Fault diameter of product graphs *

Jun-Ming Xu*, Chao Yang
Department of Mathematics, University of Science and Technology of China, Hefei 230026, PR China
Available online 17 January 2007
Communicated by M. Yamashita

Abstract

The $(k-1)$-fault diameter $D_{k}(G)$ of a k-connected graph G is the maximum diameter of an induced subgraph by deleting at most $k-1$ vertices from G. This paper considers the fault diameter of the product graph $G_{1} * G_{2}$ of two graphs G_{1} and G_{2} and proves that $D_{k_{1}+k_{2}}\left(G_{1} * G_{2}\right) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$ if G_{1} is k_{1}-connected and G_{2} is k_{2}-connected. This generalizes some known results such as Banič and Žerovnik [I. Banič, J. Žerovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett. 100 (2) (2006) 47-51]. © 2007 Elsevier B.V. All rights reserved.

Keywords: Combinatorics; Diameter; Fault diameter; Product graphs; Cartesian graphs; Cartesian graph bundles; Permutation graphs

1. Introduction

For graph-theoretical terminology and notation not defined here, we follow [8]. Let $d(G)$ denote the diameter of a graph G, and let $d(G)=\infty$ if G is not connected. The $(k-1)$-fault diameter of a graph G is defined as
$D_{k}(G)=\max \{d(G-F): F \subseteq V(G),|F|<k\}$.
Note that $D_{k}(G)<\infty$ if and only if G is k-connected. Since nodes of a network do not always work, if some nodes are fault, the information cannot be transmitted by these nodes and the efficiency of network must be affected. The fault diameter is an important measurement for reliability and efficiency of an interconnection network. For some well-known graphs, the

[^0]fault diameters have been determined, some of which can be found in Section 4.2 in [7].

The concept of fault diameter is first introduced by Krishnamoorthy and Krishnamurthy [5], who gave an upper bound of the fault diameter of the Cartesian product graph $G_{1} \times G_{2}$, that is, $D_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \leqslant$ $D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)$. However, Xu et al. [9] pointed out that this bound is not correct by considering $C_{4} \times$ C_{4}, where C_{4} is a cycle of length four, and established a sharp upper bound, that is, $D_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \leqslant$ $D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$.

Very recently, Banič and Žerovnik in [2] have considered the fault diameter of the Cartesian graph bundle $G_{1} \cdot G_{2}$, which contains Cartesian product graphs as its special case, and generalized Xu et al.'s result to $D_{k_{1}+k_{2}}\left(G_{1} \cdot G_{2}\right) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$.

In this paper, we consider the product graphs, a more general class of graphs that contains Cartesian graph bundles as its special case.

Definition 1. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two undirected graphs. For each edge $x y=y x \in E_{1}$, assign two permutations $\varphi_{x y}$ and $\varphi_{y x}$ of V_{2} such that $\varphi_{x y}=\varphi_{y x}^{-1}$. The product graph $G_{1} * G_{2}$ has $V_{1} \times V_{2}$ as the vertex set, two vertices $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$ being adjacent if and only if either
$x=y \quad$ and $\quad x^{\prime} y^{\prime} \in E_{2} \quad$ or
$x y \in E_{1} \quad$ and $\quad y^{\prime}=\varphi_{x y}\left(x^{\prime}\right)$.
By the definition, the product graph $G_{1} * G_{2}$ can be viewed as formed by $\left|V_{1}\right|$ disjoint copies $G_{2}^{x}\left(x \in V_{1}\right.$ here) of G_{2} plus a perfect matching between copies G_{2}^{x} and G_{2}^{y} determined by $\varphi_{x y}$ for each edge $x y \in E_{1}$.

The product graph is a good method in constructing large graphs with given degree and diameter there and first proposed by Bermond et al. in [3], in which the connectivity and diameter of $G_{1} * G_{2}$ is discussed. In the paper by Balbuena et al. [1], the connectivity of $G_{1} * G_{2}$ is discussed deeper.

The product graphs certainly contain a lot of graphs as its special cases.

For example, it is clear that the Cartesian product graphs are a subclass of product graphs by taking the identity mapping as the permutation $\varphi_{x y}$ for every edge $x y \in E_{1}$. But unlikely the Cartesian product, the product graphs do not satisfy commutative law generally, namely $G_{1} * G_{2}$ may be not isomorphic to $G_{2} * G_{1}$.

The so-called Cartesian graph bundles, proposed by Pisanski et al. [6], are a larger subclass (compared to Cartesian product) of product graphs, since the permutation $\varphi_{x y}$ in Cartesian graph bundles must be chosen to be an automorphism of G_{2}.

In addition, another family of graphs which often appears in literature, the permutation graphs introduced by Chartrand and Harary [4], can also be referred to as a special case of product graphs where $G_{1}=K_{2}$.

In this paper, we show the following result, which contains two above-mentioned results, clearly.

Theorem 1. Let G_{i} be a k_{i}-connected graph and $k_{i} \geqslant 1$ for $i=1,2$. Then
$D_{k_{1}+k_{2}}\left(G_{1} * G_{2}\right) \leqslant D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$.

2. Proof of Theorem 1

Lemma 1. Let $P_{n}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a path of length n and G_{2} a k_{2}-connected graph. Let $u=x_{0} y_{1}$ and $v=$ $x_{n} y_{2}$ be two vertices of $P_{n} * G_{2}$, and $X \subseteq V\left(P_{n} * G_{2}\right) \backslash$ $\{u, v\}$ with $|X| \leqslant k_{2}$. Then
$d_{\left(P_{n} * G_{2}\right) \backslash X}(u, v) \leqslant D_{k_{2}}\left(G_{2}\right)+n+1$,
where $\left(P_{n} * G_{2}\right) \backslash X$ denotes a graph obtained from $P_{n} * G_{2}$ by removing the vertices in X and the incident edges.

Proof. If $\left|X \cap V\left(G_{2}^{x_{n}}\right)\right|=k_{2}$, then $X \cap\left(V\left(P_{n} * G_{2}\right) \backslash\right.$ $\left.V\left(G_{2}^{x_{n}}\right)\right)=\emptyset$. Let $Q=\left(x_{n} s_{n}, x_{n-1} s_{n-1}, \ldots, x_{0} s_{0}\right)$ be a path in $\left(P_{n} * G_{2}\right) \backslash X$ with $s_{n}=y_{2}$ (namely $x_{n} s_{n}=v$) and $s_{i-1}=\varphi_{x_{i} x_{i-1}}\left(s_{i}\right)$ for $1 \leqslant i \leqslant n$. Then Q is a path in $P_{n} * G_{2}$ avoiding X from v to some vertex $v_{0}=x_{0} s_{0} \in$ $V\left(G_{2}^{x_{0}}\right)$ of length n. Moreover, there is a path from v_{0} to u in $G_{2}^{x_{0}}$ avoiding X with length at most $d\left(G_{2}\right)$. Therefore, $d_{\left(P_{n} * G_{2}\right) \backslash X}(u, v) \leqslant n+d\left(G_{2}\right)$.

Next, we assume that $\left|X \cap V\left(G_{2}^{x_{n}}\right)\right|<k_{2}$. We find $k_{2}+1$ paths from u to some vertices in $G_{2}^{x_{n}}$ as follows. Let $Q_{0}=\left(x_{0} w_{0}, x_{1} w_{1}, \ldots, x_{n} w_{n}\right)$ be a path in $P_{n} * G_{2}$ with $x_{0} w_{0}=x_{0} y_{1}=u$ and $w_{i}=\varphi_{x_{i-1} x_{i}}\left(w_{i-1}\right)$, for $1 \leqslant i \leqslant n$. Since G_{2} is k_{2}-connected, u has at least k_{2} neighbors $u_{1}, u_{2}, \ldots, u_{k_{2}}$ in $G_{2}^{x_{0}}$. For each $u_{j}(1 \leqslant$ $\left.j \leqslant k_{2}\right)$, we find a path $Q_{j}=\left(u, x_{0} t_{0}, x_{1} t_{1}, \ldots, x_{n} t_{n}\right)$ with $x_{0} t_{0}=u_{j}$ and $t_{i}=\varphi_{x_{i-1} x_{i}}\left(t_{i-1}\right)$, for $1 \leqslant i \leqslant n$. It is easy to check that these $k_{2}+1$ paths are disjoint except the vertex u. Furthermore, the length of Q_{0} is n and the lengths of other k_{2} paths are $n+1$. Since $|X| \leqslant k_{2}$, there is at least one path avoiding X, denoted by Q^{\prime}, and the last vertex of Q^{\prime} by z. Because $\left|X \cap V\left(G_{2}^{x_{n}}\right)\right|<k_{2}$, there is a path from z to v avoiding X with length at most $D_{k_{2}}\left(G_{2}\right)$. Thus, we have $d_{\left(P_{n} * G_{2}\right) \backslash X}(u, v) \leqslant(n+1)+D_{k_{2}}\left(G_{2}\right)$.

Proof of Theorem 1. Let $G=G_{1} * G_{2}$. Let $X \subseteq V(G)$ with $|X|<k_{1}+k_{2}$ and u, v be two vertices in $V(G) \backslash$ X. It is sufficient to show that $d_{G \backslash X}(u, v) \leqslant D_{k_{1}}\left(G_{1}\right)+$ $D_{k_{2}}\left(G_{2}\right)+1$.

If there is some $x \in V\left(G_{1}\right)$ such that both $u \in G_{2}^{x}$ and $v \in G_{2}^{x}$, we consider two subcases. If $\left|X \cap V\left(G_{2}^{x}\right)\right|$ $<k_{2}$, then there is a path from u to x within $G_{2}^{x} \backslash X$ with length at most $D_{k_{2}}\left(G_{2}\right)$. If $\left|X \cap V\left(G_{2}^{x}\right)\right| \geqslant k_{2}$, then $\left|X \cap\left(V(G) \backslash V\left(G_{2}^{x}\right)\right)\right| \leqslant k_{1}-1$. As x has at least k_{1} neighbors in G_{1}, there is a neighbor x^{\prime} of x such that $G_{2}^{x^{\prime}}$ avoids X. Hence we can find a path from u to v through $G_{2}^{x^{\prime}}$ of length at most $1+d\left(G_{2}\right)+1$.

So we may assume that u and v lie in different copies of G_{2}, say $u \in V\left(G_{2}^{x_{1}}\right)$ and $v \in V\left(G_{2}^{x_{2}}\right)$. Let $K \subseteq V\left(G_{1}\right) \backslash\left\{x_{1}, x_{2}\right\}$ be a set of $k_{1}-1$ vertices with $\sum_{x \in K}\left|X \cap V\left(G_{2}^{x}\right)\right|$ as large as possible. Obviously, there is a path Q from x_{1} to x_{2} in $G_{1} \backslash K$ with length at $\operatorname{most} D_{k_{1}}\left(G_{1}\right)$. Let
$a=\sum_{x \in K}\left|X \cap V\left(G_{2}^{x}\right)\right|$.
Case 1: $a \geqslant k_{1}-1$, then $\sum_{x \in V\left(G_{1}\right) \backslash K}\left|X \cap V\left(G_{2}^{x}\right)\right| \leqslant$ k_{2}. By Lemma 1, we can find a path from u to v in
$Q * G_{2}$ avoiding X with length at most $D_{k_{2}}\left(G_{2}\right)+$ $D_{k_{1}}\left(G_{1}\right)+1$.

Case 2: $a<k_{1}-1$, by our choice of K, we have $X \cap V\left(G_{2}^{x}\right)=\emptyset$ for each $x \in V\left(G_{1}\right) \backslash(K \cup$ $\left.\left\{x_{1}, x_{2}\right\}\right)$. Furthermore, there exists some $x^{*} \in K$ that $X \cap V\left(G_{2}^{x^{*}}\right)=\emptyset$. Let $K_{1}=K \cup\left\{x_{1}\right\} \backslash\left\{x^{*}\right\}$ and $K_{2}=$ $K \cup\left\{x_{2}\right\} \backslash\left\{x^{*}\right\}$, then $\left|K_{1}\right|=\left|K_{2}\right|=|K|=k_{1}-1$. Let x_{0} be a neighbor of x_{1} in G_{1} outside K_{2}, and x_{0} exists because G_{1} is k_{1}-connected. Then, there is a path R from x_{0} to x_{2} in $G_{1} \backslash K_{1}$, of length at most $D_{k_{1}}\left(G_{1}\right)$. As before, we can find a path along $R * G_{2}$ of length at $\operatorname{most} D_{k_{1}}\left(G_{1}\right)$ from v to some vertex v^{\prime} in $G_{2}^{x_{0}}$, and let u^{\prime} be the neighbor of u in $G_{2}^{x_{0}}$. Since $X \cap V\left(G_{2}^{x_{0}}\right)=\emptyset$, the distance between u^{\prime} and v^{\prime} are at most $d\left(G_{2}\right)$ in $G_{2}^{x_{0}} \backslash X$. Thus, we have found a path from u to v in $G \backslash X$ with length at most $D_{k_{1}}\left(G_{1}\right)+d\left(G_{2}\right)+1$.

The proof of the theorem is complete.
In the proof of Theorem 1, we find a path of length at most $D_{k_{1}}\left(G_{1}\right)+D_{k_{2}}\left(G_{2}\right)+1$ between any two vertices u and v in $G-X$, which implies that $G-X$ is still connected, where X is any subset of vertices with $|X| \leqslant$ $k_{1}+k_{2}-1$. Thus, we obtain the following corollary.

Corollary 1. If G_{i} is k_{i}-connected for $i=1,2$, then $G_{1} * G_{2}$ is $\left(k_{1}+k_{2}\right)$-connected.

References

[1] C. Balbuena, P. García-Vázquez, X. Marcote, Reliability of interconnection networks modelled by a product of graphs, Networks 48 (3) (2006) 114-120.
[2] I. Banič, J. Žerovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett. 100 (2) (2006) 47-51.
[3] J.C. Bermond, C. Delorme, G. Farhi, Large graphs with given degree and diameter II, J. Combin. Theory, Ser. B 36 (1984) 32-48.
[4] G. Chartrand, F. Harary, Planar permutation graphs, Ann. Inst. H. Poincaré, Sec. B 3 (1967) 433-438.
[5] M.S. Krishnamoorthy, B. Krishnamurthy, Fault diameter of interconnection networks, Comput. Math. Appl. 13 (5-6) (1987) 577-582.
[6] T. Pisanski, J. Shawe-Taylor, J. Vrabec, Edge-colorability of graph bundles, J. Combin. Theory, Ser. B 35 (1983) 12-19.
[7] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
[8] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[9] M. Xu, J.-M. Xu, X.-M. Hou, Fault diameter of Cartesian product graphs, Inform. Process. Lett. 93 (2005) 245-248.

[^0]: * The work was supported by NNSF of China (No: 10671191).
 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

