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Abstract

The balanced hypercube BHn is a variant of the hypercube Qn. Huang and Wu proved that BHn has better properties
than Qn with the same number of links and processors. In particularly, they showed that there exists a cycle of length 2l in
BHn for all l, 2 6 l 6 2n. In this paper, we improve this result by showing that BHn is edge-pancyclic, which means that for
arbitrary edge e, there exists a cycle of even length from 4 to 22n containing e in BHn. We also show that the balanced
hypercubes are Hamiltonian laceable.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The hypercube network has proved to be one of the most popular interconnection networks. The balanced
hypercube, proposed by Huang and Wu [9], forms a hypercube variant. Like hypercubes, balanced hypercubes
are bipartite graph and vertex-transitive [9,14]. The balanced hypercubes are superior to the hypercube in hav-
ing smaller diameter of the hypercube, supporting an efficient reconfiguration without changing the adjacent
relationship among tasks [14]. The variously desired properties of balanced hypercubes have been extensively
investigated in the literature [9,14].

In interconnection networks, the problem of simulating one network by another is modelled as a graph
embedding problem. There are several reasons why such an embedding is important [15]. For example, there
are a number of efficient algorithms for solving some applications problems and best communication patterns
for their executions. For these algorithms, the existence of certain topological structures guarantee the desired
performance. Thus, for such applications, it is desired to provide logically a specific topological structure
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throughout the execution of the algorithm in the network design. On the other hand, some algorithms may be
developed for another architecture for which it fits perfectly. In such a scenario one might wish to implement
the same algorithm with little additional programming effort. For this purpose, the original architecture
should be embedded into the new network.

In all the embedding problems, the cycle embedding problem is one of the most popular problems. It is to
find a cycle of given length in graph. A graph G is called pancyclic [2] if there exists a cycle of every length from
3 to jV(G)j. A graph is bipartite graph if its vertex-set can be partitioned into two disjoint subsets such that
each edge is incident to two vertices from different subsets. A bipartite graph G is called bipancyclic if there
exists a cycle of every length from 4 to jV(G)j. The pancyclicity is an important metric in embedding cycles
of any length into the topology of network. Large amount of related work appeared in the literature
[4–7,10,12]. The concept of pancyclicity was extended to vertex-pancyclicity by Hobbs [8] and edge-pancyclic-
ity by Alspach and Hare [1]. A graph G is called vertex-pancyclic if for any vertex u, there exists a cycle of every
length from 3 to jV(G)j containing u; and edge-pancyclic if for any edge e, there exists a cycle of every length
from 3 to jV(G)j containing e. Obviously, every edge-pancyclic graph is vertex-pancyclic. A bipartite graph G

is vertex-bipancyclic if for any vertex u, there exists a cycle of every even length from 4 to jV(G)j containing u.
Similarly, a bipartite graph G is called edge-bipancyclic if for any edge e, there exists a cycle of every even
length from 4 to jV(G)j containing e. Wu and Huang [14] proved that the n-dimensional balanced hypercube
BHn is bipartite graph and there exists a cycle of length 2l in BHn for all l, 2 6 l 6 2n. In this paper, we improve
this result by showing that BHn is edge-bipancyclic.

We also study the Hamiltonian laceability of balanced hypercubes. A path is called a Hamilton path if it
contains all vertex of G. A graph G is said to be Hamiltonian connected if there exists a Hamiltonian path
between any two vertices of G. It is easy to see that any bipartite graph with at least three vertices is not
Hamiltonian connected. For this reason, Simmons [13] introduced the concept of Hamiltonian laceable for
Hamiltonian bipartite graphs. A Hamiltonian bipartite graph is Hamiltonian laceable if there is Hamiltonian
path between any two vertices in different bipartite sets. Obviously, the Hamilton cycle can be embedded in the
Hamiltonian connected graphs. Then the Hamiltonian connectivity is also important metric in embedding
Hamitonian cycle into the topology of network. There are many desirable results about the Hamiltonian con-
nectivity of some interconnection networks [5,11]. In this paper, we prove that the balanced hypercubes are
Hamiltonian laceable.

The rest of this paper is organized as follows. In Section 2, we give the definition and basic properties of the
n-dimensional balanced hypercube BHn. In Sections 3 and 4, we discuss the edge-bipancyclicity and Hamilto-
nian laceability of BHn, respectively. In Section 5, we conclude the paper.

2. Balanced hypercubes

The architecture of an interconnection network is usually represented by a connected simple graph
G = (V,E), where the vertex-set V is the set of processors and the edge-set E is the set of communication links
in the network. The edge joining two vertices x and y is denoted by (x,y). We will follow graph-theoretical
terminologies and notations used in [3].

An n-dimensional balanced hypercube [14], denoted by BHn, has 22n vertices, each of them has a unique n-
component vector on {0,1,2,3} for an address, which is also called an n-bit string. A vertex ða0; a1; . . . ; an�1Þ is
adjacent to the following 2n vertices, where 1 6 i 6 n � 1,

ðða0 þ 1Þ mod 4; a1; . . . ; ai�1; ai; aiþ1; . . . ; an�1Þ; ð1Þ
ðða0 � 1Þ mod 4; a1; . . . ; ai�1; ai; aiþ1; . . . ; an�1Þ; and

ðða0 þ 1Þ mod 4; a1; . . . ; ai�1; ðai þ ð�1Þa0Þ mod 4; aiþ1; . . . ; an�1Þ; ð2Þ
ðða0 � 1Þ mod 4; a1; . . . ; ai�1; ðai þ ð�1Þa0Þ mod 4; aiþ1; . . . ; an�1Þ:

Fig. 1 demonstrates two balanced hypercubes of dimension one and two. Clearly, the balanced hypercube
BHn can be constructed from four copies of BHn�1 by adding a new dimension as the nth index of every vertex
in BHn.
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We use BH i
n�1 to denote the subgraph of BHn which induced by the vertex-set fða0; a1; . . . ;

an�2; iÞjaj 2 f0; 1; 2; 3g; 0 6 j 6 n� 2g for 0 6 i 6 3. Obviously, BH i
n�1 ffi BH n�1 for 0 6 i 6 3.

Wu and Huang [14] gave an equivalent definition of BHn which can be recursively constructed as follows:

(1) BH1 is a cycle with vertex-set {0,1,2,3}.
(2) BHk+1 is constructed from four copies of BHk: BH 0

k ;BH 1
k ;BH 2

k and BH 3
k . Every vertex ða0; a1; . . . ; ak�1; iÞ

in BH i
k (0 6 i 6 3) has two extra adjacent vertices:

(2.1) BHiþ1
k : ða0 þ 1; a1; . . . ; ak�1; iþ 1Þ and ða0 � 1; a1; . . . ; ak�1; iþ 1Þ if a0 is even.

(2.2) BHi�1
k : ða0 þ 1; a1; . . . ; ak�1; i� 1Þ and ða0 � 1; a1; . . . ; ak�1; i� 1Þ if a0 is odd.

Obviously, BHn has 22n vertices, each of which has 2n adjacent vertices. Since BHn is a bipartite graph, the
vertex-set V 1 ¼ fa ¼ ða0; a1; . . . ; an�1Þja 2 V ðBH nÞ and a0 is oddg and V 2 ¼ fa ¼ ða0; a1; . . . ; an�1Þja 2
V ðBH nÞ and a0 is eveng make the desired partition. In Fig. 1 (and other figures too), we use black nodes
to denote the vertices in V1 and white nodes to denote the vertices in V2.

3. Edge-bipancyclicity of balanced hypercubes

In this section, we consider the edge-bipancyclicity of balanced hypercubes. We will prove a stronger result
than that obtained by Wu and Huang [14]. For this purpose, we need the following lemma.

Lemma 1. Let (u, v) be an edge of BHn. Then (u, v) is contained in a cycle C of length 8 in BHn such that

jEðCÞ \ EðBHi
n�1Þj ¼ 1 where i = 0, 1, 2, 3.

Proof. Since BHn is transitive, without loss of generality, we assume u = (0, 0, . . ., 0). We consider three differ-
ent cases with respect to edge (u,v) in the following.

Case 1. v ¼ ðv0; 0; . . . ; 0Þ where v0 = ±1. In this case it can be verified that

ðv; uÞ þðð0; 0; . . . ; 0; 0Þ; ðv0; 0; . . . ; 0; 1ÞÞ þ ððv0; 0; . . . ; 0; 1Þ; ð0; 0; . . . ; 0; 1ÞÞ
þðð0; 0; . . . ; 0; 1Þ; ðv0; 0; . . . ; 0; 2ÞÞ þ ððv0; 0; . . . ; 0; 2Þ; ð0; 0; . . . ; 0; 2ÞÞ
þðð0; 0; . . . ; 0; 2Þ; ðv0; 0; . . . ; 0; 3ÞÞ þ ððv0; 0; . . . ; 0; 3Þ; ð0; 0; . . . ; 0; 3ÞÞ
þðð0; 0; . . . ; 0; 3Þ; ðv0; 0; . . . ; 0; 0Þð¼ vÞÞ

makes the desired cycle.

Case 2. v ¼
�

v0; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{i�1

; 1; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{n�i�1 �

where v0 = ±1 and 1 6 i 6 n � 2. In this case it can be verified that

a b

Fig. 1. Two balanced hypercubes: (a) BH1, and (b) BH2.
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ðv; uÞ
þðð0; 0; . . . ; 0; 0Þ; ðv0; 0; . . . ; 0; 1ÞÞ

þ
�
ðv0; 0; . . . ; 0; 1Þ;

�
0; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{i�1

; 3; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{n�i�2

; 1

��

þðð0; 0; . . . ; 0; 3; 0; . . . ; 0; 1Þ; ðv0; 0; . . . ; 0; 3; 0; . . . ; 0; 2ÞÞ
þððv0; 0; . . . ; 0; 3; 0; . . . ; 0; 2Þ; ð0; 0; . . . ; 0; 2; 0; . . . ; 0; 2ÞÞ
þðð0; 0; . . . ; 0; 2; 0; . . . ; 0; 2Þ; ðv0; 0; . . . ; 0; 2; 0; . . . ; 0; 3ÞÞ
þððv0; 0; . . . ; 0; 2; 0; . . . ; 0; 3Þ; ð0; 0; . . . ; 0; 1; 0; . . . ; 0; 3ÞÞ
þðð0; 0; . . . ; 0; 1; 0; . . . ; 0; 3Þ; ðv0; 0; . . . ; 0; 1; 0; . . . ; 0; 0Þð¼ vÞÞ

makes the desired cycle.

Case 3. v ¼
�

v0; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{n�2

; 1

�
where v0 = ±1. In this case, it can be verified that

ðu; vÞ þððv0; 0; . . . ; 0; 1Þ; ð0; 0; . . . ; 0; 1ÞÞ þ ðð0; 0; . . . ; 0; 1Þ; ðv0; 0; . . . ; 0; 2ÞÞ
þððv0; 0; . . . ; 0; 2Þ; ð0; 0; . . . ; 0; 2ÞÞ þ ðð0; 0; . . . ; 0; 2Þ; ðv0; 0; . . . ; 0; 3ÞÞ
þððv0; 0; . . . ; 0; 3Þ; ð0; 0; . . . ; 0; 3ÞÞ þ ðð0; 0; . . . ; 0; 3Þ; ðv0; 0; . . . ; 0; 0ÞÞ
þððv0; 0; . . . ; 0; 0Þ; ð0; 0; . . . ; 0; 0Þð¼ uÞÞ

makes the desired cycle. The Lemma follows.
For simplicity of the presentation, we use hv0; u0; v1; u1; v2; u2; v3; u3; v0i to denote the cycles constructed in

Lemma 1, where ðu0; v0Þ 2 EðBH 0
n�1Þ, ðu1; v1Þ 2 EðBH 1

n�1Þ; ðu2; v2Þ 2 EðBH 2
n�1Þ and ðu3; v3Þ 2 EðBH 3

n�1Þ. See
Fig. 2. We are now ready to present one of the main results of this paper. h

Theorem 1. The balanced hypercube BHn is edge-bipancyclic.

Proof. We prove the theorem by mathematical induction on n P 1. The theorem is true for n = 1. For n = 2,
since BH2 is vertex-transitive, we only need to prove that each edge incident to (0, 0) is on a cycle of length 2i

for i = 2,3, . . ., 8.
It can be verified that the union of the following two cycles of length 2i covers all edges adjacent to (0, 0) for

i = 2,3, . . ., 8.

BHn-1
2BHn-1

3

BHn-1
1BHn-1

0

2u 2v

1u

3u 3v

0v 1v0u

Fig. 2. The cycle hv0; u0; v1; u1; v2; u2; v3; u3; v0i.
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two cycles of length 4
hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 1Þ; ð2; 1Þ; ð1; 1Þ; ð0; 0Þi;

�

two cycles of length 6
hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 1Þ; ð0; 1Þ; ð1; 1Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 0Þ; ð2; 0Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð0; 0Þi;

�

two cycles of length 8
hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 1Þ; ð0; 1Þ; ð3; 2Þ; ð2; 1Þ; ð1; 1Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 0Þ; ð2; 0Þ; ð1; 1Þ; ð0; 1Þ; ð1; 2Þ; ð2; 1Þ; ð3; 1Þ; ð0; 0Þi;

�

two cycles of length 10
hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð0; 3Þ; ð1; 3Þ; ð0; 2Þ; ð1; 2Þ; ð2; 1Þ; ð3; 1Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 0Þ; ð0; 3Þ; ð3; 3Þ; ð2; 2Þ; ð3; 2Þ; ð0; 2Þ; ð1; 2Þ; ð2; 1Þ; ð1; 1Þ; ð0; 0Þi;

�

two cycles of length 12

hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ;
ð3; 3Þ; ð2; 2Þ; ð3; 2Þ; ð0; 1Þ; ð1; 1Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 0Þ; ð2; 0Þ; ð1; 0Þ; ð2; 3Þ; ð1; 3Þ; ð0; 3Þ;
ð3; 3Þ; ð2; 2Þ; ð3; 2Þ; ð0; 1Þ; ð3; 1Þ; ð0; 0Þi;

8>>>><
>>>>:

two cycles of length 14

hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þ;
ð2; 2Þ; ð3; 2Þ; ð0; 1Þ; ð3; 1Þ; ð2; 1Þ; ð1; 1Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 0Þ; ð2; 0Þ; ð1; 0Þ; ð2; 3Þ; ð1; 3Þ; ð0; 3Þ; ð3; 3Þ;
ð2; 2Þ; ð3; 2Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð0; 0Þi;

8>>>><
>>>>:

two cycles of length 16

hð0; 0Þ; ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þ; ð2; 2Þ;
ð1; 2Þ; ð0; 2Þ; ð3; 2Þ; ð0; 1Þ; ð3; 1Þ; ð2; 1Þ; ð1; 1Þ; ð0; 0Þi;
hð0; 0Þ; ð3; 0Þ; ð2; 0Þ; ð1; 0Þ; ð2; 3Þ; ð1; 3Þ; ð0; 3Þ; ð3; 3Þ; ð2; 2Þ;
ð1; 2Þ; ð0; 2Þ; ð3; 2Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð0; 0Þi;

8>>>><
>>>>:

Thus the theorem is true for n = 2.
Assume now that the theorem is true for all 2 6 k < n. Let e ¼ ðð0; 0; . . . ; 0Þ; vÞ be any edge of BHn incident

to (0, 0, . . ., 0) and let ‘ be any even integer with 4 6 ‘ 6 22n, where n P 3. Since BHn is vertex-transitive, to
complete the proof of theorem, it suffices to show that there exists a cycle of length ‘ in BHn containing e. We
consider two cases separately in the following.

Case 1. The vertex v is in BH 0
n�1. If 4 6 ‘ 6 22ðn�1Þ, by the induction hypothesis, there exists a cycle of length ‘

in BH 0
n�1 � BH n that contains e. We consider two subcases separately in the following.

Case 1.1. 22ðn�1Þ þ 2 6 ‘ 6 22ðn�1Þ þ 6. For n P 3, we have ‘ � 6 P 4. By the induction hypothesis, there
exists a cycle C0 of length ‘ � 6 in BH 0

n�1 containing e. Thus, we can choose an edge ðu0; v0Þ in
C0 different from e where the first index of u is even. By Lemma 1, there exists a cycle
C0 ¼ hv0; u0; v1; u1; v2; u2; v3; u3; v0i of length 8 such that ðu0; v0Þ 2 EðBH 0

n�1Þ; ðu1; v1Þ 2 EðBH 1
n�1Þ;

ðu2; v2Þ 2 EðBH 2
n�1Þ and ðu3; v3Þ 2 EðBH 3

n�1Þ (refer to Fig. 2). Let P 0 ¼ C0 � ðu0; v0Þ and
P 0 ¼ C0 � ðu0; v0Þ. Thus P 0 þ P 0 makes a cycle of length ‘ in BHn containing e. Specially, let C to
denote the cycle of length 22ðn�1Þ þ 6 containing e.

Case 1.2. 22ðn�1Þ þ 8 6 ‘ 6 22n. Let ‘0 ¼ ‘� 22ðn�1Þ. For ‘0 P 8, we can write ‘0 ¼ ‘1 þ ‘2 þ ‘3 where ‘1, ‘2, and
‘3 satisfy one of the following conditions:

‘1 ¼ 2; ‘2 ¼ 2; ‘3 P 4 or

‘1 ¼ 2; ‘2 P 4; ‘3 P 4 or

‘1 P 4; ‘2 P 4; ‘3 P 4:

Consider the cycle C of length 22ðn�1Þ þ 6 containing e. By the induction hypothesis, there exists a cycle C1 of
length ‘1 in BH 1

n�1 containing ðu1; v1Þ if ‘1 P 4, there exists a cycle C2 of length ‘2 in BH 2
n�1 containing ðu2; v2Þ if

‘2 P 4, and there exists a cycle C3 of length ‘3 in BH 3
n�1 containing ðu3; v3Þ. Let

M. Xu et al. / Applied Mathematics and Computation 189 (2007) 1393–1401 1397
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P 1 ¼
ðu1; v1Þ if ‘1 ¼ 2;

C1 � ðu1; v1Þ if ‘1 P 4;

�

P 2 ¼
ðu2; v2Þ if ‘2 ¼ 2;

C2 � ðu2; v2Þ if ‘2 P 4;

�

P 3 ¼C3 � ðu3; v3Þ:

Then P 0 þ ðu0; v1Þ þ P 1 þ ðu1; v2Þ þ P 2 þ ðu2; v3Þ þ P 3 þ ðu3; v0Þ is a cycle of length ‘ in BHn and contains edge e.

Case 2. The vertex v is in BH 1
n�1. In this case, note v ¼ ð1; 0; . . . ; 0; 1Þ or v ¼ ð3; 0; . . . ; 0; 1Þ. We consider four

cases separately in the following.

Case 2.1. ‘ = 4. In this case, hð0; 0; . . . ; 0; 0Þ; ð1; 0; . . . ; 0; 1Þ; ð2; 0; . . . ; 0; 1Þ; ð3; 0; . . . ; 0; 1Þ; ð0; 0; . . . ; 0; 0Þi is a
cycle of length four in BHn and contains the edges ðð0; 0; . . . ; 0; 0Þ, ð1; 0; . . . ; 0; 1ÞÞ and
ðð0; 0; . . . ; 0; 0Þ, ð3; 0; . . . ; 0; 1ÞÞ.

Case 2.2. ‘ = 6. In this case, hð0; 0; . . . ; 0; 0Þ; ð1; 0; . . . ; 0; 1Þ; ð0; 0; . . . ; 0; 1Þ; ð1; 0; . . . ; 0; 2Þ; ð2; 0; . . . ; 0; 1Þ;
ð3; 0; . . . ; 0; 1Þ; ð0; 0; . . . ; 0; 0Þi is a cycle of length six in BHn and contains the edges
ðð0; 0; . . . ; 0; 0Þ, ð1; 0; . . . ; 0; 1ÞÞ and ðð0; 0; . . . ; 0; 0Þ, ð3; 0; . . . ; 0; 1ÞÞ.

Case 2.3. ‘ = 8. By Lemma 1, there exists desired cycle containing the edge ðð0; 0; . . . ; 0; 0Þ, ð1; 0; . . . ; 0; 1ÞÞ
and ðð0; 0; . . . ; 0; 0Þ, ð3; 0; . . . ; 0; 1ÞÞ, respectively. Specially, use hv0; u0; v1; u1; v2; u2; v3; u3; v0i to
denote the desired cycle containing ðu0; v1Þ where u0 ¼ u ¼ ð0; 0; . . . ; 0Þ and v1 ¼ v ¼
ð1; 0; . . . ; 0; 1Þ or v1 ¼ v ¼ ð3; 0; . . . ; 0; 1Þ.

Case 2.4. 10 6 ‘ 6 22n. In this case, we can write ‘ ¼ ‘0 þ ‘1 þ ‘2 þ ‘3 where ‘i satisfies one of the following
conditions for i = 0, 1, 2, 3:

‘0 ¼ 2; ‘1 ¼ 2; ‘2 ¼ 2; ‘3 P 4 or

‘0 ¼ 2; ‘1 ¼ 2; ‘2 P 4; ‘3 P 4 or

‘0 ¼ 2; ‘1 P 4; ‘2 P 4; ‘3 P 4 or

‘0 P 4; ‘1 P 4; ‘2 P 4; ‘3 P 4:

By the induction hypothesis, there exists a cycle C0 of length ‘0 in BH 0
n�1 that contains ðv0; u0Þ if ‘0 P 4, a cycle

C1 of length ‘1 in BH 1
n�1 that contains ðv1; u1Þ if ‘1 P 4, a cycle C2 of length ‘2 in BH 2

n�1 that contains ðv2; u2Þ if
‘2 P 4, and a cycle C3 of length ‘3 in BH 3

n�1 that contains ðv3; u3Þ. Let

P 0 ¼
ðv0; u0Þ if ‘0 ¼ 2;

C0 � ðv0; u0Þ if ‘0 P 4;

�

P 1 ¼
ðv1; u1Þ if ‘1 ¼ 2;

C1 � ðv1; u1Þ if ‘1 P 4;

�

P 2 ¼
ðv2; u2Þ if ‘2 ¼ 2;

C2 � ðv2; u2Þ if ‘2 P 4;

�

P 3 ¼ C3 � ðv3; u3Þ:

Then ðu0; v1Þ þ P 1 þ ðu1; v2Þ þ P 2 þ ðu2; v3Þ þ P 3 þ ðu3; v0Þ þ P 0 is a cycle of length ‘ in BHn and contains e.
Then Theorem 1 follows. h

From Theorem 1 we can deduce the following corollary due to Wu and Huang [14].

Corollary. There exists a cycle of length 2l in the balanced hypercube BHn for all l, 2 6 l 6 2n.

4. Hamiltonian laceability of balanced hypercubes

In this section, we consider the Hamiltonian laceability of the balanced hypercubes and present another
main result of this paper. For this purpose, we first prove the following lemma.
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Lemma 2. Let ða0; a1; . . . ; an�1Þ be any vertex of BHn, then there exists a Hamiltonian cycle that contains the

path hða0 � 1; a1; . . . ; an�2; an�1Þ; ða0; a1; . . . ; an�2; an�1Þ; ða0 þ 1; a1; . . . ; an�2; an�1Þ; ða0 þ 2; a1; . . . ; an�2; an�1Þi.

Proof. We prove the lemma by mathematical induction on n P 1. The theorem is true for n = 1. Assume the
theorem is true for all 1 6 k < n. Since n P 2, then the vertices ða0 � 1; a1; . . . ; an�2; an�1Þ,
ða0; a1; . . . ; an�2; an�1Þ, ða1 þ 1; a1; . . . ; an�2; an�1Þ and ða0 þ 2; a1; . . . ; an�2; an�1Þ are in BH an�1

n�1 . Assume without
loss of generality that an�1 ¼ 0. By induction hypothesis, there exists a cycle C0 of length 22ðn�1Þ � 1 that con-
tains the path hða0 � 1; a1; . . . ; an�2; 0Þ; ða0; a1; . . . ; an�2; 0Þ; ða0 þ 1; a1; . . . ; an�2; 0Þ; ða0 þ 2; a1; . . . ; an�2; 0Þi in
BH 0

n�1. Since n P 2, there exists an edge ðu0; v0Þ 2 EðC0Þ such that at most one of vertices u0 and v0 can
be in fða0 � 1; a1; . . . ; an�2; an�1Þ; ða0; a1; . . . ; an�2; an�1Þ; ða0 þ 1; a1; . . . ; an�2; an�1Þ; ða0 þ 1; a1; . . . ; an�2; an�1Þg,
where the first index of u0 is even. By Lemma 1, there exists a cycle C0 ¼ hv0; u0; v1; u1; v2; u2; v3; u3; v0i of length
8 such that ðu0; v0Þ 2 EðBH 0

n�1Þ, ðu1; v1Þ 2 EðBH 1
n�1Þ, ðu2; v2Þ 2 EðBH 2

n�1Þ and ðu3; v3Þ 2 EðBH 3
n�1Þ, (refer to

Fig. 2). By Theorem 1, there exists a cycle C1of length 22ðn�1Þ in BH 1
n�1 containing ðu1; v1Þ, a cycle C2 of

length 22ðn�1Þ in BH 2
n�1 containing ðu2; v2Þ and a cycle C3 of length 22ðn�1Þ in BH 3

n�1 containing ðu3; v3Þ. Let
P 0 ¼ C0 � ðu0; v0Þ; P 1 ¼ C1 � ðu1; v1Þ; P 2 ¼ C2 � ðu2; v2Þ and P 3 ¼ C3 � ðu3; v3Þ. Then

P 0 þ ðu0; v1Þ þ P 1 þ ðu1; v2Þ þ P 2 þ ðu2; v3Þ þ P 3 þ ðu3; v0Þ;
is a Hamiltonian path of BHn containing the path hða0 � 1; a1; . . . ; an�2; 0Þ; ða0; a1; . . . ; an�2; 0Þ;
ða0 þ 1; a1; . . . ; an�2; 0Þ; ða0 þ 2; a1; . . . ; an�2; 0Þi. The lemma follows. h

Theorem 2. The balanced hypercubes BHn are Hamiltonian laceable for n P 1.

Proof. We prove the theorem by induction on n P 1. The theorem is true for n = 1. Assume the theorem is
true for all 1 6 k < n. Suppose x ¼ ðx0; x1; . . . ; xn�1Þ and y ¼ ðy0; y1; . . . ; yn�1Þ be any two vertices such that
x0 + y0 is odd. Since BHn is vertex-transitive, without loss of generality, we assume that x0 = 0 and
xn�1 ¼ 0 which means that y0 is odd and y 2 V 1, x 2 V 2. We will consider three cases.

Case 1. yn�1 ¼ 0. In this case, x and y lie in BH 0
n�1. By induction hypothesis, there exists a path P0 of length

22ðn�1Þ � 1 joining x and y in BH 0
n�1. Thus, we can choose an edge ðu0; v0Þ in P0 where the first index of

u0 is even. By Lemma 1 (and refer to Fig. 2), there exists a cycle C0 ¼ hv0; u0; v1; u1; v2; u2; v3; u3; v0i
of length 8 such that ðu0; v0Þ 2 EðBH 0

n�1Þ; ðu1; v1Þ 2 EðBH 1
n�1Þ; ðu2; v2Þ 2 EðBH 2

n�1Þ and ðu3; v3Þ 2
EðBH 3

n�1Þ. By Theorem 1, there exists a cycle C1 of length 22ðn�1Þ in BH 1
n�1 that contains ðu1; v1Þ, a cycle

C2 of length 22ðn�1Þ in BH 2
n�1 that contains ðu2; v2Þ and a cycle C3 of length 22ðn�1Þ in BH 3

n�1 that con-
tains ðu3; v3Þ. Let P 00 ¼ P 0 � ðu0; v0Þ; P 1 ¼ C1 � ðu1; v1Þ; P 2 ¼ C2 � ðu2; v2Þ and P 3 ¼ C3 � ðu3; v3Þ. Then
P 00 þ ðu0; v1Þ þ P 1 þ ðu1; v2Þ þ P 2 þ ðu2; v3Þ þ P 3 þ ðu3; v0Þ is a path of length 22n � 1 in BHn that joins
x and y.

Case 2. yn�1 ¼ 1 or yn�1 ¼ 3. In this case, without loss of generality, we assume yn�1 ¼ 1. Then x lies in BH 0
n�1

and y lies in BH 1
n�1. Let v0 be an arbitrary vertex in BH 0

n�1 with the odd first index. By induction
hypothesis, there exists a path P0 of length 22ðn�1Þ � 1 that joins x and v0 in BH 0

n�1. Let u3 be a vertex
in BH 3

n�1 such that ðv0; u3Þ 2 EðBH nÞ. Then the first index of u3 is even. Choose an arbitrary vertex v3

with the odd first index in BH 3
n�1. By induction hypothesis, there exists a path P3 of length 22ðn�1Þ � 1

that joins u3 and v3. Let u2 be a vertex in BH 2
n�1 such that ðv3; u2Þ 2 EðBHnÞ. Then the first index of u2

is even. Choose an arbitrary vertex v2 with the odd first index in BH 2
n�1. By induction hypothesis, there

exists a path P2 of length 22ðn�1Þ � 1 that joins u2 and v2. Let u1 be a vertex in BH 1
n�1 such that

ðv2; u1Þ 2 EðBH nÞ. Then the first index of u1 is even. By induction hypothesis, there exists a path P1

of length 22ðn�1Þ � 1 that joins u1 and y. Then P 0 þ ðv0; u3Þ þ P 3 þ ðv3; u2Þ þ P 2 þ ðv2; u1Þ þ P 1 is a path
of length 22n � 1 in BHn that joins x and y (see Fig. 3).

Case 3. yn�1 ¼ 2. In this case, x lies in BH 0
n�1 and y lies in BH 2

n�1. Let y0 ¼ ðy0; y1; . . . ; yn�2; 0Þ be a vertex in
BH 0

n�1. By induction hypothesis, there exists a path P0 of length 22ðn�1Þ � 1 that joins x and y0 in
BH 0

n�1. Let x0 be the second-last vertex of P0 and choose y1 be a vertex in BH 1
n�1 such that

ðy1; x0Þ 2 EðBHnÞ. Then the first index of y1 is odd. Let x1 ¼ ðy0 þ 1; y1; . . . ; yn�2; 1Þ, then
ðx1; yÞ 2 EðBHnÞ and ðx1; ðy0 þ 2; y1; . . . ; yn�2; 2ÞÞ 2 EðBH nÞ. By induction hypothesis, there exists a
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path P1 of length 22ðn�1Þ � 1 that joins y1 and x1. For convenience, let u2 ¼ ðy0 þ 1; y1; . . . ; yn�2; 2Þ,
v2 ¼ ðy0 þ 2; y1; . . . ; yn�2; 2Þ, w2 ¼ ðy0 þ 3; y1; . . . ; yn�2; 2Þ, y3 ¼ ðy0 � 1; y1; . . . ; yn�2; 3Þ, u3 ¼ ðy0; y1;
. . . ; yn�2; 3Þ, v3 ¼ ðy0 þ 1; y1; . . . ; yn�2; 3Þ and w3 ¼ ðy0 þ 2; y1; . . . ; yn�2; 3Þ. By Lemma 2, there exists
a cycle C2 of length 22ðn�1Þ in BH 2

n�1 that contains the path hy; u2; v2;w2i and exists a cycle C3 of length
22ðn�1Þ in BH 3

n�1 that contains the path hy3; u3; v2;w2i. Let P 00 ¼ P 0 � ðy0; x0Þ; P 2 ¼ C2 � hy; u2; v2;w2i
and P 3 ¼ C3 � hy3; u3; v2;w2i. Then P 00 þ ðx0; y1Þ þ P 1 þ ðx1; v2Þ þ ðv2; u2Þ þ ðu2; u3Þ þ ðu3; v3Þþ
ðv3; y0Þ þ ðy0; y3Þ þ P 3 þ ðw3;w2Þ þ P 2 is a path of length 22n � 1 in BHn that joins x and y (see
Fig. 4). The proof of Theorem 2 is complete. h

5. Conclusions

The balanced hypercube, proposed by Huang and Wu [9], forms a hypercube variant that give better per-
formance with the same number of edges and vertices. It has been shown that there exists a cycle of length 2l in
BHn for all l, 2 6 l 6 2n. In this paper, we improve this result by showing that BHn is edge-pancyclic which
means that for arbitrary edge e, there exists a cycle of even length from 4 to 22n each containing e in BHn.
We also show that the balanced hypercubes are Hamiltonian laceable.
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Fig. 3. The path of length 22n � 1 in BHn that joins x and y.
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Fig. 4. The path of length 22n � 1 in BHn joining x and y.
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Since the vertex-connectivity and the edge-connectivity of BHn is 2n, the balanced hypercube is still con-
nected when some edges and vertices are broken. The cycle embedding problem of BHn has been discussed
regarding faulty vertices [14]. But regarding faulty edges, it is not known if there exists desired cycles in
BHn, this needs further study.
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