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Abstract

A subset of vertices (resp. arcs) of a graph G is called a feedback vertex (resp. arc) set of G if its removal results in an acyclic
subgraph. Let f (d, n) (fa(d, n)) denote the minimum cardinality over all feedback vertex (resp. arc) sets of the Kautz digraph
K(d, n). This paper proves that for any integers d �2 and n�1

f (d, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d for n = 1,
(� � �)(n)

n
+ (� � �)(n − 1)

n − 1
for 2�n�7,

dn

n
+ dn−1

n − 1
+ O(ndn−4) for n�8,

fa(d, n) = f (d, n + 1) for n�1,

where (�� �)(n)=∑
i|n�(i)�(n/i), i|n means i divides n, �(i)= di + (−1)id, �(1)= 1 and �(i)= i ·∏r

j=1(1 − 1/pj ) for i �2,
where p1, . . . , pr are the distinct prime factors of i, not equal to 1.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The minimum feedback vertex (or arc) set problem is as follows. Given a digraph or an undirected graph G= (V , E),
find a smallest subset F ⊂ V (or F ′ ⊂ E) whose removal induces an acyclic subgraph.

The problem was originally formulated in the area of combinatorial circuit design [13]. Other applications of the
problem are connected with resource allocation mechanisms in operating systems that prevent deadlocks, to the con-
straint satisfaction problem and Bayesian inference in artificial intelligence, to the study of monopolies in synchronous
distributed systems and to converter placement problems in optical networks (see [5,6]).
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The minimum feedback set problem is known to be NP-hard for general graphs [8] and the best known approxi-
mation algorithm is one with an approximation ratio two [1]. The problem has been studied for some graphs, such
as hypercubic graphs, meshes, toroids, butterflies, cube-connected cycles, hypercubes and directed split-stars (see
[1–3,5–7,10,11,13–15]). In particular, Kralovic and Ruzicka [9] proved that the cardinality of a minimum feedback set
of the Kautz undirected graph UK(2, n) is 2n−1.

In this paper, we consider the Kautz digraph K(d, n) (d �2, n�1). The vertex-set of K(d, n) is defined as the set

V (d, n) = {x1x2 · · · xn|xi ∈ {1, 2, . . . , d + 1} for i = 1, 2, . . . , n, and

xi �= xi+1 for i = 1, 2, . . . , n − 1}.
There are d arcs from one vertex x1x2 · · · xn to d other vertices x2x3 · · · xn�, where � ∈ {1, 2, . . . , d +1}\{xn}. Clearly,
|V (d, n)| = dn + dn−1.

The Kautz digraphs have many attractive features superior to the hypercube (see, for example, Section 3.3 in [16]) and,
thus, been thought of as a good candidate for the next generation of parallel system architectures, after the hypercube
network [4].

Denote the minimum cardinality over all feedback vertex (resp. arc) sets of K(d, n) by f (d, n) (resp. fa(d, n)), and
call it the feedback number (resp. edge-feedback number) of K(d, n). In this paper, we prove that for any integers d �2
and n�1

f (d, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d for n = 1,
(� � �)(n)

n
+ (� � �)(n − 1)

n − 1
for 2�n�7,

dn

n
+ dn−1

n − 1
+ O(ndn−4) for n�8,

fa(d, n) = f (d, n + 1) for n�1,

where (� � �)(n) = ∑
i|n�(i)� (n/i) is a convolution, i|n means i divides n, �(i) = di + (−1)id and �(i) is the Euler

totient function ( its definition can be found in any text-book on number theory, for example [12]), that is, �(1) = 1
and �(i) = i · ∏r

j=1(1 − 1/pj ) for i�2, where p1, . . . , pr are the distinct prime factors of i, not equal to 1.

2. Feedback vertex sets

In this section, our main aim is to construct two important sets �(d, n) and F(d, n) in K(d, n), respectively, where the
former is a set of some cycles in K(d, n) and the latter is a feedback vertex set of K(d, n) for n�2, and then to show that
the feedback number f (d, n) of K(d, n) satisfies f (d, n)=|�(d, n)| for 2�n�7 and |�(d, n)|�f (d, n)� |F(d, n)|
for n�8.

Definition 2.1. Define a mapping �n: V (d, n) → V (d, n) subject to

�n(X) =
{

x2x3 . . . xnx1, if x1 �= xn;
x2x3 · · · xnx2, if x1 = xn

for X = x1x2x3 · · · xn.

It is clear that �n is a bijective mapping. Since V (d, n) is finite, for any X ∈ V (d, n), there must exist a smallest
positive integer t, denoted by ind(X), such that �t

n(X) = X. Moreover, for any integer j, if �j
n(X) = X then t | j which

means that t divides j. For example for an X = x1x2x3 · · · xn ∈ V (d, n), if x1 �= xn, then �n
n(X) = X and ind(X)|n; if

x1 = xn, then �n−1
n (X) = X and ind(X) | (n − 1). For a given X ∈ V (d, n), define the sequence

[X]�n
= (X, �n(X), . . . ,�t−1

n (X), X),

where t = ind(X). It is clear that [X]�n
is a directed cycle in K(d, n). Since K(d, n) contains no self-loops, t �2

for any X ∈ V (d, n). Thus, the sequence (�i
n(X), �i+1

n (X), . . . , �t−1
n (X), X, . . . , �i−1

n (X), �i
n(X)) is equivalent to

[X]�n
for any integer i with 1� i� t − 1. For short, we will replace [X]�n

by [X] in the following discussion. Let

�(d, n) = { [X] |X ∈ V (d, n) }. (2.1)



Aut
ho

r's
   

pe
rs

on
al

   
co

py

J.-M. Xu et al. / Discrete Mathematics 307 (2007) 1589 –1599 1591

Theorem 2.1. Let F be a feedback set in K(d, n). Then for any vertex X ∈ V (d, n)

(a) F ∩ [X] �= ∅ and |F |� |�(d, n)|;
(b) |F | = |�(d, n)| if |F ∩ [X]| = 1.

Proof. Since F is a feedback set, F ∩ V (C) �= ∅ for any directed cycle C of K(d, n), of course, including cycles in
�(d, n).

It is clear that either [X]=[Y ] or [X]∩ [Y ]=∅ for any two cycles [X] and [Y ] in �(d, n), which means that �(d, n)

is a partition of V (d, n). Thus,

|F | =
∑

[X]∈�(d,n)

|F ∩ [X]|�
∑

[X]∈�(d,n)

1 = |�(d, n)|.

The conclusion (b) follows from (a) immediately. �

For any integers d and n with d �2 and n�1, let

�d,n =
n+dn+dn−1⋃

m�1

V (d, m),

where dn + dn−1 = |V (d, n)|. For any X = x1x2 · · · xm ∈ �d,n, denote X(i) = x1x2 · · · xi , 1� i�m, where m is called
the length of X, denoted by �(X).

Theorem 2.2. For given integers d �2 and n�1, let Vd be a subset of �d,n satisfying the conditions:

(a) For any X ∈ �d,n, Vd ∩ [X] �= ∅;
(b) For any Y ∈ Vd and for any integer i with 1� i�m, Y (i) ∈ Vd , where m = �(Y ).

Then Vd ∩ V (d, n) is a feedback vertex set of K(d, n).

Proof. Let F = Vd ∩ V (d, n) for convenience. Suppose to the contrary that a new graph K(d, n) − F obtained from
K(d, n) by removing the vertices in F and the corresponding arcs contains a directed cycle C of length j (2�j �dn +
dn−1):

C = (x1x2 · · · xn, x2x3 · · · xn+1, . . . , xn+j−1x1 · · · xn−1, x1x2 · · · xn).

Then F ∩ C = ∅. Let X = x1x2 · · · xnxn+1 · · · xn+j−1 ∈ �d,n, and let � = n + j − 1. So we can express C as

C = (X(n), ��(X)(n), . . . ,�j−1
� (X)(n), X(n)).

By the condition (a) there exists an integer k (0�k�j − 1) such that Y = �k
l (X) ∈ Vd ∩ [X] and Y (n) ∈ C.

By the condition (b) we have Y (n) ∈ Vd , of course, Y (n) ∈ V (d, n). Then Y (n) ∈ F , that is, F ∩ C �= ∅, a
contradiction. �

Let

�′
d,n =

n+dn+dn−1⋃
m�1

{x1x2 · · · xm ∈ �d,n | x1 �xi, 1� i�m}. (2.2)

It is not difficult to verify that �′
d,n satisfies the two conditions in Theorem 2.2. Then �′

d,n ∩ V (d, n) is a feed-

back vertex set of K(d, n) with size
∑d

i=1i
n−1. Moreover, �′

d,n ∩ V (d, n) is minimum for n = 2, 3. For example,
{323, 313, 321, 312, 212} = �′

2,3 ∩ V (2, 3) is a minimum feedback vertex set of K(2, 3) shown in Fig. 1 by solid
vertices.
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212

Fig. 1. The Kautz digraph K(2, 3).

For an X = x1x2 · · · xm ∈ �d,n, it is convenient to associate X with the integer
∑m

i=1xi(d + 2)m−i . So, for Y =
y1y2 · · · ym′ , X > Y means that

m∑
i=1

xi(d + 2)m−i >

m′∑
i=1

yi(d + 2)m
′−i .

Let X =x1x2 · · · xm ∈ �′
d,n with x1 =max{x1, x2, . . . , xm} and let p =x1. Then 2�p�d +1 and we can write X as

X = pX1pX2p · · · pXr or X = pX1pX2p · · · pXrp,

where Xi is a non-empty sub-sequence of X between the ith p and the (i + 1)th p and each digit in Xi is less than p,
1� i�r .

For example, let X = 72172172 ∈ �′
9,8, then p = 7 and X can be expressed as 7X17X27X3, where X1 = X2 = 21

and X3 = 2.
We are interested in a subset Fd of �′

d,n. For the sake of our convenience, we give the definition of Fd .

Definition 2.2. Let Fd be a subset of �′
d,n such that each X = x1x2 · · · xm ∈ Fd with x1 = p = max{x1, x2, . . . , xm}

satisfies one of the following forms:

(1) X = pX1pX1p · · · pX1︸ ︷︷ ︸
r

or pX1pX1p · · · pX1︸ ︷︷ ︸
r

p, r �1 ;

(2) X = pX1pX2 or pX1pX2p, X1 > X2;
(3) X = pX1pX1p · · · pX1︸ ︷︷ ︸

r−1

pXr , r �3 and Xr = X1(i), where 1� i < j , i = �(Xr) and j = �(X1);

(4) X = pX1pX2p · · · pXr or pX1pX2p · · · pXrp, X1 > X2, X1 �Xi , i = 3, . . . , r .

For example, {71217121, 7121765, 71271271, 71271712} ⊂ F6, in which the vertices satisfy the forms (1)–(4) in
Definition 2.2, respectively. By the definition, 71271272 /∈ F6, since 71271272 = 7X17X17X2 does not match any
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form. Let

F(d, n) = Fd ∩ V (d, n), (2.3)

where Fd is defined in Definition 2.2.

Theorem 2.3. F(d, n) is a feedback vertex set of K(d, n) for n�2.

Proof. We only need to prove that Fd defined in Definition 2.2 satisfies the two conditions (a) and (b) in Theorem 2.2.
(a) We need to check that Fd ∩ [Y ] �= ∅ for any Y ∈ �d,n. Let Y = x1x2 . . . xm be any element in �d,n. There exists

an integer k such that xk = p = max1� i �m{xi}. Let X = xkxk+1 . . . xmx1x2 . . . xk−1, then [X] = [Y ]. We only need to
prove Fd ∩ [X] �= ∅.

Since X ∈ �′
d,n, X can be expressed as either X = pX1pX2p · · · pXr or X = pX1pX2p · · · pXrp. Without loss of

generality, we only consider the former since the latter does not contain form (3) and the proof is similar and simpler.
If r = 1 and X = pX1, then Fd ∩ [X] = {X}. If r = 2 and X = pX1pX2, then Fd ∩ [X] = {X} if X1 �X2 and

Fd ∩ [X] = {pX2pX1} otherwise, that is, Fd ∩ [X] �= ∅. Assume r �3 below.
IfX1=X2=· · ·=Xr , thenFd∩[X]={X}. Otherwise there exists an integer j such thatXj > Xj+1 andXj �Xi, 1� i �=

j + 1�r , then

pXjpXj+1p · · · pXrpX1p · · · pXj−1 = �k
m(X) ∈ Fd ∩ [X],

where k is the length of pX1pX2p · · · pXj−1, that is, Fd ∩ [X] �= ∅.
(b) We now check that Fd satisfies the condition (b) in Theorem 2.2. For any X ∈ Fd , either X =pX1pX2p · · · pXr

or X = pX1pX2p · · · pXrp. Then X(i) = pX1pX2p · · · pXt or pX1pX2p · · · pXtp or pX1pX2p · · · pXt−1pX′
t ,

where t �r , X′
t = Xt(j) and j = �(X′

t ). We only need to check the case X(i) = pX1pX2p · · · pX′
t (the other case is

similar and simpler).
For t = 1 or 2, X(i) satisfies the form either (1) or (2) in Definition 2.2 and the assertion holds obviously. Assume

t �3 below.
If X1 = X2, X only could be the form either (1) or (3) in Definition 2.2, we have X1 = X2 = · · · = Xt−1 = Xt and

X′
t = Xt(j) = X1(j). Then X(i) is of the form (3) in Definition 2.2, and so X(i) ∈ Fd .
If X1 �= X2, X only could be of the form (4) in Definition 2.2, we have X1 > X2, X1 �Xj , 3�j � t − 1, and

X1 �Xt �Xt(j) = X′
t . Then X(i) is of the form (4) in Definition 2.2, which also implies X(i) ∈ Fd .

The proof of the theorem is complete. �

Theorem 2.4. If 2�n�7, then |F(d, n) ∩ [X]| = 1 for any vertex X ∈ V (d, n).

Proof. Assume, without loss of generality, X = pX1pX2p · · · pXr ∈ F(d, n). (the case X = pX1pX2p · · · pXrp is
similar). We have r �3 since n�7. The proof depends that X satisfies which form in Definition 2.2 of Fd .

If X satisfies the form (1) in Definition 2.2, then ind(X) = � + 1, where � = �(X1). In the directed cycle [X] =
(X, �n(X), . . . ,��−1

n (X), X), the vertex X is only one whose first digit is p. Thus, F(d, n) ∩ [X] = {X}.
If X satisfies the form (2) in Definition 2.2, then X = pX1pX2 and F(d, n) ∩ [X] ⊆ {pX1pX2, pX2pX1}. It is

clear that X1 �= X2 since X satisfies the form (2). If X1 > X2, then pX2pX1 does not satisfy the form (2); if X1 < X2,
then pX1pX2 does not satisfy the form (2). Thus, |F(d, n) ∩ [X]| = 1.

If X satisfies the form (3) in Definition 2.2, then X1 = X2 and X3 = X1(i), where i = �(X3) < �(X1). Thus,
n�3 + 2(i + 1) + i�8, which contradicts our hypothesis n�7.

If X satisfies the form (4) in Definition 2.2, then X1 > X2, X1 �X3 and n�6. Thus, both X2 and X3 are a single
digit. When n = 6, X1 also is a single digit and X = pX1pX2pX3. When n = 7, X1 could be either a single digit
if X = pX1pX2pX3p or X1 is a sequence of length two if X = pX1pX2pX3. In all the three cases we have
F(d, n) ∩ [X] = {X}.

The proof of the theorem is complete. �

Theorem 2.5. F(d, n) is a minimum feedback vertex set of K(d, n) and |F(d, n)| = |�(d, n)| for 2�n�7.

Proof. The result follows from Theorems 2.2–2.4, immediately. �
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3. Feedback numbers

In the preceding section, we construct two important sets �(d, n) and F(d, n) defined in (2.1) and (2.3), respectively.
By Theorems 2.1, 2.3 and 2.5, we have that the feedback number f (d, n) of K(d, n) is

f (d, n) = |�(d, n)| for 2�n�7,

|�(d, n)|�f (d, n)� |F(d, n)| for n�8. (3.1)

In this section, we determine the value of |�(d, n)| and establish an upper bound of |F(d, n)| for n�8. In Lemmas
3.1, 3.2 and Theorem 3.1 we assume that the parameter d is fixed since the process of our proofs and calculations will
be independent of d.

Lemma 3.1. Let Wn = {X = x1x2 · · · xn ∈ V (d, n)|x1 �= xn} and Wn = V (d, n)\Wn.

(a) |Wn| = dn + (−1)nd ;
(b) |�(d, n)| = |{[X]|X ∈ Wn}| + |{[X]|X ∈ Wn−1}|.

Proof. We first prove the assertion (a) by induction on n�2. For n = 2, then W2 = V (d, 2), W 2 = ∅, and so |W2| =
|V (d, 2)| = d2 + d. Suppose now that n�3 and the result holds for any integer less than n. By the definition, |Wn | =
|Wn−1| since |{ x1x2 · · · xn−1x1 ∈ Wn}| = |{ x1x2 · · · xn−1 ∈ Wn−1}| for n�3. Thus, by the induction hypothesis, we
have

|Wn| = |V (d, n)| − |Wn|
= (dn + dn−1) − |Wn−1|
= (dn + dn−1) − (dn−1 + (−1)n−1d)

= dn + (−1)nd.

as required.
The assertion (b) follows from |{[X]|X ∈ Wn}| = |{[X]|X ∈ Wn−1}| immediately. �

Lemma 3.2. Let W1(1) = ∅ and Wn(i) = {X ∈ Wn | ind(X) = i} for any n�2, 1� i�n. Then

|Wn(i)| =
{ |Wi(i)| if i|n,

0 otherwise.

Proof. If i |n, for any X=x1x2 · · · xn ∈ Wn(i), X=�i
n(X)=xi+1xi+2 · · · xnx1 · · · xi , where �n is defined in Definition

2.1. We have xj =xki+j , 1�j � i, 1�k�r=n/i and X=YY . . . Y︸ ︷︷ ︸
r

, where Y =x1x2 · · · xi . It is easy to see Wi(i)=Wn(i)

and, hence, |Wi(i)| = |Wn(i)|.
If i�n, there must exist integers j and k such that n = ki + j and 1�j < i. If there still exists an X ∈ Wn(i), then

X = �i
n(X) = �n

n(X) = �ki+j
n (X) = �j

n(X), which contradicts to the definition of ind(X). Thus, Wn(i) = ∅. �

Theorem 3.1. For integer i�1, let �(i) = di + (−1)id be a function and �(i) the Euler totient function. Then for any
d �2 and n�2,

|�(d, n)| = (� � � )(n)

n
+ (� � � )(n − 1)

n − 1
,

where � is the convolution, that is, (� � �)(n) = ∑
i|n�(i)�(n/i).

Proof. By Lemma 3.1 we only need to prove

|{[X]|X ∈ Wn}| = (� � �)(n)

n
.
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To this purpose, let �, e, N, 	 be arithmetic functions over the set of positive integers defined as

�(i) = |Wi(i)|, e(i) = 1, N(i) = i,

	(i) is the Möbius function:

	(i) =
{1 if i = 1,

0 if a2|i for some a > 1,

(−1)k if i = p1p2 · · · pk, distinct prime factors.

It is proved in [12] that for any arithmetic functions f and g,

N � 	 = �, f = e � g ⇔ g = 	 � f . (3.2)

By Lemma 3.2, for any positive integer n we have

�(n) = |Wn| =
n∑

i=1

|Wn(i)| =
∑
i|n

|Wn(i)|

=
∑
i|n

|Wi(i)| =
∑
i|n

�(i) = (e � �)(n)

which means � = e � �.
For any vertex X ∈ Wn(i), ind(X)=i and [X] is a directed cycle with length i and for any vertex Y ∈ [X], Y ∈ Wn(i).

Thus

|{[X]|X ∈ Wn(i)}| = |Wn(i)|
i

and we have

|{[X]|X ∈ Wn}| =
n∑

i=1

|{[X]|X ∈ Wn(i)}|

=
n∑

i=1

|Wn(i)|
i

=
∑
i|n

|Wn(i)|
i

=
∑
i|n

|Wi(i)|
i

=
∑
i|n

�(i)

i
= 1

n

∑
i|n

n

i
�(i) = (N � �)(n)

n
.

By (3.2), we have � = e � � ⇔ � = 	 � �, and so

N � � = N � (	 � � ) = (N � 	) � � = � � �.

Thus,

|{[X]|X ∈ Wn}| = (� � �)(n)

n

as required. �

Remark. We have mentioned in Section 2 that �′
d,n ∩ V (d, 2) and �′

d,n ∩ V (d, 3) are minimum feedback vertex sets.
This fact can be deduced from Theorem 3.1 immediately as follows:

(� � �)(n)

n
+ (� � � )(n − 1)

n − 1
=

d∑
i=1

in−1 for n = 2 or 3.

Let

E(d, n) = {X ∈ F(d, n)||F(d, n) ∩ [X]|�2}. (3.3)
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Then

F(d, n)\E(d, n) = {X ∈ F(d, n)||F(d, n) ∩ [X]| = 1}.
For 2�n�7, it is clear that E(d, n) = ∅ by Theorem 2.4. For n�8

|F(d, n)|� |�(d, n)| + |E(d, n)| (3.4)

since |{X ∈ F(d, n)||F(d, n) ∩ [X]| = 1}|� |�(d, n)|.
For example, in F(2, 8) we have [32132132] = [32132321], [31231231] = [31231312] and E(2, 8)=

{32132132, 32132321, 31231231, 31231312}.
In fact, only two cycles in �(2, 8), each of them intersects with F(2, 8) exactly two vertices; the other cycles in

�(2, 8), each of them intersects with F(2, 8) only one vertices. Then from

|�(2, 8)| = (� � �)(8)

8
+ (� � �)(7)

7

= (28 + 2) + (24 + 2) + 2(22 + 2)

8
+ 27 − 2

7
= 54.

we have immediately

54�f (2, 8)�58.

Lemma 3.3. For any integers d �2 and n�8, |E(d, n)|�n2∑d
i=1 (i + 1)n−5.

Proof. Suppose X = pX1pX2p · · · pXr or pX1pX2p · · · pXrp ∈ E(d, n), where 2�p�d + 1.
By the definitions of Fd and E(d, n), defined in Definition 2.2 and (3.3), respectively, X only could be of the form

either (3) or (4) in Definition 2.2. Thus, 3�r �n/2.
When r = 3, we have X = pX1pX2pX1 or pX1pX1pX2 and F(d, n) ∩ [X] = {pX1pX2pX1, pX1pX1pX2},

where X2 = X1(i) and i = �(X2) < �(X1). Let E1(p, n) be the set of such X’s.
When r �4, there must exist an integer i, 3� i�r − 1 such that Xi = X1. Otherwise, Xi < X1, 3� i�r − 1

which leads to [X] ∩ F(d, n) = {X} and X /∈ E(d, n). Then, {X, �k
n(X)} ⊂ [X] ∩ F(d, n), where k is the length of

pX1pX2p · · · pXi−1 and X = pX1pX2p · · · pXi−1pX1pXi+1p · · · pXr or pX1pX2p · · · pXi−1pX1pXi+1p · · ·
pXrp. Let E2(p, n) be the set of such X’s.

Thus,

E(d, n) ⊆
d+1⋃
p=2

(E1(p, n) ∪ E2(p, n)). (3.5)

Clearly, |E1(p, n)|�2p(n−4)/2. To estimate |E2(p, n)|, let j=�(X1) and k=�(X2pX3p · · · pXi−1). It is not difficult
to get that

|E2(p, n)|�
�(n−6)/2�∑

j=1

n−5−2j∑
k=1

pjpkpn−4−2j−k � (n − 6)(n − 7)

2
pn−5.

Thus, by (3.5)

|E(d, n)|�
d+1∑
p=2

(|E1(p, n)| + |E2(p, n)|)�
d+1∑
p=2

n2pn−5

= n2
d∑

i=1

(i + 1)n−5

as required. �
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Theorem 3.2. For any integers d �2 and n�1

f (d, n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d for n = 1;
(� � �)(n)

n
+ (� � �)(n − 1)

n − 1
for 2�n�7;

dn

n
+ dn−1

n − 1
+ O(ndn−4) for n�8,

Proof. It is clear that f (d, 1) = d since K(d, 1) is a complete digraph Kd+1 and the removal of any d − 1 vertices
from Kd+1 results in a complete digraph K2, which is a directed cycle of length two. Assume n�2 below.

By (3.1) and Theorem 3.1, we only need to prove that for n�8

f (d, n) = dn

n
+ dn−1

n − 1
+ O(ndn−4).

Firstly while n�8, let k be the biggest nontrivial factor of n, then k�n/2 and

(� � �)(n) =
∑
i|n

�(i)�
(n

i

)
= �(1)�(n) + O(dk) = dn + O(dn/2)

and we have

|�(d, n)| = dn

n
+ dn−1

n − 1
+ O(dn−4). (3.6)

Secondly from Lemma 3.3 and

d∑
i=1

(i + 1)n−5 �
∫ d+1

0
(i + 1)n−5 = (d + 2)n−4

n − 4
,

we have |E(d, n)| = O(ndn−4). Then by (3.4), we have

|F(d, n)|� |�(d, n)| + |E(d, n)| = dn

n
+ dn−1

n − 1
+ O(ndn−4). (3.7)

It follows from (3.1), (3.6) and (3.7) that

f (d, n) = dn

n
+ dn−1

n − 1
+ O(ndn−4) for n�8

as required. The theorem follows. �

4. Arc-Feedback numbers

To discuss the edge-feedback number of the Kautz digraph K(d, n), we need another equivalent definition of K(d, n)

by the line digraph.
Let G = (V , E) be a digraph with E(G) �= ∅. The line graph of G, denoted by L(G), is a directed graph, in which

V (L(G))=E(G), and there is an arc (a, b) if and only if there are vertices x, y, z ∈ V (G) with a=(x, y) and b=(y, z).
For a given integer n�1, the nth iterated line graph of G, denoted by Ln(G), is recursively defined as L(Ln−1(G)) if
E(Ln−1(G)) �= ∅, where L0(G) and L1(G) denote G and L(G), respectively. By the line digraph, the Kautz digraph
K(d, n) can be recursively defined as follow (see Section 3.3 in [16]).

K(d, 1) = Kd+1; K(d, n) = Ln−1(Kd+1), n�2.

Let fa(d, n) denote the minimum cardinality over all feedback arc sets of the Kautz digraph K(d, n), called the
arc-feedback number of K(d, n).

Theorem 4.1. For any integers d �1 and n�1, fa(d, n) = f (d, n + 1).
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Proof. Let F be a minimum feedback vertex set of K(d, n+1). We need to prove that there exist a minimum feedback
arc set Fa of K(d, n) such that |Fa| = f (d, n + 1).

For any vertex X = x1x2 · · · xn+1 ∈ F , (x1x2 · · · xn, x2x3 · · · xn+1) is an arc of K(d, n). Let

Fa = {(x1x2 · · · xn, x2x3 · · · xn+1)|x1x2 · · · xn+1 ∈ F }.
Clearly,

|Fa| = |F | = f (d, n + 1).

We first prove Fa is a feedback arc set of K(d, n). Suppose to the contrary that K(d, n)−Fa obtained from K(d, n)

by removing the arcs in Fa contains a directed cycle C of length j:

C = (x1x2 · · · xn, x2x3 · · · xn+1, . . . , xn+j−1x1 · · · xn−1, x1x2 · · · xn).

Then Fa ∩ C = ∅ and we get a directed cycle C′ of K(d, n + 1):

C′ = (x1x2 · · · xnxn+1, x2x3 · · · xn+1xn+2, . . . , xn+j−1x1 · · · xn−1xn, x1x2 · · · xnxn+1).

Since, F is a feedback vertex set of K(d, n + 1), we have F ∩ C′ �= ∅.
Assume, without loss of generality, x1x2 · · · xnxn+1 ∈ F ∩ C′. Then by the definition of Fa , e = (x1x2 · · ·

xn, x2x3 · · · xn+1) ∈ Fa . Since e is an arc in C, Fa ∩ C �= ∅, a contradiction. The contradiction means that Fa is
a feedback arc set of K(d, n).

We now prove Fa is minimum. Suppose to the contrary that there exists a feedback arc set F ′
a of K(d, n) such that

|F ′
a| < |Fa|. Let

F ′ = {x1x2 · · · xn+1|(x1x2 · · · xn, x2x3 · · · xn+1) ∈ F ′
a}.

Then |F ′| = |F ′
a| < |Fa|. Let

D = (x1x2 · · · xnxn+1, x2x3 · · · xn+1xn+2, . . . , xn+j−1x1 · · · xn−1xn, x1x2 · · · xnxn+1)

be any directed cycle of K(d, n + 1). Then

D′ = (x1x2 · · · xn, x2x3 · · · xn+1, . . . , xn+j−1x1 · · · xn−1, x1x2 · · · xn)

is a directed cycle of K(d, n). Since F ′
a is a feedback arc set of K(d, n) we have F ′

a ∩ D′ = ∅. Then, F ′ ∩ D = ∅ and
F ′ is a feedback vertex set of K(d, n + 1). Since F is also a minimum feedback vertex of K(d, n + 1), we have

|Fa| = |F | = |F ′| < |Fa|,
a contradiction.

The proof of the theorem is complete. �
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