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Abstract

The (k − 1)-fault diameter Dk(G) of a k-connected graph G is the maximum diameter of an induced subgraph by deleting at
most k − 1 vertices from G. This paper considers the fault diameter of the product graph G1 ∗ G2 of two graphs G1 and G2 and
proves that Dk1+k2(G1 ∗ G2) � Dk1(G1) + Dk2(G2) + 1 if G1 is k1-connected and G2 is k2-connected. This generalizes some
known results such as Banič and Žerovnik [I. Banič, J. Žerovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett.
100 (2) (2006) 47–51].
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For graph-theoretical terminology and notation not
defined here, we follow [8]. Let d(G) denote the di-
ameter of a graph G, and let d(G) = ∞ if G is not
connected. The (k − 1)-fault diameter of a graph G is
defined as

Dk(G) = max
{
d(G − F): F ⊆ V (G), |F | < k

}
.

Note that Dk(G) < ∞ if and only if G is k-con-
nected. Since nodes of a network do not always work, if
some nodes are fault, the information cannot be trans-
mitted by these nodes and the efficiency of network
must be affected. The fault diameter is an important
measurement for reliability and efficiency of an inter-
connection network. For some well-known graphs, the
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fault diameters have been determined, some of which
can be found in Section 4.2 in [7].

The concept of fault diameter is first introduced
by Krishnamoorthy and Krishnamurthy [5], who gave
an upper bound of the fault diameter of the Cartesian
product graph G1 × G2, that is, Dk1+k2(G1 × G2) �
Dk1(G1) + Dk2(G2). However, Xu et al. [9] pointed
out that this bound is not correct by considering C4 ×
C4, where C4 is a cycle of length four, and estab-
lished a sharp upper bound, that is, Dk1+k2(G1 ×G2) �
Dk1(G1) + Dk2(G2) + 1.

Very recently, Banič and Žerovnik in [2] have con-
sidered the fault diameter of the Cartesian graph bun-
dle G1 · G2, which contains Cartesian product graphs
as its special case, and generalized Xu et al.’s result to
Dk1+k2(G1 · G2) � Dk1(G1) + Dk2(G2) + 1.

In this paper, we consider the product graphs, a more
general class of graphs that contains Cartesian graph
bundles as its special case.
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Definition 1. Let G1 = (V1,E1) and G2 = (V2,E2) be
two undirected graphs. For each edge xy = yx ∈ E1,
assign two permutations ϕxy and ϕyx of V2 such that
ϕxy = ϕ−1

yx . The product graph G1 ∗ G2 has V1 × V2
as the vertex set, two vertices (x, x′) and (y, y′) being
adjacent if and only if either

x = y and x′y′ ∈ E2 or

xy ∈ E1 and y′ = ϕxy(x
′).

By the definition, the product graph G1 ∗ G2 can be
viewed as formed by |V1| disjoint copies Gx

2 (x ∈ V1
here) of G2 plus a perfect matching between copies Gx

2
and G

y

2 determined by ϕxy for each edge xy ∈ E1.
The product graph is a good method in constructing

large graphs with given degree and diameter there and
first proposed by Bermond et al. in [3], in which the
connectivity and diameter of G1 ∗G2 is discussed. In the
paper by Balbuena et al. [1], the connectivity of G1 ∗G2
is discussed deeper.

The product graphs certainly contain a lot of graphs
as its special cases.

For example, it is clear that the Cartesian product
graphs are a subclass of product graphs by taking the
identity mapping as the permutation ϕxy for every edge
xy ∈ E1. But unlikely the Cartesian product, the prod-
uct graphs do not satisfy commutative law generally,
namely G1 ∗ G2 may be not isomorphic to G2 ∗ G1.

The so-called Cartesian graph bundles, proposed by
Pisanski et al. [6], are a larger subclass (compared to
Cartesian product) of product graphs, since the permu-
tation ϕxy in Cartesian graph bundles must be chosen to
be an automorphism of G2.

In addition, another family of graphs which often ap-
pears in literature, the permutation graphs introduced by
Chartrand and Harary [4], can also be referred to as a
special case of product graphs where G1 = K2.

In this paper, we show the following result, which
contains two above-mentioned results, clearly.

Theorem 1. Let Gi be a ki -connected graph and ki � 1
for i = 1,2. Then

Dk1+k2(G1 ∗ G2) � Dk1(G1) + Dk2(G2) + 1.

2. Proof of Theorem 1

Lemma 1. Let Pn = (x0, x1, . . . , xn) be a path of length
n and G2 a k2-connected graph. Let u = x0y1 and v =
xny2 be two vertices of Pn ∗ G2, and X ⊆ V (Pn ∗ G2) \
{u,v} with |X| � k2. Then

d(Pn∗G2)\X(u, v) � Dk2(G2) + n + 1,

where (Pn ∗ G2) \ X denotes a graph obtained from
Pn ∗ G2 by removing the vertices in X and the incident
edges.

Proof. If |X ∩ V (G
xn

2 )| = k2, then X ∩ (V (Pn ∗ G2) \
V (G

xn

2 )) = ∅. Let Q = (xnsn, xn−1sn−1, . . . , x0s0) be a
path in (Pn ∗ G2) \ X with sn = y2 (namely xnsn = v)
and si−1 = ϕxixi−1(si) for 1 � i � n. Then Q is a path in
Pn ∗ G2 avoiding X from v to some vertex v0 = x0s0 ∈
V (G

x0
2 ) of length n. Moreover, there is a path from v0 to

u in G
x0
2 avoiding X with length at most d(G2). There-

fore, d(Pn∗G2)\X(u, v) � n + d(G2).
Next, we assume that |X ∩ V (G

xn

2 )| < k2. We find
k2 + 1 paths from u to some vertices in G

xn

2 as fol-
lows. Let Q0 = (x0w0, x1w1, . . . , xnwn) be a path in
Pn ∗G2 with x0w0 = x0y1 = u and wi = ϕxi−1xi

(wi−1),
for 1 � i � n. Since G2 is k2-connected, u has at least
k2 neighbors u1, u2, . . . , uk2 in G

x0
2 . For each uj (1 �

j � k2), we find a path Qj = (u, x0t0, x1t1, . . . , xntn)

with x0t0 = uj and ti = ϕxi−1xi
(ti−1), for 1 � i � n.

It is easy to check that these k2 + 1 paths are disjoint
except the vertex u. Furthermore, the length of Q0 is
n and the lengths of other k2 paths are n + 1. Since
|X| � k2, there is at least one path avoiding X, de-
noted by Q′, and the last vertex of Q′ by z. Because
|X ∩ V (G

xn

2 )| < k2, there is a path from z to v avoid-
ing X with length at most Dk2(G2). Thus, we have
d(Pn∗G2)\X(u, v) � (n + 1) + Dk2(G2). �
Proof of Theorem 1. Let G = G1 ∗G2. Let X ⊆ V (G)

with |X| < k1 + k2 and u,v be two vertices in V (G) \
X. It is sufficient to show that dG\X(u, v) � Dk1(G1) +
Dk2(G2) + 1.

If there is some x ∈ V (G1) such that both u ∈ Gx
2

and v ∈ Gx
2 , we consider two subcases. If |X ∩ V (Gx

2)|
< k2, then there is a path from u to x within Gx

2 \ X

with length at most Dk2(G2). If |X ∩V (Gx
2)| � k2, then

|X ∩ (V (G) \ V (Gx
2))| � k1 − 1. As x has at least k1

neighbors in G1, there is a neighbor x′ of x such that
Gx′

2 avoids X. Hence we can find a path from u to v

through Gx′
2 of length at most 1 + d(G2) + 1.

So we may assume that u and v lie in different
copies of G2, say u ∈ V (G

x1
2 ) and v ∈ V (G

x2
2 ). Let

K ⊆ V (G1) \ {x1, x2} be a set of k1 − 1 vertices with∑
x∈K |X ∩ V (Gx

2)| as large as possible. Obviously,
there is a path Q from x1 to x2 in G1 \ K with length at
most Dk1(G1). Let

a =
∑

x∈K

∣∣X ∩ V (Gx
2)

∣∣.

Case 1: a � k1 −1, then
∑

x∈V (G1)\K |X∩V (Gx
2)| �

k2. By Lemma 1, we can find a path from u to v in
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Q ∗ G2 avoiding X with length at most Dk2(G2) +
Dk1(G1) + 1.

Case 2: a < k1 − 1, by our choice of K , we
have X ∩ V (Gx

2) = ∅ for each x ∈ V (G1) \ (K ∪
{x1, x2}). Furthermore, there exists some x∗ ∈ K that
X ∩ V (Gx∗

2 ) = ∅. Let K1 = K ∪ {x1} \ {x∗} and K2 =
K ∪ {x2} \ {x∗}, then |K1| = |K2| = |K| = k1 − 1. Let
x0 be a neighbor of x1 in G1 outside K2, and x0 ex-
ists because G1 is k1-connected. Then, there is a path R

from x0 to x2 in G1 \ K1, of length at most Dk1(G1).
As before, we can find a path along R ∗ G2 of length at
most Dk1(G1) from v to some vertex v′ in G

x0
2 , and let

u′ be the neighbor of u in G
x0
2 . Since X ∩ V (G

x0
2 ) = ∅,

the distance between u′ and v′ are at most d(G2) in
G

x0
2 \ X. Thus, we have found a path from u to v in

G \ X with length at most Dk1(G1) + d(G2) + 1.
The proof of the theorem is complete. �
In the proof of Theorem 1, we find a path of length at

most Dk1(G1)+Dk2(G2)+ 1 between any two vertices
u and v in G − X, which implies that G − X is still
connected, where X is any subset of vertices with |X| �
k1 + k2 − 1. Thus, we obtain the following corollary.

Corollary 1. If Gi is ki -connected for i = 1,2, then
G1 ∗ G2 is (k1 + k2)-connected.
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