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Abstract

To measure the efficiency of a routing in network, Chung et al [The
forwarding index of communication networks. IEEE Trans. Inform. The-
ory, 33 (2) (1987), 224-232] proposed the notion of forwarding index and
established an upper bound (n − 1)(n − 2) of this parameter for a con-
nected graph of order n. This note improves this bound as (n − 1)(n −
2)−

(
2n − 2 − ∆

⌊
1 + n−1

∆

⌋) ⌊
n−1
∆

⌋
, where ∆ is the maximum degree of the

graph G. This bound is best possible in the sense that there is a graph G
attaining it.
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1 Introduction

Throughout this paper, a graph G = (V,E) always means a simple
connected graph (without loops and multiple edges) of order n. The sym-
bols K1, n−1 denotes a star graph. A routing ρ in G is a set of n(n − 1)
fixed paths for all ordered pairs (x, y) of vertices of G. The path ρ(x, y)
specified by ρ carries the data transmitted from the source x to the desti-
nation y. It is possible that the fixed paths specified by a given routing ρ
passing through some vertex are too many, which means that the routing
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ρ loads the vertex too much. The load of any vertex is limited by the ca-
pacity of the vertex, for otherwise it would affect efficiency of transmission,
even result in malfunction of the network. In order to measure the load of
a vertex, Chung, Coffman, Reiman and Simon [1] proposed the notion of
forwarding index.

Let G be a graph with a given routing ρ, x a vertex of G. The load of x
with respect to ρ, denoted by ξ(G, ρ, x), is defined as the number of paths
specified by ρ admitting x as an inner vertex. The forwarding index of G
with respect to ρ is defined as

ξ(G, ρ) = max{ξ(G, ρ, x) : x ∈ V (G)}.

The forwarding index of G is defined as

ξ(G) = min{ξ(G, ρ) : ρ is a routing of G}.

It has been explained in [1] that maximizing network capacity reduces
to minimizing forwarding index of the network. Thus, it is very desirable to
determine the forwarding index for a given graph. Many authors showed
interest in this subject, see, for example, [1, 2, 3, 4]. However, Saad [4]
proved that for any graph determining the forwarding index problem is NP-
complete. So it is of interest to determine the tight bound of forwarding
index in terms of some basic graph parameters. Chung et al [1] established
a tight upper bound, that is, ξ(G) ≤ (n−1)(n−2) for any connected graph
G of order n.

In this note we give an improve bound by proving

ξ(G) ≤ (n − 1)(n − 2) −
(

2n − 2 − ∆
⌊
1 +

n − 1
∆

⌋) ⌊
n − 1

∆

⌋
for any graph G of order n and maximum degree ∆. This bound is best
possible in the sense that there is a graph G attaining the upper bound.

2 Main Results

Before giving the proof of the main result, we first prove several lem-
mas.

Lemma 1 If the sum of ∆ positive integers is n, then the minimum
sum of their squares is ∆q2 + 2rq + r, where q = b n

∆c and r = n − ∆q.

The proof is a routine exercise and omitted here.

Lemma 2 For any positive integers n and ∆ with n > ∆, let

B(n, ∆) = (n − 1)(n − 2) −
(

2n − 2 − ∆
⌊
1 +

n − 1
∆

⌋) ⌊
n − 1

∆

⌋
.
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If d ≤ ∆, then B(n, d) ≤ B(n, ∆).

Proof Let q =
⌊

n−1
∆

⌋
, r = n − 1 − ∆q, and let q′ =

⌊
n−1

d

⌋
, r′ =

n − 1 − dq′. Then

B(n, ∆) = (n − 1)2 − ∆q2 − 2rq − r,
B(n, d) = (n − 1)2 − dq′2 − 2r′q′ − r′.

Thus, we have

B(n, ∆) − B(n, d) = (dq′2 − ∆q2) + 2r′q′ + r′ − 2rq − r
= (n − 1)(q′ − q) + r′q′ + r′ − rq − r.

(1)

Since d ≤ ∆, we have q ≤ q′. If q′ = q, then r ≤ r′, and from (1) we have

B(n, ∆) − B(n, d) = (q + 1)(r′ − r) ≥ 0.

If q′ > q, then from (1), we have

B(n, ∆) − B(n, d) = (n − 1)(q′ − q) + r′q′ + r′ − rq − r
≥ (n − 1) − (rq + r)
> (n − 1) − (∆q + r) = 0,

the latter inequality holds since ∆ > r ≥ 0. The lemma follows.

Lemma 3 Let T be a connected spanning subgraph of a connected
graph G. Then ξ(G) ≤ ξ(T ).

Proof Let T be a connected spanning subgraph of G and ρ a routing
in T such that ξ(T ) = ξ(T, ρ). Define a routing ρ′ in G as follows: For
any two distinct x and y of G, choose ρ′(x, y) = xy if xy ∈ E(G) \ E(T ),
and ρ′(x, y) = ρ(x, y) otherwise. By definition, we have ξ(G) ≤ ξ(G, ρ′) =
ξ(T, ρ) = ξ(T ).

Theorem 1 ξ(G) ≤ B(n, ∆) for any connected graph G of order n
and maximum degree ∆. This bound is best possible in the sense that
there is a graph G such that ξ(G) = B(n, ∆).

Proof Let G be a connected graph of order n and maximum degree
∆. Then n > ∆. If ∆ = 1, then G = K2 and ξ(K2) = 0 = B(2, 1).
Suppose ∆ ≥ 2 below. We first show ξ(G) ≤ B(n, ∆). Let T be a spanning
tree of G. Then ξ(G) ≤ ξ(T ) by Lemma 3, and there exists the unique
routing ρ in T such that ξ(T ) = ξ(T, ρ). Let x be a vertex x in T such
that ξ(T ) = ξx(T, ρ), and let the vertex-degree of x in T be d. Then d ≥ 2
and T − x contains exactly d components. Let Ti be a component of order
ni in T − x for i = 1, 2, · · · , d. Since any path connecting two vertices in
different components must pass through x, by definition, we have

ξx(T, ρ) =
∑
i 6=j

ninj =
d∑

i=1

ni(n − 1 − ni) = (n − 1)2 −
d∑

i=1

n2
i .
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Since n1 + n2 + · · ·+ nd = n− 1, from Lemma 1, Lemma 2 and Lemma 3,
we have

ξ(G) ≤ ξ(T ) = ξx(T, ρ) ≤ B(n, d) ≤ B(n, ∆).

For given integers n and ∆ with n > ∆, let q = b n
∆c and r = n−∆q. We

now construct a connected graph G with order n and maximum degree ∆
as follows: Let Gi be a connected graph with a vertex xi of degree at most
∆ − 1 and others at most ∆, and Gi has order q for i = 1, 2, · · · ,∆ − r,
and order q + 1 for i = ∆ − r + 1,∆ − r + 2, · · · ,∆. The graph G is
constructed from G1 ∪G2 ∪ · · · ∪G∆ by adding a new vertex x and ∆ new
edges connecting x and xi for i = 1, 2, · · · ,∆. It is easy to see that for any
routing ρ in G and for any two vertices u in Gi and v in Gj , the route
ρ(u, v) must pass through the vertex x if i 6= j, and do not pass through x
if i = j. It follows that

ξx(G, ρ) = (n − 1)(n − 2) − (∆ − r)q(q − 1) − rq(q + 1)
= (n − 1)2 − ∆q2 − 2rq − r = B(n, ∆).

Noting ξ(Gi) ≤ (q − 1)(q − 2) for i = 1, 2, · · · ,∆ − r and ξ(Gi) ≤ q(q − 1)
for i = ∆− r+1,∆− r+2, · · · ,∆, all of which are less than q2 (≤ ξx(G, ρ))
as ∆ ≥ 2, we have ξ(G) = ξx(G, ρ) = B(n, ∆).

The theorem follows.

Considering a special case of ∆ = n−1 in Theorem 1, we obtain Chung
et al’s bound [1] immediately.

Corollary 1 For any connected graph G of order n, ξ(G) ≤ (n−1)(n−
2), and the star K1,n−1 attains this bound.

3 Other Results

Chung et al [1] proposed the following problem: Given ∆ and n, de-
termine ξ∆,n, the minimum of ξ(G) taken over all graphs of order n with
maximum degree at most ∆. This problem was solved asymptotically in [1],
determined ξ∆,n for n ≤ 15 and (n + 4)/3 ≤ ∆ ≤ n − 1 in [2].

In this section, we consider the following problem: Given δ and n, and
ξδ,n was determined, the minimum of ξ(G) taken over all graphs of order
n with minimum degree δ.

Theorem 2 ξδ,n =
⌈

2(n−1−δ)
δ

⌉
for any n and δ with n > δ ≥ 1.

Proof Assume that G is a connected graph with order n and minimum
degree δ, and x is a vertex in G of degree δ. Let N be the set of neighbors
of x in G and N c be the set of vertices not adjacent to x in G. Then
|N | = δ and |N c| = n− 1− δ. For any routing ρ of G, any path between x

4



and any vertex in N c specified by ρ must pass through a vertex in N . The
total number of such paths is 2(n−1− δ) and the maximum number of the
passing through a vertex y in N can not be less than the average number.
Thus, we have

ξ(G) ≥ ξy(G, ρ) ≥
⌈

2(n − 1 − δ)
δ

⌉
.

Because of the arbitrary choice of G, we have ξδ,n ≥
⌈

2(n−1−δ)
δ

⌉
.

For any integers n and δ with n > δ, we construct a graph H obtained
from a complete graph Kn by deleting (n − 1 − δ) edges at one vertex. It
is easily to verify that the graph H satisfies ξ(H) =

⌈
2(n−1−δ)

δ

⌉
.

For the edge-forwarding index, π(G), of a connected graph G, proposed
by Heydemann, Meyer, Sotteau [3], we can similarly define the parameter
πδ,n and prove πδ,n =

⌈
2(n−1)

δ

⌉
, and the details are omitted here.
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