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Abstract

The (k — 1)-fault diameter Dy (G) of a k-connected graph G is the maximum diameter of an induced subgraph by deleting at
most k — 1 vertices from G. This paper considers the fault diameter of the product graph G * G, of two graphs G| and G, and
proves that Dy, 4, (G1 * G2) < Dy, (G1) + Dy, (G2) + 1 if Gy is ky-connected and G is kp-connected. This generalizes some
known results such as Bani¢ and Zerovnik [I. Banic, J. Zerovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett.

100 (2) (2006) 47-51].
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1. Introduction

For graph-theoretical terminology and notation not
defined here, we follow [8]. Let d(G) denote the di-
ameter of a graph G, and let d(G) = oo if G is not
connected. The (k — 1)-fault diameter of a graph G is
defined as

Di(G) =max{d(G — F): F CV(G), |F| <k}.

Note that Di(G) < oo if and only if G is k-con-
nected. Since nodes of a network do not always work, if
some nodes are fault, the information cannot be trans-
mitted by these nodes and the efficiency of network
must be affected. The fault diameter is an important
measurement for reliability and efficiency of an inter-
connection network. For some well-known graphs, the
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fault diameters have been determined, some of which
can be found in Section 4.2 in [7].

The concept of fault diameter is first introduced
by Krishnamoorthy and Krishnamurthy [5], who gave
an upper bound of the fault diameter of the Cartesian
product graph G| x G2, that is, Dy, 4+k,(G1 x G2) <
Dy, (G1) + Di,(G2). However, Xu et al. [9] pointed
out that this bound is not correct by considering C4 x
C4, where C4 is a cycle of length four, and estab-
lished a sharp upper bound, that is, Dy, 44, (G1 x G2) <
Dy (G1) + Dy (G2) + 1.

Very recently, Bani¢ and Zerovnik in [2] have con-
sidered the fault diameter of the Cartesian graph bun-
dle G1 - G2, which contains Cartesian product graphs
as its special case, and generalized Xu et al.’s result to
Dy, 11, (G1 - G2) < Dy (Gy) + Dy, (G2) + 1.

In this paper, we consider the product graphs, a more
general class of graphs that contains Cartesian graph
bundles as its special case.
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Definition 1. Let G1 = (Vl, El) and G2 = (Vz, Ez) be
two undirected graphs. For each edge xy = yx € Ey,
assign two permutations ¢y, and ¢y, of V> such that
Oxy = <p;x1. The product graph G| * G> has V| x W,
as the vertex set, two vertices (x, x") and (y, y") being
adjacent if and only if either

x=y and x'y €E, or

xy€E; and Y =g ().

By the definition, the product graph G| * G can be
viewed as formed by |Vi] disjoint copies G5 (x € Vj
here) of G plus a perfect matching between copies G5
and G% determined by ¢, for each edge xy € Ej.

The product graph is a good method in constructing
large graphs with given degree and diameter there and
first proposed by Bermond et al. in [3], in which the
connectivity and diameter of G * G is discussed. In the
paper by Balbuena et al. [1], the connectivity of G| x G»
is discussed deeper.

The product graphs certainly contain a lot of graphs
as its special cases.

For example, it is clear that the Cartesian product
graphs are a subclass of product graphs by taking the
identity mapping as the permutation ¢, for every edge
xy € E1. But unlikely the Cartesian product, the prod-
uct graphs do not satisfy commutative law generally,
namely G * G, may be not isomorphic to G * G1.

The so-called Cartesian graph bundles, proposed by
Pisanski et al. [6], are a larger subclass (compared to
Cartesian product) of product graphs, since the permu-
tation ¢y, in Cartesian graph bundles must be chosen to
be an automorphism of G5.

In addition, another family of graphs which often ap-
pears in literature, the permutation graphs introduced by
Chartrand and Harary [4], can also be referred to as a
special case of product graphs where G| = K».

In this paper, we show the following result, which
contains two above-mentioned results, clearly.

Theorem 1. Let G; be a ki-connected graph and k; > 1
fori=1,2 Then

Dy, 11, (G1 % G2) < Dy, (G1) + Dy, (G2) + 1.
2. Proof of Theorem 1

Lemma 1. Let P, = (xq, X1, ..., X,) be a path of length
n and G, a ky-connected graph. Let u = xgy| and v =
X, y2 be two vertices of P, x G2, and X C V (P, x G2) \
{u, v} with | X| < ko. Then

dp,xGy\x (U, v) < Dy, (G2) +n +1,

where (P, x G2) \ X denotes a graph obtained from
P, x G2 by removing the vertices in X and the incident
edges.

Proof. If | X N V(G}")| = ka, then X N (V (P, x G2) \
V(Gz")) =@. Let Q = (X85, Xn—1Sp—1, ..., X0S0) be a
path in (P, * G2) \ X with s, = yp (namely x,s, = v)
and s;_1 = @y, x,_, (s;) for 1 <i < n.Then Q is apathin
P, % G, avoiding X from v to some vertex vy = xgso €
V(GJZCO) of length n. Moreover, there is a path from vg to
u in G5 avoiding X with length at most d(G>). There-
fore, d(p,«G,)\x (U, v) <n+d(Gr).

Next, we assume that | X N V(G’ﬁ”)l < kr. We find
ko + 1 paths from u to some vertices in G;” as fol-
lows. Let Q¢ = (xowo, x1wy, ..., X,w,) be a path in
Py G with xowo = xoy1 = u and w; = @y, _,x; (Wi—1),
for 1 <i < n. Since G5 is kr-connected, u has at least
k> neighbors u1,uz, ..., ux, in G5°. For each u; (1 <
J < k), we find a path Q; = (u, xoto, X111, ..., Xnty)
with xpfo = uj and t; = @y,_x,(ti—1), for 1 <i < n.
It is easy to check that these k> + 1 paths are disjoint
except the vertex u. Furthermore, the length of Qg is
n and the lengths of other kp paths are n + 1. Since
|X| < ko, there is at least one path avoiding X, de-
noted by Q’, and the last vertex of Q" by z. Because
X N V(G)zc”)| < kp, there is a path from z to v avoid-
ing X with length at most Dy,(G3). Thus, we have
dp,sxGo\x (W, v) < (n+ 1) + D, (G2). O

Proof of Theorem 1. Let G =G xG,. Let X C V(G)
with | X| < k| 4+ k2 and u, v be two vertices in V(G) \
X. Itis sufficient to show that dg\ x (u, v) < Dy, (G1) +
Dy, (G2) + 1.

If there is some x € V(G1) such that both u € G;
and v € G7, we consider two subcases. If | X NV (G7)|
< k2, then there is a path from u to x within G \ X
with length at most Dy, (G2). If | X N V(G§)| > ko, then
[X N (V(G)\ V(G3))| < ki — 1. As x has at least k;
neighbors in G1, there is a neighbor x” of x such that
G’z‘, avoids X. Hence we can find a path from u to v
through sz‘/ of length at most 1 +d(G»2) + 1.

So we may assume that u# and v lie in different
copies of Gy, say u € V(G;l) and v € V(G;z). Let
K CV(Gy)\ {x1,x2} be a set of k; — 1 vertices with
Y ek | X N V(G3)| as large as possible. Obviously,
there is a path Q from x; to x2 in G \ K with length at
most Dy, (G1). Let

a=>|XnV(Gy)|.

xekK

kr. By Lemma 1, we can find a path from u to v in
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QO * G avoiding X with length at most Dy, (G>) +
Dy, (G1) + 1.

Case 2: a < k1 — 1, by our choice of K, we
have X N V(G3) =¥ for each x € V(Gy) \ (K U
{x1, x2}). Furthermore, there exists some x* € K that
XNV(GY)=0.Let Ky = KU {x}\ {x*} and K» =
K U{x2} \ {x*}, then |K{| = |K2| = |K| =k; — 1. Let
xo be a neighbor of x; in G outside K>, and x¢ ex-
ists because G is kj-connected. Then, there is a path R
from xo to x2 in G \ Ky, of length at most Dy, (G1).
As before, we can find a path along R * G of length at
most Dy, (G1) from v to some vertex v’ in G;O, and let
u’ be the neighbor of u in G3°. Since X NV (G5°) =¥,
the distance between u’ and v’ are at most d(G;) in
G5’ \ X. Thus, we have found a path from u to v in
G \ X with length at most Dy, (G1) +d(G3) + 1.

The proof of the theorem is complete. O

In the proof of Theorem 1, we find a path of length at
most D, (G1) + Dy, (G2) + 1 between any two vertices
u and v in G — X, which implies that G — X is still
connected, where X is any subset of vertices with | X| <
k1 + ko — 1. Thus, we obtain the following corollary.

Corollary 1. If G; is ki-connected for i = 1,2, then
G1x Gy is (k1 + ko)-connected.
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