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Abstract

In this paper, we explore the 2-extraconnectivity of a special class of graphs G(G0,G1;M) proposed by Chen et al. [Y.-C. Chen,
J.J.M. Tan, L.-H. Hsu, S.-S. Kao, Super-connectivity and super edge-connectivity for some interconnection networks, Applied
Mathematics and Computation 140 (2003) 245–254]. As applications of the results, we obtain that the 2-extraconnectivities of
several well-known interconnection networks, such as hypercubes, twisted cubes, crossed cubes, Möbius cubes and locally twisted
cubes, are all equal to 3n − 5 when their dimension n is not less than 8. That is, when n � 8, at least 3n − 5 vertices must be
removed to disconnect any one of these n-dimensional networks provided that the removal of these vertices does not isolate a
vertex or an edge.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that when the underlying topology
of an interconnection network is modeled by a con-
nected graph G = (V ,E), where V is the set of proces-
sors and E is the set of communication links in the net-
work, the connectivity κ(G) and the edge-connectivity
λ(G) are the two important features determining relia-
bility and fault tolerance of the network [18]. These two
parameters, however, have a obvious deficiency, that is,
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they tacitly assume that all vertices adjacent to or all
edges incident with the same vertex of G can potentially
fail at the same time, which happens almost impossible
in practical applications of networks. In other words, in
the definitions of κ and λ, absolutely no restrictions are
imposed on the components of G − S. Consequently,
these two measurements are inaccurate for large-scale
processing systems in which all processors adjacent to
or all links incident with the same processor cannot fail
at the same time. To compensate for this shortcoming,
it would seem natural to generalize the notion of the
classical connectivity by imposing some conditions or
restrictions on the components of G − S. Haray [10]
first considered this problem by introducing the concept
of the conditional connectivity.

Given a graph G and a graph-theoretical property P ,
he defined the conditional connectivity κ(G;P) (resp.,
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edge-connectivity λ(G;P)) as the minimum cardinal-
ity of a set of vertices (resp., edges), if any, whose dele-
tion disconnects G and every remaining component has
property P . Clearly, κ(G) (resp., λ(G)) is a special
case of κ(G;P) (resp., λ(G;P)) when no condition
is restricted to P . The existence and value of κ(G;P)

(λ(G;P)) varies depending on the different choice of
the property P .

Fàbrega and Fiol [9] considered κ(G;Ph) (resp.,
λ(G;Ph)) for a non-negative integer h and a graph
G, where Ph is the property of having more than h

vertices. They called this type of connectivity as the
h-extraconnectivity (resp., h-edge-extraconnectivity) of
G, denoted by κh(G) (resp., λh(G)). In other words,
κh(G) (resp., λh(G)) is the minimum cardinality of a
set of vertices (resp., edges) of G, if any, whose dele-
tion disconnects G and every remaining component has
more then h vertices.

Clearly, κ0(G) = κ(G) and λ0(G) = λ(G) for any
graph G if G is not a complete graph. Thus, the h-ex-
traconnectivity is a generalization of the classical con-
nectivity and can provides more accurate measures for
the reliability and the tolerance of a large-scale parallel
processing system, and so has received much research
attention (see, for example, [6–8,12–16,20–22,24,26–
28]) for h = 1 in recent years. However, a few of results
for h � 2 are known in the present literature, for exam-
ple, [29].

Fàbrega et al. [9] studied the extraconnectivity of
some class of graphs with large girth. But the girth of
most of the well-known interconnection networks is
small. Thus we are interested in the study of the ex-
traconnectivity of the well-known interconnection net-
works with small girth. In this paper, we consider a class
of graphs, denoted by G(G0,G1;M) and proposed by
Chen et al. [3]. In [23], Xu and Wang studied the 1-
extraconnectivity and the 1-edge-extraconnectivity of
G(G0,G1;M). In [29], Zhu et al. studied the 2-ed-
ge-extraconnectivity of G(G0,G1;M). In this paper,
we study the 2-extraconnectivity of G(G0,G1;M).
As applications, we obtain the 2-extraconnectivity of
the above-mentioned well-known networks is equal to
3n − 5 if n � 8.

The remaining of this paper is organized as fol-
lows. In Section 2, we give some definitions and lem-
mas. In Section 3, we study that 2-extraconnectivity of
G(G0,G1;M). Then, in Section 4, as applications of
these results, we determine 2-extraconnectivity of the
hypercube Qn, the twisted cube TQn, the Möbius cube
MQn, the locally twisted cube LTQn and the crossed
cube CQn. Conclusions are in Section 5.
2. Definitions and lemmas

For the terminology and notation not defined here,
we follow [19]. For a graph G = (V ,E) and S ⊂ V or
S ⊂ G, we use NG(S) to denote the set of neighbors of
S in G − S. For any vertex v, we use dG(x) to denote
the degree of x. A graph G is k-regular if dG(x) = k

for every x ∈ V (G). A subset S ⊂ V (G) is called a
vertex-cut if G − S is disconnected. The connectivity
of G, denoted by κ(G), is the minimum cardinality of
all vertex-cuts in G.

Definition 2.1. Let G be a simple graph. A vertex-cut
S of G is called a restricted h-vertex-cut if each com-
ponent of G − S has more than h vertices. The h-ex-
traconnectivity of G, denoted by κh(G), is defined as
min{|S|: S is a restricted h-vertex-cut of G} if G has
restricted h-vertex cuts.

Clearly, when h = 0, a restricted 0-vertex-cut is just a
vertex-cut. Thus, the concept of the h-extraconnectivity
is a generalization of the concept of the traditional con-
nectivity. In this paper we explore a special class of
graphs G(G0,G1;M) proposed by Chen et al. [3].

Definition 2.2. Let G1 and G2 be two graphs with the
same order, and M be any arbitrary perfect matching be-
tween vertices of G1 and G2. The graph G(G1,G2;M)

is defined as a graph with the vertex-set V = V (G1) ∪
V (G2) and the edge-set E = E(G1) ∪ E(G2) ∪ M .

Lemma 2.3. (See [3].) If both G1 and G2 are (k − 1)-
regular (k − 1)-connected graphs with n vertices, then
G(G1,G2;M) is k-regular k-connected.

Definition 2.4. For a graph G, the cn-number of G,
cn(G), is the smallest integer � for which any two ver-
tices in G share at most � common neighboring vertices.

From the definition, we have the following result im-
mediately.

Lemma 2.5. cn(G(G0,G1;M)) = 2 if cn(G0) =
cn(G1) = 2.

3. Main result

In this section, we present our main result, which can
be stated as follows.

Theorem 3.1. Let G = G(G0,G1;M). If both G0 and
G1 are (k − 1)-regular and triangle-free, κ1(G0) =
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κ1(G1) = 2k − 4, and cn(G0) = cn(G1) = 2, then
κ2(G) = 3k − 5 for k � 8 and κ2(G) � 3k − 5 for
6 � k � 7.

Proof. By Lemma 2.5, cn(G) = 2 and so there exist
two vertices x and y in G such that |NG(x)∩NG(y)| =
2. Let T = (x, z, y) be a path of length 2 between x and
y. By Lemma 2.3, G is k-regular. Since both G0 and G1
contain no triangles, it is easy to check that G contains
no triangles, and so NG(z) ∩ (NG(x) ∪ NG(y)) = ∅.
Thus
∣
∣NG(T )

∣
∣ = (k − 1) + (k − 2) + (k − 2) = 3k − 5.

Let H = G − (T ∪ NG(T )). Since κ1(G0) = κ1(G1) =
2k − 4, |V (G)| = 2|V (G1)| � 2(κ1(G0) + 4) = 4k, and
so V (H) �= ∅. Since cn(G) = 2, |NG(u) ∩ NG(T )| � 6
for any u ∈ V (H) and |NG(e) ∩ NG(T )| � 12 for any
e ∈ E(H). Since 6 < k = |NG(u)| and 12 < 2k − 2 =
|NG(e)| for k � 8, there are neither isolated vertices
nor isolated edges in G − NG(T ). Thus, NG(T ) is a
restricted 2-vertex-cut of G, and so

κ2(G) �
∣
∣NG(T )

∣
∣ = 3k − 5 for k � 8. (1)

We now prove

κ2(G) � 3k − 5 for k � 5. (2)

Suppose that there is a subset F ⊂ V (G) with |F | �
3k − 6 such that there are neither isolated vertices nor
isolated edges in G − F . We want to prove that G −
F is connected. To the end, let F0 = F ∩ V (G0) and
F1 = F ∩V (G1). Clearly, F0 ∩F1 = φ. Without loss of
generality, we may suppose that |F0| � |F1|. Then

|F1| � 3k − 6

2
<

4k − 10

2
= 2k − 5 for k � 5.

We now prove that G−F is connected by two steps.
In Step 1, we prove that any vertex in G0 − F0 can be
connected to a vertex in G1 − F1. In Step 2, we prove
that G1 − F1 is connected in G − F .

Step 1. Any vertex in G0 − F0 can be connected to
some vertex in G1 − F1.

Let u0 be any vertex in G0 − F0 and u0u1 ∈ M . If
u1 /∈ F1, then we are done. So suppose that u1 ∈ F1.
Since u0 is not an isolated vertex in G − F , there ex-
ist a vertex v0 ∈ NG0(u0) − F0, suppose v0v1 ∈ M , if
v1 /∈ F1, then we are done, so suppose that v1 ∈ F1.
Since u0v0 is not an isolated edge in G−F , there exist a
vertex w0 ∈ NG0(u0, v0)−F0. Suppose that w0w1 ∈ M ,
if w1 /∈ F1, then we are done, so suppose w1 ∈ F1. The
vertex w0 may be adjacent to u0 or v0, without loss of
generality, we suppose that w0 is adjacent to v0, then
NG (w0) ∩ NG (v0) = ∅ and NG (u0) ∩ NG (v0) = ∅
0 0 0 0
since G0 contains no triangles. And since cn(G0) = 2,
so NG0(w0) ∩ NG0(u0) � 2, thus
∣
∣NG0(u0, v0,w0)

∣
∣ � (k − 2) + (k − 3) + (k − 3)

= 3k − 8.

Let N = NG0(u0, v0,w0) ∪ {u0, v0,w0}. Then |N | �
3k − 5.

Let M ′ = {e ∈ M | e is incident with a vertex in N}.
Then |M ′| = |N | � 3k−5 since M is a perfect matching
in G. Since |F | � 3k − 6, there exists at least one edge
of M ′ whose two end-vertices both are not in F . Let
e ∈ M ′ be such an edge. Since u0, v0,w0 all are not in
F , u0 can be connected to G1 − F1 via the edge e.

Step 2. G1 − F1 is connected in G − F .
If there are no isolated vertices in G1 − F1, then it is

clear that G1 − F1 is connected since |F1| < 2k − 5 <

2k − 4 = κ1(G1) by our hypothesis.
Suppose now that there exists an isolated vertex, say

u1, in G1 −F1. Since any two vertices in G1 can share at
most two common neighbors by our hypothesis, at least
2k − 4 vertices are to be removed to get two isolated
vertices in G1. Since |F1| < 2k − 5, there is just one
isolated vertex u1 in G1 −F1. Let F ′

1 = F1 ∪{u1}. Then
G1 − F ′

1 contains no isolated vertices, and so G1 − F ′
1

is connected since |F ′
1| < 2k −5+1 = 2k −4 = κ1(G1)

by our hypothesis. We only need to show that u1 can be
connected to some vertex in G1 − F ′

1 via some vertices
in G0 − F0.

Since there are no isolated edges in G−F , NG0(u0)−
F0 �= ∅. If there is some v0 ∈ NG0(u0)−F0 with v0v1 ∈
M such that v1 /∈ F1, then we are done. So assume
v1 ∈ F1 for any v0 ∈ NG0(u0) − F0 with v0v1 ∈ M .
Note |NG0(u0, v0)| = 2(k − 2) = 2k − 4 since G0 con-
tains no triangles. Since |F1| � |NG1(u1)| = k − 1 and
|F0| = |F | − |F1| � 3k − 6 − (k − 1) = 2k − 5, we have
|NG0(u0, v0)| > |F0|, that is, NG0(u0, v0) − F0 �= ∅.
If there is some w0 ∈ NG0(u0, v0) − F0 with w0w1 ∈
M such that w1 /∈ F1, then we are done. So assume
w1 ∈ F1 for any w0 ∈ NG0(u0, v0) − F0 with w0w1 ∈
M . Since G0 contains no triangles and cn(G0) = 2,
|NG0(u0, v0,w0)| � 3k − 8 > 2k − 5 � |F0| for k � 4,
that is, NG0(u0, v0,w0) − F0 �= ∅. If there is some
x0 ∈ NG0(u0, v0,w0) − F0 with x0x1 ∈ M such that
x1 /∈ F1, then we are done. So assume x1 ∈ F1 for any
x0 ∈ NG0(u0, v0,w0) − F0 with x0x1 ∈ M . Since G0
contains no triangles and cn(G0) = 2, it is easy to com-
pute that |NG0(u0, v0,w0, x0)| � 4(k − 1) − 6 − 4 =
4k − 14.

Let N = NG0(u0, v0,w0, x0) ∪ {v0,w0, x0}. Then
|N | � 4k − 11. Let M ′ = {e ∈ M | e is incident with
a vertex in N}. Then |M ′| = |N | since M is a perfect
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matching in G. Since |M ′| � 4k − 11 > 3k − 6 � |F |
for k � 6, there exists at least one edge of M ′ whose
two end-vertices both are not in F . Let e ∈ M ′ be such
an edge. Since u0, v0,w0, x0 all are not in F , u0 can be
connected to G1 − F1 via the edge e.

Combining Step 1 with Step 2 fields the inequal-
ity (2). It follows from (1) and (2) that κ2(G) = 3k − 5
for k � 8 and κ2(G) � 3k − 5 for 6 � k � 7. This com-
pletes the proof of the theorem. �
4. Applications

Topologies of many interconnection networks can
be easily viewed as G(G0,G1;M) for some k-regular
graphs G0 and G1, see Chen et al. [3], such as the hy-
percube Qn [11,17], the twisted cube TQn [1,2], the
cross cube CQn [5], the Möbius cube MQn [4] and the
locally twisted cube LTQn [25]. For these networks,
Chen et al. [3] proved that they are super connected
and super edge-connected for n � 3; Xu and Wang [23]
determined their 1-extraconnectivities and the 1-edge-
extraconnectivities both are 2n − 2 for n � 3; Zhu et
al. [29] determined their 2-edge-extraconnectivities all
are 3n − 4 for n � 4. Applying Theorem 3.1, we im-
mediately obtain that their 2-extraconnectivities all are
3n−5 for n � 8. The proofs are omitted here for details.

5. Conclusions

In this paper, we concentrate on a stronger measure
of reliability and fault-tolerance of a network called
the 2-extraconnectivity, which not only compensate for
shortcoming but also generalize the classical connec-
tivity. For a special class of graphs G(G0,G1;M), we
explore its 2-extraconnectivity. As applications of our
result, we immediately determine the 2-extraconnectivi-
ties of some well-known networks, such as the hyper-
cube Qn, the twisted cube TQn, the cross cube CQn, the
Möbius cube MQn and the locally twisted cube LTQn,
all are 3n − 5 for n � 8. In other words, for n � 8, at
least 3n− 5 vertices must be removed to disconnect any
one of these networks provided that the removal of these
vertices does not isolate a vertex or an edge. When these
networks are used to model the topological structure
of a large-scale parallel processing system, our results
provide more accurate measurements for reliability and
fault tolerance of the system.
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