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Abstract

As an enhancement on the hypercube Qn, the augmented cube AQn, prosed by Choudum and Sunitha [S.A. Choudum,
V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71–84], not only retains some favorable properties of Qn but also pos-
sesses some embedding properties that Qn does not. For example, AQn is pancyclic, that is, AQn contains cycles of arbitrary length
for n � 2. This paper shows that AQn remains pancyclic provided faulty vertices and/or edges do not exceed 2n − 3 and n � 4.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that interconnection networks play
an important role in parallel computing/communication
systems. One of the central issues in evaluating a net-
work is to study the embedding problem [14]. When a
network is modeled by a graph, the embedding prob-
lem asks if a guest graph is a subgraph of a host graph,
and an important benefit of graph embedding is that we
can apply existing algorithms for guest graphs to host
graphs. This problem has attracted a burst of studies in
recent years. Cycle networks are suitable for designing
simple algorithms with low communication cost. Since
some parallel applications, such as those in image and
signal processing, are originally designated on a cycle
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architecture, it is important to have effective cycle em-
bedding in a network.

A graph is pancyclic if it contains cycles of every
length from its girth to order inclusive. A graph is of
pancyclicity if it is pancyclic. The pancyclicity of many
networks has been investigated in the literature (see, for
example, [1,4,5,9,7,16,18,19]).

Edge and/or vertex failures are inevitable when a
large parallel computer system is put in use. There-
fore, the fault-tolerant capacity of a network is a crit-
ical issue in parallel computing. A graph G = (V ,E)

is k (resp. k-edge)-fault-tolerant pancyclic if G − F

is still pancyclic for any F ⊂ E(G) ∪ V (G) (resp.
F ⊂ E(G)) with |F | � k. Fault-tolerant pancyclicity
has been widely studied in many networks, such as [2,
4–8,10,13,15,17].

The hypercube network Qn has proved to be one of
the most popular interconnection networks [11,14]. As a
variant of Qn, Choudum and Sunitha [3] introduced the
augmented cube AQn and proved AQn is pancyclic. Re-
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cently, Ma et al. [12] improved this result by showing
that AQn is (2n − 3)-edge-fault-tolerant pancyclic for
any n � 2. For the hybrid presence of edge and vertex
failures, Hsu et al. [8] showed that AQn is (2n − 3)-
Hamiltonian for n � 4. In this paper, we improve the
above-mentioned result by showing the following theo-
rem.

Theorem. AQn is (2n − 3)-fault-tolerant pancyclic for
n � 4.

The proof of the Theorem is in Section 3. Section 2
gives the definition of the augmented cube AQn.

2. Structure of augmented cubes

The n-dimensional augmented cube AQn (n � 1) can
be defined recursively as follows: AQ1 is a complete
graph K2 with the vertex set {0,1}. For n � 2, AQn is
obtained by taking two copies of the augmented cube
AQn−1, denoted by AQ0

n−1 and AQ1
n−1, and adding 2n

edges between the two copies as follows.
Let V (AQ0

n−1) = {0un−1 . . . u2u1: ui = 0 or 1} and
V (AQ1

n−1) = {1un−1 . . . u2u1: ui = 0 or 1}. A vertex
u = 0un−1 . . . u2u1 of AQ0

n−1 is joined to a vertex v =
1vn−1 . . . v2v1 of AQ1

n−1 if and only if either

(i) ui = vi for 1 � i � n − 1; in this case, setting v =
uh or u = vh, or

(ii) ui = v̄i for 1 � i � n − 1; in this case, setting v =
uc or u = vc.

The augmented cubes AQ1, AQ2, and AQ3 are shown
in Fig. 1. It is proved in [3] that AQn is a vertex tran-
sitive, (2n − 1)-regular, and (2n − 1)-connected graph
with 2n vertices for any positive integer n.

We call uh and uc the out-neighbors of u and call the
edges between L and R crossed edges, denoted by Ec.
Clearly every vertex u in AQn is incident with two edges
(u,uh) and (u,uc) in Ec. According to the above defin-
ition, we write this recursive construction of AQn sym-
bolically as AQn = L ⊕ R, where L ∼= AQ0

n−1 and R ∼=

AQ1
n−1. It is also clear that for two distinct vertices u

and v in AQn their out-neighbors uh �= vh and uc �= vc.
Moreover, for any two distinct vertices u and v in
AQ0

n−1 with n � 4, the four vertices uh, uc, vh and vc

in AQ1
n−1 are all distinct provided that (u, v) /∈ {(u, v) /∈

E(AQ0
n−1): u = 0un−1 . . . u1 and v = 0ūn−1 . . . ū1}.

3. Proof of Theorem

In this section, we give the proof of the Theorem
stated in Introduction. For all the terminology and no-
tation not defined here, we follow [14]. A graph G is
Hamiltonian connected if there is a Hamiltonian path
between any two vertices of G, and is k-fault-tolerant
Hamiltonian connected if G − F remains Hamiltonian
connected for any F ⊂ E(G)∪V (G) with |F | � k. The
following two lemmas, due to Hsu et al. [8], are used in
our proofs.

Lemma 1. AQn is (2n − 4)-Hamiltonian connected for
n � 4.

Lemma 2. For any four distinct vertices u,v, x, y in
AQn (n � 2), there exist two disjoint ux-path P1 and
vy-path P2 such that P1 ∪ P2 contains all vertices of
AQn.

Proof of Theorem. We prove the theorem by induction
on n � 4. For n = 4, we have verified this conclusion
with a computer by depth first search method within a
polynomial time. Assume that the theorem is true for
AQn−1 with n � 5. Let F be any subset in V (AQn) ∪
E(AQn) with |F | = 2n − 3, Fv = F ∩ V (AQn), Fe =
F ∩E(AQn). We prove that there is a cycle of length � in
AQn −F for every � with 3 � � � 2n −|Fv|. To this end,
let us denote AQn = L⊕R, where L ∼= AQ0

n−1 and R ∼=
AQ1

n−1, FL = F ∩ L, FR = F ∩ R, FL
v = Fv ∩ V (L),

FR
v = Fv ∩ V (R) and Fc

e = Fe ∩ Ec.
Without loss of generality, we may assume |FL| �

|FR|. Then |FR| � n − 2 < 2n − 6 for n � 5, which
implies that R − FR is Hamiltonian connected by

Fig. 1. Three augmented cubes AQ1, AQ2, and AQ3.
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Fig. 2. Illustrations for the proof of Theorem. (A straight line represents an edge and a curve line represents a path between two vertices.)

Lemma 1. By the induction hypothesis, R is (2n − 5)-
fault-tolerant pancyclic, that is, for any � with 3 � � �
2n−1 −|FR

v |, there is a cycle of length � in R −FR , and
so in AQn − F .

Note |FL| + |Fc
e | � |F | = 2n − 3 < 2n−1 for n � 2.

There is a vertex u in L such that {(u,uh), (u,uc)} ⊂
Ec \ Fc

e . Let PR be a (uh,uc)-path of length 2n−1 −
|FR

v | − 1 in R − FR since R − FR is Hamiltonian con-
nected. Then (u,uh) ∪ PR ∪ (uc, u) is a cycle of length
2n−1 − |FR

v | + 1 in AQn − F .
Thus, to complete the proof of the theorem, we only

need to prove that there is a cycle of length � in AQn −F

for every � with 2n−1 − |FR
v | + 2 � � � 2n − |Fv|. For

a given �, let �′ = � − 2n−1 + |FR
v | − 1. Then 1 � �′ �

2n−1 − |FL
v | − 1. Consider the following two cases.

Case 1. |FL| � 2n − 4.
We first claim that there is a (u0, u�′)-path PL of

length �′ in L − FL such that at least one of the two
sets of crossed edges {(u0, u

h
0), (u�′ , uh

�′)} and {(u0, u
c
0),

(u�′ , uc
�′)} is fault-free.

If |FL| � 2n − 5, then L − FL contains a cycle C of
2n−1 −|FL

v | by the induction hypothesis. Thus there are
2n−1 − |FL

v | distinct paths of length �′ in C. Suppose to
the contrary that there does not exist such a (u0, u�′)-
path PL in L − FL. Then there are at least 2n−1 − |FL

v |

faults outside L, that is, 2n − 3 = |F | � 2n−1 for n � 5,
a contradiction.

If |FL| = 2n − 4, we claim that there is a Hamil-
tonian path H in L − FL. In fact, by the induction
hypothesis, L is (2n − 5)-Hamiltonian. Let e be any el-
ement in FL and C a Hamiltonian cycle in L − {FL −
{e}}. Then e must be in C, and so C − {e} is a Hamil-
tonian path in L − FL.

Take any section of H with length �′ as the (u0, u�′)-
path PL. Since |Fc

e | � 1, one of {(u0, u
h
0), (u�′ , uh

�′)} and
{(u0, u

c
0), (u�′ , uc

�′)} is fault-free.
Thus, there exists a required (u0, u�′)-path PL in

L − FL. Without loss of generality, assume {(u0, u
h
0),

(u�′ , uh
�′)} is fault-free.

Let PR be a Hamiltonian (uh
�′ , uh

0)-path in R − FR

since R − FR is Hamiltonian connected. Then PL ∪
(u�′ , uh

�′) ∪ PR ∪ (uh
0, u0) is a cycle in AQn − F with

length �′ + 2 + (2n−1 − |FR
v | − 1) = � (see Fig. 2(a)).

Case 2. |FL| = 2n − 3.
In this case, all faults are in L, that is, |FR| = |Fc

e |
= 0 and �′ = � − 2n−1 − 1.

Suppose that PL is a (u0, u�′)-path of length �′ in
L − FL. Let PR be a (uh

0, uh
�′)-path of length 2n−1 − 1

in R since R is Hamiltonian connected. Then PL ∪
(u�′ , uh

�′) ∪ PR ∪ (uh
0, u0) is a cycle in AQn − F with

length �′ + 2 + (2n−1 − 1) = � (see Fig. 2(a)).
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We now suppose that the length of any path in L −
FL is smaller than �′. Noting that an edge (x, y) ∈ F

can be replaced by the vertex x or the vertex y, we
may, without loss of generality, assume |FL| = |FL

v | =
2n − 3.

Let u,v be in FL
v . By the induction hypothesis,

there is a Hamiltonian cycle C in L − (FL
v \ {u,v}).

Then both u and v are in C and not adjacent, oth-
erwise C − {u,v} is a path in L − FL

v with length
2n−1 − |FL

v | − 1 � �′, a contradiction. Let P1 and P2
be two sections of C − {u,v}. Then P1 and P2 are
two disjoint paths in L − FL. Denote the length of Pi

as �i for i = 1,2. Then �1 + �2 = 2n−1 − |Fv| − 2.
Let P1 = (u0, u1, . . . , u�1), P2 = (v0, v1, . . . , v�2) and
C = (u,u0) ∪ P1 ∪ (u�1, v) ∪ (v, v�2) ∪ P2 ∪ (v0, u).
Without loss of generality, we may assume �1 � �2.
Then �1 + 1 � �′ � 2n−1 − |Fv| − 1.

Note that if (u0, v0) ∈ E(AQn) then the path P1 ∪
(u0, v0) ∪ P2 has length 2n−1 − |FL

v | − 1 � �′, a con-
tradiction, which implies (u0, v0) /∈ E(AQn). Similarly,
(u0, v�2), (u�1 , v0), (u�1 , v�2) /∈ E(AQn). This fact im-
plies that the four vertices uh

0, uc
0, v

h
0 and vc

0 are all dis-
tinct, and so are uh

�1
, uc

�1
, vh

�2
and vc

�2
.

(a) If �2 = 0, then P2 consists of a single vertex v0. In
this case, �1 = 2n−1 −|Fv|−2, which implies �′ = �1 +
1 and � = 2n −|Fv|. By Lemma 2, there are two disjoint
(uh

0, vh
0 )-path PR1 and (vc

0, u
h
�1

)-path PR2 in R such that

PR1 ∪ PR2 contains all vertices in R. Then (u0, u
h
0) ∪

PR1 ∪(vh
0 , v0)∪(v0, v

c
0)∪PR2 ∪(uh

�1
, u�1)∪P1 is a cycle

in AQn −F , of length �1 +4+2n−1 −2 = 2n −|Fv| = �

(see Fig. 2(b)).
(b) If �2 � 1, then �1 � 2n−1 − |Fv| − 3.
If �1 +2 � �′ � 2n−1 −|Fv|−1, then 2n−1 +�1 +3 �

� � 2n − |Fv|. Let �′ = �1 + i + 1. Then 1 � i � �2
and � = �1 + i + 2n−1 + 2. Let P ′

2 be the section of P2

from v0 to vi . Clearly, uh
0, uh

�1
, vh

0 , vh
i are four distinct

vertices. By Lemma 2, there are two disjoint (uh
0, vh

0 )-
path PR1 and (vh

i , uh
�1

)-path PR2 such that PR1 ∪ PR2

contains all vertices of R. So, (u0, u
h
0)∪PR1 ∪(vh

0 , v0)∪
P ′

2 ∪ (vi, v
h
i ) ∪ PR2 ∪ (uh

�1
, u�1) ∪ P1 is a cycle in AQn,

of length �1 + i + 4 + 2n−1 − 2 = �1 + i + 2n−1 + 2 = �

(see Fig. 2(c)).
Now assume �′ = �1 + 1. Then � = 2n−1 + �1 + 2.
If there is a vertex vi on P2 whose two out-neighbors

are different from out-neighbors of u0 and u�1 , then
there are two disjoint (uh

0, vh
i )-path PR1 and (vc

i , u
h
�1

)-
path PR2 such that PR1 ∪ PR2 contains all vertices of R

by Lemma 2. So, (u0, u
h
0) ∪ PR1 ∪ (vh

i , vi) ∪ (vi, v
c
i ) ∪

PR2 ∪(uh
�1

, u�1)∪P1, u0 is a cycle in AQn −F , of length

2n−1 + �1 + 2 = �.

Fig. 3. G = AQ3 − F .

If the two out-neighbors of every vertex in P2 are the
same as the out-neighbors of u0 or u�1 , then �2 = 1, that
is, P2 consists of a single edge (v0, v1). Without loss
of generality, assume {vh

0 , vc
0} = {uh

0, uc
0} and {vh

1 , vc
1} =

{uh
�1

, uc
�1

}. Then uh
1 /∈ {vh

0 , vc
0, v

h
1 , vc

1}. By Lemma 2,

there are disjoint (uh
1, vh

0 )-path PR1 and (vh
1 , vc

1)-path
PR2 such that PR1 ∪ PR2 contains all vertices of R. Let
P ′

1 be the section of P1 from u1 to u�1 . Then (u1, u
h
1) ∪

PR1 ∪ (vh
0 , v0) ∪ P2 ∪ (v1, v

h
1 ) ∪ PR2 ∪ (vc

1, u�1) ∪ P ′
1 is

a cycle in AQn − F , of length 2n−1 + �1 + 2 = � (see
Fig. 2(d)).

The proof of the theorem is complete. �
Remark. In AQ3, let F = {001,010, (000,011)}, then
AQ3 − F is a graph G shown in Fig 3. Clearly, there is
no cycle of length 6 in G since G−{100,111} has three
connected components. Therefore, AQ3 is not 3-fault-
tolerant pancyclic. However, we can verify that AQ3 is
2-fault-tolerant pancyclic with a computer by depth first
search method within a polynomial time.

4. Conclusions

As one of the most fundamental networks for par-
allel and distributed computation, cycles are suitable
for developing simple algorithms with low communi-
cation cost. Edge and/or vertex failures are inevitable
when a large parallel computer system is put in use.
Therefore, the fault-tolerant capacity of a network is a
critical issue in parallel computing. The fault-tolerant
pancyclicity of an interconnection network is a measure
of its capability of implementing ring-structured paral-
lel algorithms in a communication-efficient fashion in
the presence of faults. The augmented cube AQn, as a
variation of the hypercube Qn, not only retains some
favorable properties of Qn but also possesses some em-
bedding properties that Qn does not (see [3]). Choudum
and Sunitha [3] showed that AQn is pancyclic, that is,
AQn contains cycles of arbitrary length for n � 2. Ma
et al. [12] showed that AQn remains pancyclic provided
faulty edges do not exceed 2n − 3. For the hybrid pres-
ence of edge and vertex failures, Hsu et al. [8] showed
that AQn remains Hamiltonian provided faulty vertices
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and/or edges do not exceed 2n − 3 and n � 4. In this
paper, we improved these results by proving that AQn

remains pancyclic provided faulty vertices and/or edges
do not exceed 2n − 3 and n � 4.

In view of the fact that the hypercube network Qn

is not pancyclic, AQn is superior to Qn in terms of
the fault-tolerant pancyclicity. This shows that, when
the augmented cube is used to model the topological
structure of a large-scale parallel processing system, our
result implies that the system has larger capability of
implementing ring-structured parallel algorithms in a
communication-efficient fashion in the hybrid presence
of edge and vertex failures than one of the hypercube
network. Our further work is to determine fault-tolerant
panconnectivity of AQn, that is, whether there is all
paths of every length between any two distinct vertices
in AQn with failures.
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