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Abstract

A connected graph is said to be super edge-connected if every mini-
mum edge-cut isolates a vertex. The restricted edge-connectivity λ′ of a
connected graph is the minimum number of edges whose deletion results in
a disconnected graph such that each component has at least two vertices.
It has been shown by A. H. Esfahanian and S. L. Hakimi [On computing
a conditional edge-connectivity of a graph. Information Processing Let-
ters, 27(1988), 195-199] that λ′(G) ≤ ξ(G) for any graph of order at least
four that is not a star, where ξ(G) = min{dG(u) + dG(v) − 2 : uv is an
edge in G}. A graph G is called λ′-optimal if λ′(G) = ξ(G). This paper
proves that the de Bruijn undirected graph UB(d, n) is λ′-optimal except
UB(2, 1), UB(3, 1) and UB(2, 3) and, hence, is super edge-connected for
n ≥ 1 and d ≥ 2.
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1 Introduction

It is well-known that when the underlying topology of an interconnec-
tion network is modelled by a connected graph G = (V,E), where V is the
set of processors and E is the set of communication links in the network,
the connectivity of G is an important measurement for fault-tolerance of
the network. In this paper, we consider the edge-connectivity λ(G) as a
measurement for fault-tolerance of G.

Suppose that all vertices are perfectly reliable and that all edges fail
independently with the same probability p. The parameter

R(G, p) = 1−
ε∑

i=λ

cip
i(1− p)ε−i (1)

is an important measurement of global reliability of G, where ε = |E(G)|,
λ = λ(G), and ci is the number of edge-cuts of cardinality i in G. It has
been proved by Ball [1] that the computation of R(G, p) is NP -hard for
a general graph G. To minimize cλ in (1), Bauer et al [2] suggested to
investigate super edge-connected graphs. A connected graph G is said to
be super edge-connected, if every minimum edge-cut isolates a vertex of
G. Many well-known graphs are shown to be super edge-connected. In
particular, Lü and Zhang [10] proved that the de Bruijn undirected graph
UB(d, n) is super edge-connected.

A very natural question is how many edges must be removed to discon-
nect a graph such that every component of the resulting graph contains no
isolated vertices. In 1988, Esfahanian and Hakimi [5] proposed the concept
of the restricted edge-connectivity. The restricted edge-connectivity of G,
denoted by λ′(G), is defined as the minimum number of edges whose dele-
tion results in a disconnected graph and contains no isolated vertices. In
general, λ′(G) does not always exist for a connected graph G. For example,
λ′(G) does not exist if G is a star K1,n or a complete graph K3. We write
λ′(G) = ∞ if λ′(G) does not exist. In [5], Esfahanian and Hakimi showed
that if G has at least four vertices then λ′(G) does not exist if and only if
G is a star and that if λ′(G) exists then

λ′(G) ≤ ξ(G), (2)

where ξ(G) is the minimum edge-degree of G, i.e. ξ(G) = min{d(u) +
d(v)− 2 : uv is an edge in G}, and the symbol d(x) denotes the degree of
the vertex x in G.

A graph G is called λ′-optimal if λ′(G) = ξ(G). Several sufficient con-
ditions for graphs to be λ′-optimal were given for example by Hellwig and
Volkmann [8] for graphs with diameter 2, Ueffing and Volkmann [14] for
the cartesian product of graphs, Xu and Xu [19] for transitive graphs. It
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is clear that G is super edge-connected if λ′(G) > λ(G). Recently, Hell-
wig and Volkmann [9] have showed that a λ′-optimal graph G is super
edge-connected if its minimum degree δ(G) ≥ 3.

The new parameter λ′ in conjunction with λ can provide more accurate
measures for fault tolerance of a large-scale parallel processing system and,
thus, has received much attention of many researchers (see, for example,
[4] ∼ [11], [13] ∼ [15], [17] ∼ [19]).

As competitors for the hypercube, the de Bruijn and the Kautz graphs
have received much attention of many researchers [3]. Recently, Xu and
Lü [18] have shown that the de Bruijn digraph B(d, n) and the Kautz
digraph K(d, n) are λ′-optimal. Very recently, Fan et al [6] have shown
that the Kautz undirected graph UK(d, n) is λ′-optimal. In this paper, we
consider the same problem for the de Bruijn undirected graph UB(d, n).
In [10], Lü and Zhang proved that λ′(UB(2, 3)) = 3 and λ′(UB(2, n)) = 4
for n ≥ 4. We determine the rest of λ′(UB(d, n)) and state these results as
the following theorem.

Theorem For any de Bruijn undirected graph UB(d, n) with n ≥ 1
and d ≥ 2,

λ′(UB(d, n)) =


∞ for n = 1 and 2 ≤ d ≤ 3;
2d− 4 for n = 1 and d ≥ 4;
4d− 5 for n = 2 and d ≥ 2, or n = 3 and d = 2;
4d− 4 for n ≥ 3 and d ≥ 3, or n ≥ 4 and d = 2.

Corollary The de Bruijn undirected graph UB(d, n) is λ′-optimal ex-
cept UB(2, 1), UB(3, 1) and UB(2, 3) and, hence, is super edge-connected
for n ≥ 1 and d ≥ 2.

Although the main result of this paper is in parallel with the result
in [6], which asserts that the Kautz undirected graphs are λ′-optimal, the
technique used in [6] can not be used to prove the result in this paper.

The proofs of the theorem and the corollary are in Section 3. Some
definitions and lemmas used in the proofs of the theorem and the corollary
are given in Section 2.

2 Definitions and Lemmas

We follow [16] for graph-theoretical terminology and notation not de-
fined here.

Let G = (V,E) be a digraph, and {X, Y } a partition of V . We use
E(X, Y ) to denote the set of directed edges in G from X to Y . A digraph
G is said to be d-regular if the out-degree and the in-degree of every vertex
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in G are equal to d. The following property of a regular digraph is simple
and useful, and the detail proof can be found in [16, Example 1.4.1].

Lemma 1 If G is a regular digraph, then |E(X, Y )| = |E(Y,X)| for
any partition {X, Y } of V (G).

The well-known de Bruijn digraph is a class of important digraphs,
which has been widely used in the design and analysis of interconnection
networks [3]. We recall the definition of the de Bruijn digraph B(d, n) for
given integers n ≥ 1 and d ≥ 2.

The de Bruijn digraph B(d, n) has the vertex-set V = {x1x2 · · ·xn :
xi ∈ {0, 1, . . . , d − 1}, i = 1, 2, . . . , n} and the directed edge-set E, where
for x, y ∈ V , if x = x1x2 · · ·xn, then (x, y) ∈ E ⇔ y = x2x3 · · ·xnα, where
α ∈ {0, 1, . . . , d− 1}.

Clearly, B(d, 1) is a complete digraph of order d plus a self-loop at every
vertex. It has been shown that B(d, n) is d-regular and the connectivity
κ = d−1. For more properties of de Bruijn digraphs, the reader is referred
to Xu [15, Section 3.2].

A pair of directed edges is said to be symmetric if they have the same
end-vertices but different orientations. The de Bruijn digraph B(d, n) con-
tains

(
d
2

)
pairs of symmetric directed edges. It is clear that if there is a

pair of symmetric directed edges between two vertices x and y in B(d, n),
then the coordinates of x (resp. y) are alternately in two different com-
ponents a and b. It is also clear that the directed distance between two
end-vertices of different pairs of symmetric directed edges in B(d, n) is
equal to either n− 1 or n. Moreover, two end-vertices of different pairs of
symmetric directed edges have no vertex in common if and only if n ≥ 2.
For a vertex u in B(d, n), we use O(u) and I(u) to denote the sets of
out-neighbors and in-neighbors of u in B(d, n) apart from u, respectively,
that is, O(u) = {v ∈ V (B(d, n)) : v 6= u and (u, v) ∈ E(B(d, n))} and
I(u) = {w ∈ V (B(d, n)) : w 6= u and (w, u) ∈ E(B(d, n))}. The following
fact is a simple observation, and the proof is left to the reader.

Lemma 2 Let (x, y) be a directed edge in B(d, n), O = O(x) \ {y}
and I = I(y)\{x}. Then every vertex in O is an out-neighbor of all vertices
in I and E(I,O) contains at most a pair of symmetric directed edges in
B(d, n) if and only if n ≥ 3.

The de Bruijn undirected graph, denoted by UB(d, n), is obtained from
B(d, n) by deleting the orientation of all directed edges and omitting mul-
tiple edges and loops. An edge in UB(d, n) is said to be singular if it
corresponds to a pair of symmetric directed edges in B(d, n), and a vertex
is said to be singular if it has a self-loop in B(d, n).

Clearly, UB(d, 1) is a complete graph of order d. The structural prop-
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erties of the de Bruijn undirected graph are first studied by Pradhan and
Reddy [12].

Lemma 3 For d ≥ 2 and n ≥ 2, the de Bruijn undirected graph
UB(d, n) has the following properties:

(a) UB(d, n) has the minimum degree 2d− 2, the maximum degree 2d
if n ≥ 3 and 2d− 1 if n = 2.

(b) ξ(UB(d, n)) =
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3.

(c) UB(d, n) has the diameter n.
(d) UB(d, n) has the connectivity κ = 2d− 2 and the edge-connectivity

λ = 2d− 2.

Use V2d−i to denote the set of vertices in UB(d, n) of degree 2d− i for
i = 0, 1, 2. Clearly, a vertex u ∈ V2d−2 if and only if it is singular and
u ∈ V2d−1 if and only if it is an end-vertex of some singular edge. By
definition, |O(u)| = |I(u)| = d − 1 if and only if u ∈ V2d−2. Moreover,
|O(u)| = |I(u)| = d and |O(u) ∩ I(u)| = 1 if u ∈ V2d−1. The following fact
is a simple observation.

Lemma 4 In UB(d, n), the distance between two vertices in V2d−2 is
n; the distance between a vertex in V2d−2 and a vertex in V2d−1 is at least
n− 1. Moreover, a singular edge is incident with a singular vertex, or two
singular edges are adjacent if and only if n = 1.

A set of edges F in a connected graph G is called a nontrivial edge-cut
if G−F is disconnected and contains no isolated vertices. If such an edge-
cut exists, then the restricted edge-connectivity λ′(G) of G is the minimum
number of edges over all nontrivial edge-cuts of G. A nontrivial edge-cut
F is called a λ′-cut if |F | = λ′(G).

By the result of Esfahanian and Hakimi [5] mentioned in Introduc-
tion, for any integers d ≥ 2 and n ≥ 1 the restricted edge-connectivity
λ′(UB(d, n)) exists except UB(2, 1) and UB(3, 1). When λ′(UB(d, n)) ex-
ists, let F be a λ′-cut of UB(d, n), and then there is a partition {X, Y }
of V (UB(d, n)) such that F = E[X, Y ] with |X| ≥ 2 and |Y | ≥ 2, where
E[X, Y ] denotes the set of edges between X and Y in UB(d, n).

The following two lemmas are key results to the proof of our main
theorem stated in Introduction.

Lemma 5 If |X| ≤ 2d− 2 or |Y | ≤ 2d− 2, then

|F | ≥
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3.

Proof Without loss of generality, we assume |X| ≤ 2d− 2. Let
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t = |X|, ti = |V2d−i ∩X| for i = 0, 1, 2.

Then 2 ≤ t = t0+t1+t2 ≤ 2d−2. Noting that the function f(t) = −t2+2dt
is convex on the interval [2, 2d− 2] and f(t) ≥ f(2) = f(2d− 2) = 4d− 4,
in order to prove the lemma, we only need to show that

|F | ≥
{
−t2 + 2dt− 1 for n = 2;
−t2 + 2dt for n ≥ 3.

In fact, since any two vertices in V2d−2 are not adjacent when n ≥ 2
by Lemma 4, the subgraph G[X] induced by X is not a complete graph

and can be obtained by deleting at least
1
2

t2(t2 − 1) edges from Kt, which
implies that

|E(G[X])| ≤ 1
2

t(t− 1)− 1
2

t2(t2 − 1).

Thus, we have

|F | =
∑
x∈X

d(x)− 2|E(G[X])|

≥ (2d− 2)t2 + (2d− 1)(t− t2)− (t(t− 1)− t2(t2 − 1))
= −t2 + 2dt + t2(t2 − 2)

≥
{
−t2 + 2dt− 1 for t2 = 1;
−t2 + 2dt for t2 6= 1.

Thus, we only need to consider the case of t2 = 1 and n ≥ 3. By Lemma
4, the distance between a vertex in V2d−2 and a vertex in V2d−1 is at least
n− 1 ≥ 2, which implies that

|E(G[X])| ≤ 1
2

t(t− 1)− t1.

Thus, we have

|F | =
∑
x∈X

d(x)− 2|E(G[X])|

≥ (2d− 1)t1 + (2d− 2) + 2d(t− t1 − 1)− (t2 − t− 2t1)
= −t2 + 2dt + t + t1 − 2
≥ −t2 + 2dt

as required, so the lemma follows.

Lemma 6 Let XF and YF be the sets of end-vertices of F in X and
Y , respectively. If |XF | ≥ 2d− 2 and |YF | ≥ 2d− 2 then, for d ≥ 3,

|F | ≥
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3.
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Proof Let s be the number of singular edges in F . Since B(d, n) is a
regular digraph, by Lemma 1, we have

|F | = |E[X, Y ]| = 2|E(X, Y )| − s
= 2|E(Y, X)| − s.

(3)

In addition, suppose E′ ⊆ E(X, Y )(or E(Y, X)) and that s′ is the num-
ber of singular edges in F induced by the edges in E′. Let E′′ = E(X, Y )\E′

(or E′′ = E(Y,X) \ E′). Then, from (3), we have

|F | = |E[X, Y ]| ≥ 2|E′| − s′ + |E′′|. (4)

We prove the lemma by contradiction, that is, assume

|F | <
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3,

(5)

and then our aim is to deduce a contradiction.
For convenience’ sake, for any u ∈ V (B(d, n)) and T ⊂ V (B(d, n)), let

OT (u) = O(u) ∩ T and IT (u) = I(u) ∩ T . Let UX be the set of vertices
in XF each of which has exactly one neighbor in YF and UY be the set of
vertices in YF each of which has exactly one neighbor in XF . From the
assumption (5), UX 6= ∅ and UY 6= ∅ since |XF | ≥ 2d−2 and |YF | ≥ 2d−2.
Without loss of generality, choose a vertex ux ∈ UX , and denote its unique
neighbor in YF by uy.

If uy ∈ V2d−2, then ux /∈ V2d−2 since any two vertices in V2d−2 are
not adjacent when n ≥ 2 by Lemma 4. We first assume uy ∈ O(ux). In
this case, |O(uy)| = d − 1 and O(uy) = OX(ux), which implies that uy

contributes (d − 1) directed edges to E(Y,X). Since uy is not an isolated
vertex of UB(d, n) − F , IY (uy) 6= ∅. Moreover, for any zy ∈ IY (uy), zy /∈
V2d−2 and OX(zy) = OX(ux). This fact implies that zy also contributes
(d − 1) directed edges to E(Y,X). Denote E′ = ({uy, zy}, X). So, E′ ⊆
E(Y, X) and |E′| = 2(d − 1). We denote the number of singular edges in
F incident with uy or zy by s′. Then s′ ≤ 1 and the equality holds only if
n = 2 by Lemma 4. It follows from (4) that

|F | ≥ 2|E′| − s′ =
{

4d− 4 if s′ = 0;
4d− 5 if s′ = 1,

which contradicts (5).
Similarly, we can also obtain a contradiction if uy ∈ I(ux). Thus, we

state the above result as the following claim.

Claim 1 For any vertex in UX ∪UY its only neighbor in another part
is not in V2d−2.
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We now assume uy /∈ V2d−2 by Claim 1 and still assume uy ∈ O(ux).
Then |I(uy)| = d. Let k = |IY (uy)| and su be the number of singular edges
between IY (uy) and OX(ux) in F . Clearly, k ≤ d − 1. It follows from
Lemma 2 that

|E(IY (uy), OX(ux))| = k|OX(ux)| and su ≤
{

k for n = 2;
1 for n ≥ 3.

(6)

Let E′ = E(Y, X)\E(IY (uy), OX(ux)). It follows from (4) and (6) that

|F | ≥ 2|E(IY (uy), OX(ux))| − su + |E′|

≥
{

2k|OX(ux)| − k + |E′| for n = 2;
2k|OX(ux)| − 1 + |E′| for n ≥ 3.

(7)

When k ≥ 1 we have ux /∈ V2d−2, otherwise I(uy) = I(ux) ⊆ X, contra-
dicting the assumption of k (≥ 1). Thus, |O(ux)| = d and |OX(ux)| = d−1.
It follows from (7) that

|F | ≥
{

k(2d− 3) + |E′| for n = 2;
2k(d− 1)− 1 + |E′| for n ≥ 3.

(8)

If |E′| ≥ 1 and k ≥ 2, then from (8), we have

|F | ≥
{

k(2d− 3) + 1 ≥ 4d− 5 for n = 2;
2k(d− 1) ≥ 4d− 4 for n ≥ 3,

which contradicts (5).
We now assume |E′| = 0. In this case, IY (uy) is a vertex-cut in B(d, n),

and thus we have

d− 1 ≥ k = |IY (uy)| ≥ κ(B(d, n)) = d− 1,

which implies k = d− 1. By (8), when d ≥ 4 we have

|F | ≥
{

(d− 1)(2d− 3) > 4d− 5 for n = 2;
2(d− 1)(d− 1)− 1 > 4d− 4 for n ≥ 3,

which contradicts (5).

When d = 3 we have k = 2. If n = 2, let ux = x1x2 and uy = x2x3,
then uy /∈ V2d−2 by Claim 1, which means x2 6= x3. Moreover, x2 6= x1

since ux /∈ V2d−2. Thus, the vertex uz = x2x2 ∈ O(ux) ∩ I(uy) ∩ X and
uz 6= ux. It follows that

2 = d− 1 = k = |IY (uy)| = d− |IX(uy)| = d− 2 = 1,

a contradiction. We now assume n ≥ 3. By (6), IY (uy) contributes four
arcs to E(Y, X), at most one of which is a singular edge. By the above
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discussion, uy and IY (uy) contribute five edges to F , and denote the set
of the five edges by E1. To obtain a contradiction, we only need to prove
|F | ≥ 8, so we only need to show that there are at least three other edges
between X and Y besides the edges in E1. Since |FY − {uy} − IY (uy)| =
|FY | − 1− k ≥ 2d− 2− 1− k = 1, there is a vertex different from uy and
IY (uy) in FY . Without loss of generality, we assume the vertex is vy and
that vx ∈ FX is one of its in-neighbors since |E′| = 0. Clearly vx 6= ux.
If vx ∈ V4, then vy /∈ V4. And vx /∈ OX(ux), otherwise vx ∈ IX(uy)
contradicting |IY (uy)| = k = d− 1. Noting that |E′| = 0, I(vx) ⊆ X. And
I(vy) = IX(vx) ∪ {vx} ⊆ X. So vy contributes |I(vy)| = d = 3 other edges
to E[X, Y ], different from the five edges in E1. If vx /∈ V4, |O(vx)| = d =
3. Since ux has exactly one neighbor in Y , (O(vx) \ {vy}) ∩ O(ux) = ∅.
Similarly, we have (I(vy)\{vx})∩I(uy) = ∅. If O(vx) ⊆ FY , vx contributes
d = 3 other edges to F . If OX(vx) 6= ∅, then IY (vy) = ∅ since |E′| = 0.
Next we consider two cases according as the vertex vy is in V4 or not.
When vy /∈ V4, |IX(vy)| = |I(vy)| = d. So, we get d = 3 other edges
between X and Y . When vy ∈ V4, OX(vy) = OX(vx) 6= ∅, contradicting
the assumption of E′. We always obtain a contradiction when k ≥ 2, and
so k ≤ 1.

Similarly, we can also show that |OY (uy)| ≤ 1 if uy ∈ I(ux). Thus, we
state the above result as the following claim.

Claim 2 For any vertex u in UX ∪ UY its only neighbor v in another
part has at most one in-neighbor if v ∈ O(u) or at most one out-neighbor
if v ∈ I(u) in the part which contains the vertex v.

We still consider uy ∈ O(ux). By Claim 2, k = |IY (uy)| ≤ 1. In this
case, |IX(uy)| ≥ d − 1 ≥ 2, so uy /∈ UY . Since UY 6= ∅, choose a vertex
vy ∈ UY and assume vx is its unique neighbor in FX . Clearly, vx 6= ux

since ux ∈ UX , and vx /∈ V2d−2 by Claim 1.
Assume k = 1. We first assume vx ∈ I(vy). Since O(z) = O(ux)

for any vertex z ∈ I(uy), vx /∈ I(uy) and OX(vx) ∩ OX(ux) = ∅. Let
k′ = |OX(vx)|. Then k′ ≤ 1 by Claim 2. If k′ = 1, then vy /∈ V2d−2. So,
|E(IY (vy), OX(vx))| = k′|IY (vy)| = d− 1. Thus, we have

|F | ≥ |E(IX(uy), {uy})|+ |E(IY (uy), OX(ux))|
+|E({vx}, OY (vx))|+ |E(IY (vy), OX(vx))|

= (d− 1) + (d− 1) + (d− 1) + (d− 1)
= 4d− 4,

which contradicts (5). If k′ = 0, then vx contributes d directed edges to
E(X, Y ). Since |IX(uy)| = d − 1, uy contributes d − 1 directed edges to
E(X, Y ). Denote E′ = E(IX(uy) ∪ {vx}, Y ) and suppose s′ is the number
of singular edges in F induced by the edges in E′. Then |E′| = (d−1)+d =
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2d− 1 and s′ ≤ 2. Thus, it follows from (4) that

|F | ≥ 2|E′| − s′ ≥ 2(2d− 1)− 2 = 4d− 4,

which contradicts (5).
We now assume vx ∈ O(vy). Similarly, vx /∈ OX(ux) and IX(vx) ∩

I(uy) = ∅. We can derive a contradiction in the same way for k′ =
|IX(vx)| ≥ 1. When k′ = 0, then I(vx) ⊆ Y and vx contributes d di-
rected edges to E(Y, X). By (6), the only vertex in IY (uy) contributes
d − 1 directed edges to E(Y, X). Denote E′ = E(IY (uy) ∪ I(vx), X) and
suppose s′ is the number of singular edges in F induced by the edges in E′.
Then |E′| = (d− 1) + d = 2d− 1 and s′ ≤ 2. Thus, it follows from (4) that

|F | ≥ 2|E′| − s′ ≥ 2(2d− 1)− 2 = 4d− 4,

which contradicts (5). So, |IY (uy)| = 0.
Similarly, we can also show that |OY (uy)| = 0 if uy ∈ I(ux). Thus, we

obtain the following claim.

Claim 3 For any vertex u in UX ∪ UY its only neighbor v in another
part has no in-neighbors if v ∈ O(u) or no out-neighbors if v ∈ I(u) in the
part which contains the vertex v.

We still first assume uy ∈ O(ux). By Claim 1 and Claim 3, uy /∈ V2d−2

and k = |IY (uy)| = 0. In this case, uy contributes d directed edges to
E(X, Y ). Similarly, there is a vertex vy ∈ UY and assume vx is its unique
neighbor in FX . Clearly, vx 6= ux since ux ∈ UX , and vx /∈ V2d−2 by Claim
1.

If vx ∈ I(vy), then vx /∈ I(uy). By Claim 3, O(vx) ⊆ FY , which means
vx contributes d directed edges to E(X, Y ). Denote E′ = E(I(uy)∪{vx}, Y )
and suppose s′ is the number of singular edges in F induced by the edges
in E′. So, |E′| = 2d and s′ ≤ 2. It follows from (4) that

|F | ≥ 2|E′| − s′ ≥ 2(2d)− 2 = 4d− 2 > 4d− 4,

which contradicts (5).
If vx ∈ O(vy), then IX(vx) ∩ I(uy) = ∅. By Claim 3, I(vx) ⊆ FY . Let

T1 = YF−{uy}−I(vx) and T2 be the set of vertices in I(vx)\{vy} which are
adjacent to or from some vertex in XF \{ux, vx}. Then T = {uy, vx}∪T1∪T2

is a vertex-cut of UB(d, n) since there is no path between ux and vy in
UB(d, n)− T . By Lemma 3, |T | = 2 + |T1|+ |T2| ≥ κ(UB(d, n)) = 2d− 2,
which implies that |T1|+ |T2| ≥ 2d−4. Now, uy and vx contribute 2d edges
to F , and every vertex in T1 ∪ T2 contributes at least one other edge to F .
Thus we have

|F | ≥ 2d + |T1|+ |T2| ≥ 2d + (2d− 4) = 4d− 4,
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which contradicts (5).
Since all possible cases can deduce a contradiction to (5), the lemma

follows.

Lemma 7([10]) For de Bruijn undirected graphs UB(d, n), λ′(UB(2, n))
= 4 for n ≥ 4, λ′(UB(2, 3)) = 3, and 2d − 2 < λ′(UB(d, n)) ≤ 4d − 4 for
d ≥ 3.

3 Proof of Theorem

In this section, we give proofs of the theorem and the corollary stated
in Introduction.

Proof of Theorem Note that UB(d, 1) is a complete graph of order
d. It is easy to see that λ′(UB(d, 1)) does not exist for d = 2, 3 and that
λ′(UB(d, 1)) = 2d− 4 for d ≥ 4.

Clearly, λ′(UB(2, 2)) = 3. By Lemma 7, we only need to show that for
d ≥ 3 and n ≥ 2,

λ′(UB(d, n)) =
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3.

By (2) and Lemma 3 (b), we have

λ′(UB(d, n)) ≤ ξ(UB(d, n)) =
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3.

To complete the proof, we only need to prove

λ′(UB(d, n)) ≥
{

4d− 5 for n = 2;
4d− 4 for n ≥ 3.

(9)

To the end, let F be a λ′-cut of UB(d, n) and {X, Y } a partition of
V (UB(d, n)) such that F = E[X, Y ]. Let XF and YF be the sets of end-
vertices of F in X and Y , respectively.

If |X| ≤ 2d− 2 or |Y | ≤ 2d− 2, then (9) follows by Lemma 5. Assume
both |X| ≥ 2d− 1 and |Y | ≥ 2d− 1 below.

We claim both |XF | ≥ 2d−2 and |YF | ≥ 2d−2. In fact, if |XF | < 2d−2,
then X \XF 6= ∅ and disconnects to Y in G −XF , which implies κ(G) <
2d − 2, contradicting Lemma 3 (d). Similarly, we have |YF | ≥ 2d − 2. It
follows from Lemma 6 that (9) holds.

The proof of the theorem is complete.

Proof of Corollary It is a simple observation from Theorem and
Lemma 3 (b) that λ′(UB(d, n)) = ξ(UB(d, n)) except UB(2, 1), UB(3, 1)
and UB(2, 3) and, hence, UB(d, n) is λ′-optimal.
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Since UB(d, 1) is a complete graph of order d, λ′(UB(d, 1)) = ∞ >
d − 1 = λ(UB(d, 1)) for 2 ≤ d ≤ 3 and λ′(UB(d, 1)) = 2d − 4 > d − 1 =
λ(UB(d, 1)) for d ≥ 4. Thus, UB(d, 1) is super edge-connected for d ≥ 2.

For n ≥ 2 and d ≥ 2, by Lemma 3, λ(UB(d, n)) = δ(UB(d, n)) = 2d−2
and, by Theorem, λ′(UB(d, n)) > 2d − 2 = λ(UB(d, n)). Thus, UB(d, n)
is super edge-connected for n ≥ 2 and d ≥ 2.
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