resp. $f_{a}(d, n)$), and call it the feedback number (resp. edge-feedback number) of $K(d, n)$. In this paper, we prove that for any integers $d \geqslant 2$ and $n \geqslant 1$

$$
f(d, n)= \begin{cases}d & \text { for } n=1, \\ \frac{(\varphi \odot \theta)(n)}{n}+\frac{(\varphi \odot \theta)(n-1)}{n-1} & \text { for } 2 \leqslant n \leqslant 7, \\ \frac{d^{n}}{n}+\frac{d^{n-1}}{n-1}+\mathrm{O}\left(n d^{n-4}\right) & \text { for } n \geqslant 8\end{cases}
$$

$$
f_{a}(d, n)=f(d, n+1) \text { for } n \geqslant 1
$$

where $(\varphi \odot \theta)(n)=\sum_{i \mid n} \varphi(i) \theta(n / i)$ is a convolution, $i \mid n$ means i divides $n, \theta(i)=d^{i}+(-1)^{i} d$ and $\varphi(i)$ is the Euler totient function (its definition can be found in any text-book on number theory, for example [12]), that is, $\varphi(1)=1$ and $\varphi(i)=i \cdot \prod_{j=1}^{r}\left(1-1 / p_{j}\right)$ for $i \geqslant 2$, where p_{1}, \ldots, p_{r} are the distinct prime factors of i, not equal to 1 .

2. Feedback vertex sets

In this section, our main aim is to construct two important sets $\Phi(d, n)$ and $F(d, n)$ in $K(d, n)$, respectively, where the former is a set of some cycles in $K(d, n)$ and the latter is a feedback vertex set of $K(d, n)$ for $n \geqslant 2$, and then to show that the feedback number $f(d, n)$ of $K(d, n)$ satisfies $f(d, n)=|\Phi(d, n)|$ for $2 \leqslant n \leqslant 7$ and $|\Phi(d, n)| \leqslant f(d, n) \leqslant|F(d, n)|$ for $n \geqslant 8$.

Definition 2.1. Define a mapping $\phi_{n}: V(d, n) \rightarrow V(d, n)$ subject to

$$
\phi_{n}(X)=\left\{\begin{array}{ll}
x_{2} x_{3} \ldots x_{n} x_{1}, & \text { if } x_{1} \neq x_{n} ; \\
x_{2} x_{3} \cdots x_{n} x_{2}, & \text { if } x_{1}=x_{n}
\end{array} \quad \text { for } X=x_{1} x_{2} x_{3} \cdots x_{n} .\right.
$$

It is clear that ϕ_{n} is a bijective mapping. Since $V(d, n)$ is finite, for any $X \in V(d, n)$, there must exist a smallest positive integer t, denoted by $\operatorname{ind}(X)$, such that $\phi_{n}^{t}(X)=X$. Moreover, for any integer j, if $\phi_{n}^{j}(X)=X$ then $t \mid j$ which means that t divides j. For example for an $X=x_{1} x_{2} x_{3} \cdots x_{n} \in V(d, n)$, if $x_{1} \neq x_{n}$, then $\phi_{n}^{n}(X)=X$ and $\operatorname{ind}(X) \mid n$; if $x_{1}=x_{n}$, then $\phi_{n}^{n-1}(X)=X$ and $\operatorname{ind}(X) \mid(n-1)$. For a given $X \in V(d, n)$, define the sequence

$$
[X]_{\phi_{n}}=\left(X, \phi_{n}(X), \ldots, \phi_{n}^{t-1}(X), X\right),
$$

where $t=\operatorname{ind}(X)$. It is clear that $[X]_{\phi_{n}}$ is a directed cycle in $K(d, n)$. Since $K(d, n)$ contains no self-loops, $t \geqslant 2$ for any $X \in V(d, n)$. Thus, the sequence ($\phi_{n}^{i}(X), \phi_{n}^{i+1}(X), \ldots, \phi_{n}^{t-1}(X), X, \ldots, \phi_{n}^{i-1}(X), \phi_{n}^{i}(X)$) is equivalent to $[X]_{\phi_{n}}$ for any integer i with $1 \leqslant i \leqslant t-1$. For short, we will replace $[X]_{\phi_{n}}$ by $[X]$ in the following discussion. Let

$$
\begin{equation*}
\Phi(d, n)=\{[X] \mid X \in V(d, n)\} . \tag{2.1}
\end{equation*}
$$

Theorem 2.1. Let F be a feedback set in $K(d, n)$. Then for any vertex $X \in V(d, n)$
(a) $F \cap[X] \neq \emptyset$ and $|F| \geqslant|\Phi(d, n)|$;
(b) $|F|=|\Phi(d, n)|$ if $|F \cap[X]|=1$.

Proof. Since F is a feedback set, $F \cap V(C) \neq \emptyset$ for any directed cycle C of $K(d, n)$, of course, including cycles in $\Phi(d, n)$.

It is clear that either $[X]=[Y]$ or $[X] \cap[Y]=\emptyset$ for any two cycles $[X]$ and $[Y]$ in $\Phi(d, n)$, which means that $\Phi(d, n)$ is a partition of $V(d, n)$. Thus,

$$
|F|=\sum_{[X] \in \Phi(d, n)}|F \cap[X]| \geqslant \sum_{[X] \in \Phi(d, n)} 1=|\Phi(d, n)| .
$$

The conclusion (b) follows from (a) immediately.
For any integers d and n with $d \geqslant 2$ and $n \geqslant 1$, let

$$
\Omega_{d, n}=\bigcup_{m \geqslant 1}^{n+d^{n}+d^{n-1}} V(d, m)
$$

where $d^{n}+d^{n-1}=|V(d, n)|$. For any $X=x_{1} x_{2} \cdots x_{m} \in \Omega_{d, n}$, denote $X(i)=x_{1} x_{2} \cdots x_{i}, 1 \leqslant i \leqslant m$, where m is called the length of X, denoted by $\ell(X)$.

Theorem 2.2. For given integers $d \geqslant 2$ and $n \geqslant 1$, let V_{d} be a subset of $\Omega_{d, n}$ satisfying the conditions:
(a) For any $X \in \Omega_{d, n}, V_{d} \cap[X] \neq \emptyset$;
(b) For any $Y \in V_{d}$ and for any integer i with $1 \leqslant i \leqslant m, Y(i) \in V_{d}$, where $m=\ell(Y)$.

Then $V_{d} \cap V(d, n)$ is a feedback vertex set of $K(d, n)$.
Proof. Let $F=V_{d} \cap V(d, n)$ for convenience. Suppose to the contrary that a new graph $K(d, n)-F$ obtained from $K(d, n)$ by removing the vertices in F and the corresponding arcs contains a directed cycle C of length $j\left(2 \leqslant j \leqslant d^{n}+\right.$ $\left.d^{n-1}\right)$:

$$
C=\left(x_{1} x_{2} \cdots x_{n}, x_{2} x_{3} \cdots x_{n+1}, \ldots, x_{n+j-1} x_{1} \cdots x_{n-1}, x_{1} x_{2} \cdots x_{n}\right)
$$

Then $F \cap C=\emptyset$. Let $X=x_{1} x_{2} \cdots x_{n} x_{n+1} \cdots x_{n+j-1} \in \Omega_{d, n}$, and let $\ell=n+j-1$. So we can express C as

$$
C=\left(X(n), \phi_{\ell}(X)(n), \ldots, \phi_{\ell}^{j-1}(X)(n), X(n)\right)
$$

By the condition (a) there exists an integer $k(0 \leqslant k \leqslant j-1)$ such that $Y=\phi_{l}^{k}(X) \in V_{d} \cap[X]$ and $Y(n) \in C$. By the condition (b) we have $Y(n) \in V_{d}$, of course, $Y(n) \in V(d, n)$. Then $Y(n) \in F$, that is, $F \cap C \neq \emptyset$, a contradiction.

Let

$$
\begin{equation*}
\Omega_{d, n}^{\prime}=\bigcup_{m \geqslant 1}^{n+d^{n}+d^{n-1}}\left\{x_{1} x_{2} \cdots x_{m} \in \Omega_{d, n} \mid x_{1} \geqslant x_{i}, 1 \leqslant i \leqslant m\right\} \tag{2.2}
\end{equation*}
$$

It is not difficult to verify that $\Omega_{d, n}^{\prime}$ satisfies the two conditions in Theorem 2.2. Then $\Omega_{d, n}^{\prime} \cap V(d, n)$ is a feedback vertex set of $K(d, n)$ with size $\sum_{i=1}^{d} i^{n-1}$. Moreover, $\Omega_{d, n}^{\prime} \cap V(d, n)$ is minimum for $n=2$, 3 . For example, $\{323,313,321,312,212\}=\Omega_{2,3}^{\prime} \cap V(2,3)$ is a minimum feedback vertex set of $K(2,3)$ shown in Fig. 1 by solid vertices.

Fig. 1. The Kautz digraph $K(2,3)$.

For an $X=x_{1} x_{2} \cdots x_{m} \in \Omega_{d, n}$, it is convenient to associate X with the integer $\sum_{i=1}^{m} x_{i}(d+2)^{m-i}$. So, for $Y=$ $y_{1} y_{2} \cdots y_{m^{\prime}}, X>Y$ means that

$$
\sum_{i=1}^{m} x_{i}(d+2)^{m-i}>\sum_{i=1}^{m^{\prime}} y_{i}(d+2)^{m^{\prime}-i}
$$

Let $X=x_{1} x_{2} \cdots x_{m} \in \Omega_{d, n}^{\prime}$ with $x_{1}=\max \left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and let $p=x_{1}$. Then $2 \leqslant p \leqslant d+1$ and we can write X as

$$
X=p X_{1} p X_{2} p \cdots p X_{r} \quad \text { or } \quad X=p X_{1} p X_{2} p \cdots p X_{r} p
$$

where X_{i} is a non-empty sub-sequence of X between the i th p and the $(i+1)$ th p and each digit in X_{i} is less than p, $1 \leqslant i \leqslant r$.

For example, let $X=72172172 \in \Omega_{9,8}^{\prime}$, then $p=7$ and X can be expressed as $7 X_{1} 7 X_{2} 7 X_{3}$, where $X_{1}=X_{2}=21$ and $X_{3}=2$.

We are interested in a subset F_{d} of $\Omega_{d, n}^{\prime}$. For the sake of our convenience, we give the definition of F_{d}.
Definition 2.2. Let F_{d} be a subset of $\Omega_{d, n}^{\prime}$ such that each $X=x_{1} x_{2} \cdots x_{m} \in F_{d}$ with $x_{1}=p=\max \left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ satisfies one of the following forms:
(1) $X=\underbrace{p X_{1} p X_{1} p \cdots p X_{1}}_{r}$ or $\underbrace{p X_{1} p X_{1} p \cdots p X_{1}}_{r} p, r \geqslant 1$;
(2) $X=p X_{1} p X_{2}$ or $p X_{1} p X_{2} p, X_{1}>X_{2}$;
(3) $X=\underbrace{p X_{1} p X_{1} p \cdots p X_{1}}_{r-1} p X_{r}, r \geqslant 3$ and $X_{r}=X_{1}(i)$, where $1 \leqslant i<j, i=\ell\left(X_{r}\right)$ and $j=\ell\left(X_{1}\right)$;
(4) $X=p X_{1} p X_{2} p \cdots p X_{r}$ or $p X_{1} p X_{2} p \cdots p X_{r} p, X_{1}>X_{2}, X_{1} \geqslant X_{i}, i=3, \ldots, r$.

For example, $\{71217121,7121765,71271271,71271712\} \subset F_{6}$, in which the vertices satisfy the forms (1)-(4) in Definition 2.2, respectively. By the definition, $71271272 \notin F_{6}$, since $71271272=7 X_{1} 7 X_{1} 7 X_{2}$ does not match any
form. Let

$$
\begin{equation*}
F(d, n)=F_{d} \cap V(d, n), \tag{2.3}
\end{equation*}
$$

where F_{d} is defined in Definition 2.2.
Theorem 2.3. $F(d, n)$ is a feedback vertex set of $K(d, n)$ for $n \geqslant 2$.
Proof. We only need to prove that F_{d} defined in Definition 2.2 satisfies the two conditions (a) and (b) in Theorem 2.2.
(a) We need to check that $F_{d} \cap[Y] \neq \emptyset$ for any $Y \in \Omega_{d, n}$. Let $Y=x_{1} x_{2} \ldots x_{m}$ be any element in $\Omega_{d, n}$. There exists an integer k such that $x_{k}=p=\max _{1 \leqslant i \leqslant m}\left\{x_{i}\right\}$. Let $X=x_{k} x_{k+1} \ldots x_{m} x_{1} x_{2} \ldots x_{k-1}$, then $[X]=[Y]$. We only need to prove $F_{d} \cap[X] \neq \emptyset$.
Since $X \in \Omega_{d, n}^{\prime}, X$ can be expressed as either $X=p X_{1} p X_{2} p \cdots p X_{r}$ or $X=p X_{1} p X_{2} p \cdots p X_{r} p$. Without loss of generality, we only consider the former since the latter does not contain form (3) and the proof is similar and simpler.

If $r=1$ and $X=p X_{1}$, then $F_{d} \cap[X]=\{X\}$. If $r=2$ and $X=p X_{1} p X_{2}$, then $F_{d} \cap[X]=\{X\}$ if $X_{1} \geqslant X_{2}$ and $F_{d} \cap[X]=\left\{p X_{2} p X_{1}\right\}$ otherwise, that is, $F_{d} \cap[X] \neq \emptyset$. Assume $r \geqslant 3$ below.
If $X_{1}=X_{2}=\cdots=X_{r}$, then $F_{d} \cap[X]=\{X\}$. Otherwise there exists an integer j such that $X_{j}>X_{j+1}$ and $X_{j} \geqslant X_{i}, 1 \leqslant i \neq$ $j+1 \leqslant r$, then

$$
p X_{j} p X_{j+1} p \cdots p X_{r} p X_{1} p \cdots p X_{j-1}=\phi_{m}^{k}(X) \in F_{d} \cap[X],
$$

where k is the length of $p X_{1} p X_{2} p \cdots p X_{j-1}$, that is, $F_{d} \cap[X] \neq \emptyset$.
(b) We now check that F_{d} satisfies the condition (b) in Theorem 2.2. For any $X \in F_{d}$, either $X=p X_{1} p X_{2} p \cdots p X_{r}$ or $X=p X_{1} p X_{2} p \cdots p X_{r} p$. Then $X(i)=p X_{1} p X_{2} p \cdots p X_{t}$ or $p X_{1} p X_{2} p \cdots p X_{t} p$ or $p X_{1} p X_{2} p \cdots p X_{t-1} p X_{t}^{\prime}$, where $t \leqslant r, X_{t}^{\prime}=X_{t}(j)$ and $j=\ell\left(X_{t}^{\prime}\right)$. We only need to check the case $X(i)=p X_{1} p X_{2} p \cdots p X_{t}^{\prime}$ (the other case is similar and simpler).
For $t=1$ or 2, $X(i)$ satisfies the form either (1) or (2) in Definition 2.2 and the assertion holds obviously. Assume $t \geqslant 3$ below.
If $X_{1}=X_{2}, X$ only could be the form either (1) or (3) in Definition 2.2, we have $X_{1}=X_{2}=\cdots=X_{t-1}=X_{t}$ and $X_{t}^{\prime}=X_{t}(j)=X_{1}(j)$. Then $X(i)$ is of the form (3) in Definition 2.2, and so $X(i) \in F_{d}$.
If $X_{1} \neq X_{2}, X$ only could be of the form (4) in Definition 2.2 , we have $X_{1}>X_{2}, X_{1} \geqslant X_{j}, 3 \leqslant j \leqslant t-1$, and $X_{1} \geqslant X_{t} \geqslant X_{t}(j)=X_{t}^{\prime}$. Then $X(i)$ is of the form (4) in Definition 2.2, which also implies $X(i) \in F_{d}$.
The proof of the theorem is complete.
Theorem 2.4. If $2 \leqslant n \leqslant 7$, then $|F(d, n) \cap[X]|=1$ for any vertex $X \in V(d, n)$.
Proof. Assume, without loss of generality, $X=p X_{1} p X_{2} p \cdots p X_{r} \in F(d, n)$. (the case $X=p X_{1} p X_{2} p \cdots p X_{r} p$ is similar). We have $r \leqslant 3$ since $n \leqslant 7$. The proof depends that X satisfies which form in Definition 2.2 of F_{d}.
If X satisfies the form (1) in Definition 2.2, then $\operatorname{ind}(X)=\ell+1$, where $\ell=\ell\left(X_{1}\right)$. In the directed cycle $[X]=$ $\left(X, \phi_{n}(X), \ldots, \phi_{n}^{\ell-1}(X), X\right)$, the vertex X is only one whose first digit is p. Thus, $F(d, n) \cap[X]=\{X\}$.

If X satisfies the form (2) in Definition 2.2, then $X=p X_{1} p X_{2}$ and $F(d, n) \cap[X] \subseteq\left\{p X_{1} p X_{2}, p X_{2} p X_{1}\right\}$. It is clear that $X_{1} \neq X_{2}$ since X satisfies the form (2). If $X_{1}>X_{2}$, then $p X_{2} p X_{1}$ does not satisfy the form (2); if $X_{1}<X_{2}$, then $p X_{1} p X_{2}$ does not satisfy the form (2). Thus, $|F(d, n) \cap[X]|=1$.

If X satisfies the form (3) in Definition 2.2, then $X_{1}=X_{2}$ and $X_{3}=X_{1}(i)$, where $i=\ell\left(X_{3}\right)<\ell\left(X_{1}\right)$. Thus, $n \geqslant 3+2(i+1)+i \geqslant 8$, which contradicts our hypothesis $n \leqslant 7$.

If X satisfies the form (4) in Definition 2.2, then $X_{1}>X_{2}, X_{1} \geqslant X_{3}$ and $n \geqslant 6$. Thus, both X_{2} and X_{3} are a single digit. When $n=6, X_{1}$ also is a single digit and $X=p X_{1} p X_{2} p X_{3}$. When $n=7, X_{1}$ could be either a single digit if $X=p X_{1} p X_{2} p X_{3} p$ or X_{1} is a sequence of length two if $X=p X_{1} p X_{2} p X_{3}$. In all the three cases we have $F(d, n) \cap[X]=\{X\}$.

The proof of the theorem is complete.
Theorem 2.5. $F(d, n)$ is a minimum feedback vertex set of $K(d, n)$ and $|F(d, n)|=|\Phi(d, n)|$ for $2 \leqslant n \leqslant 7$.
Proof. The result follows from Theorems 2.2-2.4, immediately.

3. Feedback numbers

In the preceding section, we construct two important sets $\Phi(d, n)$ and $F(d, n)$ defined in (2.1) and (2.3), respectively. By Theorems 2.1, 2.3 and 2.5, we have that the feedback number $f(d, n)$ of $K(d, n)$ is

$$
\begin{align*}
& f(d, n)=|\Phi(d, n)| \text { for } 2 \leqslant n \leqslant 7, \\
& |\Phi(d, n)| \leqslant f(d, n) \leqslant|F(d, n)| \text { for } n \geqslant 8 . \tag{3.1}
\end{align*}
$$

In this section, we determine the value of $|\Phi(d, n)|$ and establish an upper bound of $|F(d, n)|$ for $n \geqslant 8$. In Lemmas 3.1, 3.2 and Theorem 3.1 we assume that the parameter d is fixed since the process of our proofs and calculations will be independent of d.

Lemma 3.1. Let $W_{n}=\left\{X=x_{1} x_{2} \cdots x_{n} \in V(d, n) \mid x_{1} \neq x_{n}\right\}$ and $\bar{W}_{n}=V(d, n) \backslash W_{n}$.
(a) $\left|W_{n}\right|=d^{n}+(-1)^{n} d$;
(b) $|\Phi(d, n)|=\left|\left\{[X] \mid X \in W_{n}\right\}\right|+\left|\left\{[X] \mid X \in W_{n-1}\right\}\right|$.

Proof. We first prove the assertion (a) by induction on $n \geqslant 2$. For $n=2$, then $W_{2}=V(d, 2), \bar{W}_{2}=\emptyset$, and so $\left|W_{2}\right|=$ $|V(d, 2)|=d^{2}+d$. Suppose now that $n \geqslant 3$ and the result holds for any integer less than n. By the definition, $\left|\bar{W}_{n}\right|=$ $\left|W_{n-1}\right|$ since $\left|\left\{x_{1} x_{2} \cdots x_{n-1} x_{1} \in \bar{W}_{n}\right\}\right|=\left|\left\{x_{1} x_{2} \cdots x_{n-1} \in W_{n-1}\right\}\right|$ for $n \geqslant 3$. Thus, by the induction hypothesis, we have

$$
\begin{aligned}
\left|W_{n}\right| & =|V(d, n)|-\left|\bar{W}_{n}\right| \\
& =\left(d^{n}+d^{n-1}\right)-\left|W_{n-1}\right| \\
& =\left(d^{n}+d^{n-1}\right)-\left(d^{n-1}+(-1)^{n-1} d\right) \\
& =d^{n}+(-1)^{n} d .
\end{aligned}
$$

as required.
The assertion (b) follows from $\left|\left\{[X] \mid X \in \bar{W}_{n}\right\}\right|=\left|\left\{[X] \mid X \in W_{n-1}\right\}\right|$ immediately.
Lemma 3.2. Let $W_{1}(1)=\emptyset$ and $W_{n}(i)=\left\{X \in W_{n} \mid \operatorname{ind}(X)=i\right\}$ for any $n \geqslant 2,1 \leqslant i \leqslant n$. Then

$$
\left|W_{n}(i)\right|= \begin{cases}\left|W_{i}(i)\right| & \text { if i|n, } \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. If $i \mid n$, for any $X=x_{1} x_{2} \cdots x_{n} \in W_{n}(i), X=\phi_{n}^{i}(X)=x_{i+1} x_{i+2} \cdots x_{n} x_{1} \cdots x_{i}$, where ϕ_{n} is defined in Definition 2.1. We have $x_{j}=x_{k i+j}, 1 \leqslant j \leqslant i, 1 \leqslant k \leqslant r=n / i$ and $X=\underbrace{Y Y \ldots Y}_{r}$, where $Y=x_{1} x_{2} \cdots x_{i}$. It is easy to see $W_{i}(i)=W_{n}(i)$ and, hence, $\left|W_{i}(i)\right|=\left|W_{n}(i)\right|$.

If $i \nmid n$, there must exist integers j and k such that $n=k i+j$ and $1 \leqslant j<i$. If there still exists an $X \in W_{n}(i)$, then $X=\phi_{n}^{i}(X)=\phi_{n}^{n}(X)=\phi_{n}^{k i+j}(X)=\phi_{n}^{j}(X)$, which contradicts to the definition of ind (X). Thus, $W_{n}(i)=\emptyset$.

Theorem 3.1. For integer $i \geqslant 1$, let $\theta(i)=d^{i}+(-1)^{i} d$ be a function and $\varphi(i)$ the Euler totient function. Then for any $d \geqslant 2$ and $n \geqslant 2$,

$$
|\Phi(d, n)|=\frac{(\varphi \odot \theta)(n)}{n}+\frac{(\varphi \odot \theta)(n-1)}{n-1},
$$

where \odot is the convolution, that is, $(\varphi \odot \theta)(n)=\sum_{i \mid n} \varphi(i) \theta(n / i)$.
Proof. By Lemma 3.1 we only need to prove

$$
\left|\left\{[X] \mid X \in W_{n}\right\}\right|=\frac{(\varphi \odot \theta)(n)}{n} .
$$

To this purpose, let ω, e, N, μ be arithmetic functions over the set of positive integers defined as

$$
\omega(i)=\left|W_{i}(i)\right|, \quad e(i)=1, \quad N(i)=i
$$

$\mu(i)$ is the Möbius function:

$$
\mu(i)= \begin{cases}1 & \text { if } i=1 \\ 0 & \text { if } a^{2} \mid i \text { for some } a>1 \\ (-1)^{k} & \text { if } i=p_{1} p_{2} \cdots p_{k}, \text { distinct prime factors }\end{cases}
$$

It is proved in [12] that for any arithmetic functions f and g,

$$
\begin{equation*}
N \odot \mu=\varphi, \quad f=e \odot g \Leftrightarrow g=\mu \odot f \tag{3.2}
\end{equation*}
$$

By Lemma 3.2, for any positive integer n we have

$$
\begin{aligned}
\theta(n) & =\left|W_{n}\right|=\sum_{i=1}^{n}\left|W_{n}(i)\right|=\sum_{i \mid n}\left|W_{n}(i)\right| \\
& =\sum_{i \mid n}\left|W_{i}(i)\right|=\sum_{i \mid n} \omega(i)=(e \odot \omega)(n)
\end{aligned}
$$

which means $\theta=e \odot \omega$.
For any vertex $X \in W_{n}(i), \operatorname{ind}(X)=i$ and $[X]$ is a directed cycle with length i and for any vertex $Y \in[X], Y \in W_{n}(i)$. Thus

$$
\left|\left\{[X] \mid X \in W_{n}(i)\right\}\right|=\frac{\left|W_{n}(i)\right|}{i}
$$

and we have

$$
\begin{aligned}
\left|\left\{[X] \mid X \in W_{n}\right\}\right| & =\sum_{i=1}^{n}\left|\left\{[X] \mid X \in W_{n}(i)\right\}\right| \\
& =\sum_{i=1}^{n} \frac{\left|W_{n}(i)\right|}{i}=\sum_{i \mid n} \frac{\left|W_{n}(i)\right|}{i}=\sum_{i \mid n} \frac{\left|W_{i}(i)\right|}{i} \\
& =\sum_{i \mid n} \frac{\omega(i)}{i}=\frac{1}{n} \sum_{i \mid n} \frac{n}{i} \omega(i)=\frac{(N \odot \omega)(n)}{n}
\end{aligned}
$$

By (3.2), we have $\theta=e \odot \omega \Leftrightarrow \omega=\mu \odot \theta$, and so

$$
N \odot \omega=N \odot(\mu \odot \theta)=(N \odot \mu) \odot \theta=\varphi \odot \theta
$$

Thus,

$$
\left|\left\{[X] \mid X \in W_{n}\right\}\right|=\frac{(\varphi \odot \theta)(n)}{n}
$$

as required.
Remark. We have mentioned in Section 2 that $\Omega_{d, n}^{\prime} \cap V(d, 2)$ and $\Omega_{d, n}^{\prime} \cap V(d, 3)$ are minimum feedback vertex sets. This fact can be deduced from Theorem 3.1 immediately as follows:

$$
\frac{(\varphi \odot \theta)(n)}{n}+\frac{(\varphi \odot \theta)(n-1)}{n-1}=\sum_{i=1}^{d} i^{n-1} \quad \text { for } n=2 \text { or } 3
$$

Let

$$
\begin{equation*}
E(d, n)=\{X \in F(d, n) \| F(d, n) \cap[X] \mid \geqslant 2\} . \tag{3.3}
\end{equation*}
$$

Then

$$
F(d, n) \backslash E(d, n)=\{X \in F(d, n) \| F(d, n) \cap[X] \mid=1\} .
$$

For $2 \leqslant n \leqslant 7$, it is clear that $E(d, n)=\emptyset$ by Theorem 2.4. For $n \geqslant 8$

$$
\begin{equation*}
|F(d, n)| \leqslant|\Phi(d, n)|+|E(d, n)| \tag{3.4}
\end{equation*}
$$

since $|\{X \in F(d, n)||F(d, n) \cap[X]|=1\}|\leqslant|\Phi(d, n)|$.
For example, in $F(2,8)$ we have $[32132132]=[32132321]$, $[31231231]=[31231312]$ and $E(2,8)=$ $\{32132132,32132321,31231231,31231312\}$.
In fact, only two cycles in $\Phi(2,8)$, each of them intersects with $F(2,8)$ exactly two vertices; the other cycles in $\Phi(2,8)$, each of them intersects with $F(2,8)$ only one vertices. Then from

$$
\begin{aligned}
|\Phi(2,8)| & =\frac{(\varphi \odot \theta)(8)}{8}+\frac{(\varphi \odot \theta)(7)}{7} \\
& =\frac{\left(2^{8}+2\right)+\left(2^{4}+2\right)+2\left(2^{2}+2\right)}{8}+\frac{2^{7}-2}{7} \\
& =54 .
\end{aligned}
$$

we have immediately

$$
54 \leqslant f(2,8) \leqslant 58 .
$$

Lemma 3.3. For any integers $d \geqslant 2$ and $n \geqslant 8,|E(d, n)| \leqslant n^{2} \sum_{i=1}^{d}(i+1)^{n-5}$.
Proof. Suppose $X=p X_{1} p X_{2} p \cdots p X_{r}$ or $p X_{1} p X_{2} p \cdots p X_{r} p \in E(d, n)$, where $2 \leqslant p \leqslant d+1$.
By the definitions of F_{d} and $E(d, n)$, defined in Definition 2.2 and (3.3), respectively, X only could be of the form either (3) or (4) in Definition 2.2. Thus, $3 \leqslant r \leqslant n / 2$.

When $r=3$, we have $X=p X_{1} p X_{2} p X_{1}$ or $p X_{1} p X_{1} p X_{2}$ and $F(d, n) \cap[X]=\left\{p X_{1} p X_{2} p X_{1}, p X_{1} p X_{1} p X_{2}\right\}$, where $X_{2}=X_{1}(i)$ and $i=\ell\left(X_{2}\right)<\ell\left(X_{1}\right)$. Let $E_{1}(p, n)$ be the set of such X 's.

When $r \geqslant 4$, there must exist an integer $i, 3 \leqslant i \leqslant r-1$ such that $X_{i}=X_{1}$. Otherwise, $X_{i}<X_{1}, 3 \leqslant i \leqslant r-1$ which leads to $[X] \cap F(d, n)=\{X\}$ and $X \notin E(d, n)$. Then, $\left\{X, \phi_{n}^{k}(X)\right\} \subset[X] \cap F(d, n)$, where k is the length of $p X_{1} p X_{2} p \cdots p X_{i-1}$ and $X=p X_{1} p X_{2} p \cdots p X_{i-1} p X_{1} p X_{i+1} p \cdots p X_{r}$ or $p X_{1} p X_{2} p \cdots p X_{i-1} p X_{1} p X_{i+1} p \cdots$ $p X_{r} p$. Let $E_{2}(p, n)$ be the set of such X 's.

Thus,

$$
\begin{equation*}
E(d, n) \subseteq \bigcup_{p=2}^{d+1}\left(E_{1}(p, n) \cup E_{2}(p, n)\right) \tag{3.5}
\end{equation*}
$$

Clearly, $\left|E_{1}(p, n)\right| \leqslant 2 p^{(n-4) / 2}$. To estimate $\left|E_{2}(p, n)\right|$, let $j=\ell\left(X_{1}\right)$ and $k=\ell\left(X_{2} p X_{3} p \cdots p X_{i-1}\right)$. It is not difficult to get that

$$
\left|E_{2}(p, n)\right| \leqslant \sum_{j=1}^{\lfloor(n-6) / 2\rfloor n-5-2 j} \sum_{k=1}^{j} p^{k} p^{n-4-2 j-k} \leqslant \frac{(n-6)(n-7)}{2} p^{n-5} .
$$

Thus, by (3.5)

$$
\begin{aligned}
|E(d, n)| & \leqslant \sum_{p=2}^{d+1}\left(\left|E_{1}(p, n)\right|+\left|E_{2}(p, n)\right|\right) \leqslant \sum_{p=2}^{d+1} n^{2} p^{n-5} \\
& =n^{2} \sum_{i=1}^{d}(i+1)^{n-5}
\end{aligned}
$$

as required.

Theorem 3.2. For any integers $d \geqslant 2$ and $n \geqslant 1$

$$
f(d, n)= \begin{cases}d & \text { for } n=1 ; \\ \frac{(\varphi \odot \theta)(n)}{n}+\frac{(\varphi \odot \theta)(n-1)}{n-1} & \text { for } 2 \leqslant n \leqslant 7 \\ \frac{d^{n}}{n}+\frac{d^{n-1}}{n-1}+\mathrm{O}\left(n d^{n-4}\right) & \text { for } n \geqslant 8\end{cases}
$$

Proof. It is clear that $f(d, 1)=d$ since $K(d, 1)$ is a complete digraph K_{d+1} and the removal of any $d-1$ vertices from K_{d+1} results in a complete digraph K_{2}, which is a directed cycle of length two. Assume $n \geqslant 2$ below.

By (3.1) and Theorem 3.1, we only need to prove that for $n \geqslant 8$

$$
f(d, n)=\frac{d^{n}}{n}+\frac{d^{n-1}}{n-1}+\mathrm{O}\left(n d^{n-4}\right) .
$$

Firstly while $n \geqslant 8$, let k be the biggest nontrivial factor of n, then $k \leqslant n / 2$ and

$$
(\varphi \odot \theta)(n)=\sum_{i \mid n} \varphi(i) \theta\left(\frac{n}{i}\right)=\varphi(1) \theta(n)+\mathrm{O}\left(d^{k}\right)=d^{n}+\mathrm{O}\left(d^{n / 2}\right)
$$

and we have

$$
\begin{equation*}
|\Phi(d, n)|=\frac{d^{n}}{n}+\frac{d^{n-1}}{n-1}+\mathrm{O}\left(d^{n-4}\right) \tag{3.6}
\end{equation*}
$$

Secondly from Lemma 3.3 and

$$
\sum_{i=1}^{d}(i+1)^{n-5} \leqslant \int_{0}^{d+1}(i+1)^{n-5}=\frac{(d+2)^{n-4}}{n-4}
$$

we have $|E(d, n)|=\mathrm{O}\left(n d^{n-4}\right)$. Then by (3.4), we have

$$
\begin{equation*}
|F(d, n)| \leqslant|\Phi(d, n)|+|E(d, n)|=\frac{d^{n}}{n}+\frac{d^{n-1}}{n-1}+\mathrm{O}\left(n d^{n-4}\right) . \tag{3.7}
\end{equation*}
$$

It follows from (3.1), (3.6) and (3.7) that

$$
f(d, n)=\frac{d^{n}}{n}+\frac{d^{n-1}}{n-1}+\mathrm{O}\left(n d^{n-4}\right) \quad \text { for } n \geqslant 8
$$

as required. The theorem follows.

4. Arc-Feedback numbers

To discuss the edge-feedback number of the Kautz digraph $K(d, n)$, we need another equivalent definition of $K(d, n)$ by the line digraph.

Let $G=(V, E)$ be a digraph with $E(G) \neq \emptyset$. The line graph of G, denoted by $L(G)$, is a directed graph, in which $V(L(G))=E(G)$, and there is an arc (a, b) if and only if there are vertices $x, y, z \in V(G)$ with $a=(x, y)$ and $b=(y, z)$. For a given integer $n \geqslant 1$, the nth iterated line graph of G, denoted by $L^{n}(G)$, is recursively defined as $L\left(L^{n-1}(G)\right)$ if $E\left(L^{n-1}(G)\right) \neq \emptyset$, where $L^{0}(G)$ and $L^{1}(G)$ denote G and $L(G)$, respectively. By the line digraph, the Kautz digraph $K(d, n)$ can be recursively defined as follow (see Section 3.3 in [16]).

$$
K(d, 1)=K_{d+1} ; \quad K(d, n)=L^{n-1}\left(K_{d+1}\right), \quad n \geqslant 2 .
$$

Let $f_{a}(d, n)$ denote the minimum cardinality over all feedback arc sets of the Kautz digraph $K(d, n)$, called the arc-feedback number of $K(d, n)$.

Theorem 4.1. For any integers $d \geqslant 1$ and $n \geqslant 1, f_{a}(d, n)=f(d, n+1)$.

Proof. Let F be a minimum feedback vertex set of $K(d, n+1)$. We need to prove that there exist a minimum feedback arc set F_{a} of $K(d, n)$ such that $\left|F_{a}\right|=f(d, n+1)$.

For any vertex $X=x_{1} x_{2} \cdots x_{n+1} \in F,\left(x_{1} x_{2} \cdots x_{n}, x_{2} x_{3} \cdots x_{n+1}\right)$ is an arc of $K(d, n)$. Let

$$
F_{a}=\left\{\left(x_{1} x_{2} \cdots x_{n}, x_{2} x_{3} \cdots x_{n+1}\right) \mid x_{1} x_{2} \cdots x_{n+1} \in F\right\} .
$$

Clearly,

$$
\left|F_{a}\right|=|F|=f(d, n+1) .
$$

We first prove F_{a} is a feedback arc set of $K(d, n)$. Suppose to the contrary that $K(d, n)-F_{a}$ obtained from $K(d, n)$ by removing the arcs in F_{a} contains a directed cycle C of length j :

$$
C=\left(x_{1} x_{2} \cdots x_{n}, x_{2} x_{3} \cdots x_{n+1}, \ldots, x_{n+j-1} x_{1} \cdots x_{n-1}, x_{1} x_{2} \cdots x_{n}\right) .
$$

Then $F_{a} \cap C=\emptyset$ and we get a directed cycle C^{\prime} of $K(d, n+1)$:

$$
C^{\prime}=\left(x_{1} x_{2} \cdots x_{n} x_{n+1}, x_{2} x_{3} \cdots x_{n+1} x_{n+2}, \ldots, x_{n+j-1} x_{1} \cdots x_{n-1} x_{n}, x_{1} x_{2} \cdots x_{n} x_{n+1}\right) .
$$

Since, F is a feedback vertex set of $K(d, n+1)$, we have $F \cap C^{\prime} \neq \emptyset$.
Assume, without loss of generality, $x_{1} x_{2} \cdots x_{n} x_{n+1} \in F \cap C^{\prime}$. Then by the definition of $F_{a}, e=\left(x_{1} x_{2} \cdots\right.$ $\left.x_{n}, x_{2} x_{3} \cdots x_{n+1}\right) \in F_{a}$. Since e is an arc in $C, F_{a} \cap C \neq \emptyset$, a contradiction. The contradiction means that F_{a} is a feedback arc set of $K(d, n)$.

We now prove F_{a} is minimum. Suppose to the contrary that there exists a feedback arc set F_{a}^{\prime} of $K(d, n)$ such that $\left|F_{a}^{\prime}\right|<\left|F_{a}\right|$. Let

$$
F^{\prime}=\left\{x_{1} x_{2} \cdots x_{n+1} \mid\left(x_{1} x_{2} \cdots x_{n}, x_{2} x_{3} \cdots x_{n+1}\right) \in F_{a}^{\prime}\right\}
$$

Then $\left|F^{\prime}\right|=\left|F_{a}^{\prime}\right|<\left|F_{a}\right|$. Let

$$
D=\left(x_{1} x_{2} \cdots x_{n} x_{n+1}, x_{2} x_{3} \cdots x_{n+1} x_{n+2}, \ldots, x_{n+j-1} x_{1} \cdots x_{n-1} x_{n}, x_{1} x_{2} \cdots x_{n} x_{n+1}\right)
$$

be any directed cycle of $K(d, n+1)$. Then

$$
D^{\prime}=\left(x_{1} x_{2} \cdots x_{n}, x_{2} x_{3} \cdots x_{n+1}, \ldots, x_{n+j-1} x_{1} \cdots x_{n-1}, x_{1} x_{2} \cdots x_{n}\right)
$$

is a directed cycle of $K(d, n)$. Since F_{a}^{\prime} is a feedback arc set of $K(d, n)$ we have $F_{a}^{\prime} \cap D^{\prime}=\emptyset$. Then, $F^{\prime} \cap D=\emptyset$ and F^{\prime} is a feedback vertex set of $K(d, n+1)$. Since F is also a minimum feedback vertex of $K(d, n+1)$, we have

$$
\left|F_{a}\right|=|F|=\left|F^{\prime}\right|<\left|F_{a}\right|,
$$

a contradiction.
The proof of the theorem is complete.

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their kind suggestions and useful comments on the original manuscript, which result in this revised version.

References

[1] V. Bafna, P. Berman, T. Fujito, A 2-approximation algorithm for the undirected feedback vertex set problem, SIAM J. Discrete Math. 12 (1999) 289-297.
[2] R. Bar-Yehuda, D. Geiger, J.S. Naor, R.M. Roth, Approximation algorithms for the feedback vertex set problem with applications to constraint satisfaction and Bayesian inference, SIAM J. Comput. 27 (1998) 942-959.
[3] S. Bau, L.W. Beineke, Z. Liu, G. Du, R.C. Vandell, Decycling cubes and grids, Utilitas Math. 59 (2001) 129-137.
[4] J.C. Bermond, C. Peyrat, De Bruijn and Kautz networks: a competitor for the hypercube?, in: F. Andre, J.P. Verjus (Eds.), Hypercube and Distributed Computers, Elsevier Science Publishers, North-Holland, 1989, pp. 278-293.
[5] I. Caragiannis, Ch. Kaklamanis, P. Kanellopoulos, New bounds on the size of the minimum feedback vertex set in meshes and butterflies, Inform. Process. Lett. 83 (5) (2002) 75-80.
[6] P. Festa, P.M. Pardalos, M.G.C. Resende, Feedback set problems, in: D.-Z. Du, P.M. Pardalos (Eds.), Handbook of Combinatorial Optimization, Vol. A, Kluwer Academic Publisher, Dordrecht, 1999, p. 209.
[7] R. Focardi, F.L. Luccio, D. Peleg, Feedback vertex set in hypercubes, Inform. Process. Lett. 76 (2000) 1-5.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, San Francisco, CA, 1979.
[9] R. Kralovic, P. Ruzicka, Minimum feedback vertex sets in shuffle-based interconnection networks, Inform. Process. Lett. 86 (4) (2003) 191196.
[10] Y.D. Liang, On the feedback vertex set in permutation graphs, Inform. Process. Lett. 52 (1994) 123-129.
[11] F.L. Luccio, Almost exact minimum feedback vertex set in meshes and butterflies, Inform. Process. Lett. 66 (1998) 59-64.
[12] I. Niven, H.S. Zuckerman, An Introduction to the Theory of Number, Wiley, New York, 1980.
[13] G.W. Smith Jr., R.B. Walford, The identification of a minimal feedback vertex set of a directed graph, IEEE Trans. Circuits and Systems CAS-22 (1975) 9-15.
[14] C.-C. Wang, E.L. Lloyd, M.L. Soffa, Feedback vertex sets and cyclically reducible graphs, J. Assoc. Comput. Mach. 32 (1985) $296-313$.
[15] F.-H. Wang, C.-J. Hsu, J.-C. Tsai, Minimal feedback vertex sets in directed split-stars, Networks 45 (4) (2005) 218-223.
[16] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.

[^0]: ${ }^{2}$ The work was supported by NNSF of China (No. 10671191).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

