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Abstract Let k be a positive integer and G = (V,E) be a connected
graph of order n. A set D ⊆ V is called a k-dominating set of G if each
x ∈ V (G) − D is within distance k from some vertex of D. A connected
k-dominating set is a k-dominating set that induces a connected subgraph
of G. The connected k-domination number of G, denoted by γc

k(G), is
the minimum cardinality of a connected k-dominating set. Let δ and ∆
denote the minimum and the maximum degree of G, respectively. This
paper establishes that γc

k(G) ≤ max{1, n − 2k − ∆ + 2}, and γc
k(G) ≤

(1+oδ(1))n ln[m(δ+1)+2−t]
m(δ+1)+2−t , where m = dk

3 e, t = 3dk
3 e−k, and oδ(1) denotes

a function that tends to 0 as δ → ∞. The later generalizes the result
of Caro et al’s in [Connected domination and spanning trees with many
leaves. SIAM J. Discrete Math. 13 (2000), 202-211] for k = 1.
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1 Introduction

For terminology and notation on graph theory not given here, the
reader is referred to [2] or [13]. Let G = (V,E) be a finite simple graph with
vertex set V = V (G) and edge set E = E(G). The order, the maximum
degree and the minimum degree of vertices of G are denoted by n(G),
∆(G) and δ(G), respectively. The distance dG(x, y) between two vertices
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x and y is the length of a shortest xy-path in G. For S ⊆ V (G), G[S]
denotes the subgraph of G induced by S, and for v ∈ V (G), dG(v, S) =
minu∈V (S){dG(v, u)}. The eccentricity eG(v) of v is maxx∈V (G){dG(v, x)}.
The radius rad(G) is the smallest eccentricity of a vertex in G. Let k be a
positive integer. For every vertex x ∈ V (G), the k-neighborhood Nk(x) of
x is defined by Nk(x) = {y ∈ V (G) : dG(x, y) ≤ k, x 6= y}, and N1(x) is
usually called the neighborhood of x in G.

A set D of vertices in G is called a k-dominating set of G if every vertex
of V (G)−D is within distance k from some vertex of D. A k-dominating set
D is called to be connected if G[D] is connected. The minimum cardinality
among all k-dominating sets (resp. connected k-dominating sets) of G is
called the k-domination number (resp. connected k-domination number) of
G and is denoted by γk(G) (resp. γc

k(G)). The concept of the k-dominating
set was first introduced by Chang and Nemhauser [4, 5].

Since the distance versions of domination have a strong background of
applications, many efforts have been made by several authors to consider
the distance parameters (see, for example, [4] ∼ [10], [12, 14]).

It is quite difficult to determine the value of γk(G) or γc
k(G) for any

given graph G. In this paper, we prove that for any nontrivial connected
graph G with order n, γc

k(G) = minγc
k(T ), where the minimum is taken

over all spanning trees T of G. We also get two upper bounds for γc
k(G) in

terms of the maximum degree ∆ = ∆(G), that is,

γc
k(G) ≤ max{1, n− 2k −∆ + 2},

and the minimum degree δ = δ(G), that is,

γc
k(G) ≤ (1 + oδ(1))n

ln[m(δ + 1) + 2− t]
m(δ + 1) + 2− t

,

where m = dk
3 e, t = 3dk

3 e − k, and oδ(1) denotes a function that tends to
0 as δ → ∞. The later generalizes the result of Caro et al’s [3] for k = 1,
that is,

γc
1(G) ≤ (1 + oδ(1))n

ln(δ + 1)
δ + 1

.

The method used here is a generalization and refinement of theirs.

2 Elementary Results

Theorem 1 Let G be a nontrivial connected graph, and k be a
positive integer. Then γc

k(G) = minγc
k(T ), where the minimum is taken

over all spanning trees T of G.
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Proof Let G be a nontrivial connected graph and T be a spanning
tree of G. Then any connected k-dominating set of T is also a connected
k-dominating set of G. Therefore, γc

k(G) ≤ γc
k(T ). Thus we have that

γc
k(G) ≤ minγc

k(T ), where the minimum is taken over all spanning trees T
of G.

Now we show the reverse inequality. If G is a tree, then the theorem
holds trivially. So we may assume that G is a connected graph containing
cycles. Let D be a minimum connected k-dominating set of G and C be a
cycle in G. If we can prove that D is also a connected k-dominating set of
G − e for some cycle edge e ∈ E(C), then γc

k(G − e) ≤ |D| = γc
k(G). By

applying this process a finite number of times, we have γc
k(T ) ≤ γc

k(G) for
some spanning tree T of G. Thus, we have that minγc

k(T ) ≤ γc
k(G), where

the minimum is taken over all spanning trees T of G.
If V (C) ⊆ V (D), then obviously G[D] − e for any e ∈ E(C) is also

connected and the vertices in V (G) − D are also all within distance k to
D.

If V (C) 6⊆ V (D), then we select an edge xy in C such that dG(x, D) +
dG(y, D) = max{dG(u, D) + dG(v,D) : uv ∈ E(C)}. Now we will show
that D is a connected k-dominating set of G− {xy}.

First for any two adjacent vertices u and v in G, we have |dG(u, D) −
dG(v,D)| ≤ 1. Then if w is a vertex in V (C) such that dG(w,D) =
max{dG(v,D) : v ∈ V (C)}, we have that w = x or w = y. Without loss
of generality, suppose that dG(x,D) = max{dG(v,D) : v ∈ V (C)}.

Let z be another neighbor of x different from y in V (C). So we imme-
diately have that dG(z,D) ≤ dG(y, D). Thus, we get the distance between
a vertex in V (G) − D and D is not influenced by deleting the edge {xy}.
That is to say, dG−xy(v,D) = dG(v,D) for all vertices v in V (G). Hence,
D is also a connected k-dominating set of G− e for some cycle edge e.

Proposition 2 Let G = (V,E) be a nontrivial connected graph, and
k be a positive integer. If rad(G) ≤ k, then γc

k(G) = 1.

3 Main Results

Theorem 3 Let G be a connected graph of order n ≥ 2 with maxi-
mum degree ∆ = ∆(G), and k be a positive integer, then

γc
k(G) ≤ max{1, n− 2k −∆ + 2}.

Proof By Theorem 1, it is sufficient to show that γc
k(T ) ≤ max{1, n−

2k −∆ + 2}, for any spanning tree T with maximum degree ∆ = ∆(T ).
If rad(T ) ≤ k, then by Theorem 2, we get γc

k(T ) = 1. So we may assume
that rad(T ) > k. Let P be a longest path in T with end-vertices u and
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v. Then there exists two vertices x and y of P such that dT (x, u) = k and
dT (y, v) = k. Let Pxy be the xy-subpath of P , and let D′ = V (P )−V (Pxy).
Let D = V (T )−(D′∪L (T )), where L (T ) is the set of leaves of V (T ). Thus
D must contain a connected k-dominating set of T . Since u, v ∈ D′∩L (T ),
and L (T ) ≥ ∆, we have

γc
k(T ) ≤ |V (T )| − |D′ ∪L (T )|

≤ |V (T )| − |D′| − |L (T )|+ |D′ ∩L (T )|
≤ n− 2k −∆ + 2

as required.
We use probabilistic method to give an upper bound of γc

k(G) in terms
of the minimum degree δ = δ(G) below. This bound improves the results of
Caro et al [3] for k = 1 and the method is a generalization and refinement
of theirs.

For an event A and for a random variable Z of an arbitrary probability
space, P [A] and E[Z] denote the probability of A, the expectation of Z,
respectively.

Lemma 4 (Xu, Tian and Huang [14]) Let S be a k-dominating set of
a connected graph G. If G[S] has h components, then

γc
k(G) ≤ |S|+ 2(h− 1)k.

Theorem 5 Let G be a nontrivial connected graph of order n with
minimum degree δ, then

γc
k(G) < n

72k + 20km2 + 17 + 0.5
√

ln q + ln q

q
, (1)

where q = m(δ + 1) + 2− t, m = dk
3 e and t = 3dk

3 e − k.
Proof Let k = 3m − t, where m ≥ 1, 0 ≤ t ≤ 2. For δ(G) <

72b k
mc + 20km, we immediately have γc

k(G) ≤ n, and the theorem holds.
We assume that δ(G) ≥ 72b k

mc + 20km ≥ 92 below. Let p = ln q
q , where

q = m(δ + 1) + 2 − t, and let us pick, randomly and independently, each
vertex of V with probability p. Let X be the set of vertices picked. Let Y be
the random set of all vertices that are not picked and have no k-neighbors
in X. By the choice of Y , X ∪ Y is a k-dominating set of G.

Claim 1 dG(X, Y ) = k + 1.
Proof of Claim 1. It is clear from the choice of Y that dG(X, Y ) ≥ k+1.

Now let a ∈ X, b ∈ Y be two vertices whose distance in G is the smallest,
that is, dG(a, b) = dG(X, Y ). Let P be any shortest path from a to b and
let v be the second-last vertex on P . Then v /∈ Y . If dG(a, b) ≥ k + 2,
then v has no k-neighbors in X. By definition of Y , we should get v ∈ Y ,
a contradiction.
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Let α = |X|, β = |Y | and PXY denote one shortest path from X to
Y . By Claim 1, we have |V (PXY )| = k + 2. Let µ denote the number of
components in G[X]. Then X ∪ Y ∪ V (PXY ) is a subgraph of G having at
most µ + β − 1 components. By Lemma 4, we have

γc
k(G) ≤ α + β + k + 2(µ + β − 1− 1)k = α + (2k + 1)β + 2kµ− 3k.

In order to prove (1), it therefore suffices to show that with positive prob-
ability,

α + (2k + 1)β + 2kµ− 3k < n
72k + 20km2 + 17 + 0.5

√
ln q + ln q

q
. (2)

Claim 2 |Nk(v)| ≥ m(δ + 1) + 1− t for any v ∈ V (G).
Proof of Claim 2 Let Xi(v) = {u ∈ V (G) : dG(u, v) = i}.
If v ∈ X ∪ Y , then by dG(X, Y ) = k + 1 and G is connected, Xi(v) 6= ∅

for i = 1, · · · , k. Clearly, |X1(v)| ≥ δ. For 2 ≤ i ≤ k − 2, we have that
|Xi(v)|+|Xi+1(v)|+|Xi+2(v)| ≥ δ+1. In fact, for any u ∈ Xi+1(v), N1(u) ⊆
Xi(v) ∪ Xi+1(v) ∪ Xi+2(v), thus, |Xi(v)| + |Xi+1(v)| − 1 + |Xi+2(v)| ≥ δ.
So, we have

|Nk(v)| = |X1(v)|+ |X2(v)|+ · · ·+ |Xk(v)|

≥ δ +
⌊

k − 1
3

⌋
(δ + 1) +

(
k − 1− 3

⌊
k − 1

3

⌋)
= δ + (m− 1)(δ + 1) + (2− t)
= m(δ + 1) + 1− t.

Let v ∈ V (G) − (X ∪ Y ). If dG(v, Y ) ≥ k or dG(v,X) ≥ k, using the
same discussion as above we get |Nk(v)| ≥ m(δ + 1) + 1− t. Now suppose
that dG(v, Y ) < k and dG(v,X) < k. Since dG(X, Y ) = k + 1, there must
exist a shortest path between a vertex a ∈ X and a vertex b ∈ Y through v
such that dG(a, b) ≥ k+1, dG(v, b) < k and dG(a, v) < k. We only consider
the worst case dG(a, b) = k + 1, and let Pab denote the shortest path from
a to b passing through v.

Let v1 and v2 be two neighbors of v on Pab from b to v and from a to
v, respectively. Let dG(b, v1) = `1, dG(a, v2) = `2. Thus, `1 + `2 = k − 1.
We only consider three cases. The other one are analogue or immediate by
symmetry.

If `1 ≡ 1(mod 3), `2 ≡ 1(mod 3), then k ≡ 0(mod 3), that is, k = 3m,
t = 0.

|Nk(v)| ≥ δ +
(⌊

`1
3

⌋
+
⌊

`2
3

⌋)
(δ + 1) + 2

= δ +
`1 + `2 − 2

3
(δ + 1) + 2
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= δ +
k − 3

3
(δ + 1) + 2

= δ + (m− 1)(δ + 1) + 2
= m(δ + 1) + 1

If `1 ≡ 1(mod 3), `2 ≡ 2(mod 3), then k ≡ 1(mod 3), that is, k = 3m−2,
t = 2. Notice `2 ≡ 2(mod 3) and dG(v, a) < k, then N1(a) ⊆ Nk(v), thus
|X`2−1(v2)|+ |X`2(v2)|+ |X`2+1(v2)| ≥ δ + 1. So we have

|Nk(v)| ≥ δ +
(⌊

`1
3

⌋
+
⌊

`2
3

⌋)
(δ + 1) + 1 + (δ + 1)

= δ +
`1 − 1 + `2 − 2

3
(δ + 1) + δ + 2

= δ +
k − 4

3
(δ + 1) + δ + 2

= m(δ + 1)
> m(δ + 1) + 1− t

If `1 ≡ 2(mod 3), `2 ≡ 2(mod 3), then k ≡ 2(mod 3), that is, k = 3m−1,
t = 1. By the discussion as above, we also get |X`1−1(v1)| + |X`1(v1)| +
|X`1+1(v1)| ≥ δ + 1. Thus, we have,

|Nk(v)| ≥ δ +
(⌊

`1
3

⌋
+
⌊

`2
3

⌋)
(δ + 1) + 2(δ + 1)

= δ +
`1 − 2 + `2 − 2

3
(δ + 1) + 2δ + 2

= δ +
k − 5

3
(δ + 1) + 2δ + 2

= m(δ + 1) + δ

> m(δ + 1)

The Claim 2 follows.
Claim 3 P

[
β > 17n

q

]
< 0.059.

Proof of Claim 3 For each vertex v, the probability that v ∈ Y is
that P [v ∈ Y ] = (1 − p)|Nk(v)|+1. By Claim 2, we already have that
|Nk(v)| ≥ m(δ+1)+1− t for any v ∈ V (G) and since β can be written as a
sum of n indicator random variables χv, where χv = 1 if v ∈ Y and χv = 0
otherwise, it follows that the expectation of β satisfies E[β] ≤ n(1 − p)q.
By using Taylor’s formula,(

1− ln q

q

)q

<
(
e−

ln q
q

)q

=
1
q
,
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we have E[β] < n
q . By Markov’s inequality, for any s > 0, P [β > s] < E[β]

s ,
we have,

P

[
β > 17

n

q

]
<

1
17

< 0.059

as required.

Claim 4 P

[
α > n ln q

q + n
0.5
√

ln q

q

]
< 0.892.

Proof of Claim 4 Since α can also be written as a sum of n indicator
random variables that each having probability p of success, we also have
E[α] = np = n ln q

q . We use an inequality attributed to Chernoff in [1], that
is, for any s ≥ 0:

P [α > E[α] + s] ≤ exp
{

−s2

2(E[α] + s
3 )

}
.

Take s = n
0.5
√

ln q

q to this inequality, we have

P

[
α > n ln q

q + n
0.5
√

ln q

q

]
≤ exp

(
− n

8q+ 4
3 q 1√

ln q

)
< exp

(
− 1

8+1.34 1√
ln[93m+2−t]

)
≤ exp

(
− 1

8+1.34 1√
ln 93

)
< 0.892.

Here n ≥ |Nk(v)|+ 1 ≥ q. The Claim 4 follows.
Like [3], we say that a vertex v ∈ V (G) is weakly dominated if v has

fewer than 1
8m2 ln q neighbors in X. Let NX

1 (v) denote the set of neighbors
of v in X. Let D denote the set of weakly dominated vertices in X.

Claim 5 P
[
|D | > 19n ln q

q1.34

]
< 0.047.

Proof of Claim 5 First we have, for any v ∈ V (G),

E
[
|NX

1 (v)|
]

= |N1(v)|p ≥ δp

=
δ

q
ln q

≥ 92
93m + 2− t

ln q

≥ 92
93m + 2

ln q,
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where δ
q is an increasing function for δ. By using linearity of expectation

and another inequality of Chernoff [1], that is, for any s ≥ 0,

P
[
|NX

1 (v)| < E[|NX
1 (v)|]− s

]
≤ exp

(
− s2

2E[|NX
1 (v)|]

)
,

we have,

P
[
|NX

1 (v)| < 1
8m2 ln q

]
= P

[
m|NX

1 (v)| < 1
8m ln q

]
≤ P

[
m|NX

1 (v)| < (93m+2)
8m×92 E[|NX

1 (v)|]
]

= P
[
m|NX

1 (v)| − E[m|NX
1 (v)|] < −

(
m− (93m+2)

8m×92

)
E[|NX

1 (v)|]
]

< exp

(
−
(
m− (93m+2)

8m×92

)2
E2[|NX

1 (v)|]
2mE[|NX

1 (v)|]

)

= exp

(
−
(
m− (93m+2)

8m×92

)2
E[|NX

1 (v)|]
2m

)
≤ exp

(
− 46

93m2+2m

(
m− (93m+2)

8m×92

)2

ln q

)
≤ exp

(
− 46m2

93m2+2m

(
1− (93m+2)

8m2×92

)2

ln q

)
≤ exp

(
− 46

95

(
1− 95

736

)2 ln q
)

≤
(

1
q

)0.367

.

Since the event that a vertex v is picked into X is independent of the
event that v is a weakly dominated vertex. Hence, the probability that a
vertex is in X and is weakly dominated is,

P

[
v ∈ X; |NX

1 (v)| < 1
8m2

ln q

]

= P [v ∈ X] · P
[
|NX

1 (v)| < 1
8m2

ln q

]
≤ p

(
1
q

)0.367

.

Thus, we have

E [|D |] ≤ np

(
1
q

)0.367

= n
ln q

q1.367
.

By Markov’s inequality,

P

[
|D | > 19n

ln q

q1.34

]
<

1
19q0.027

<
1

19× 930.027
< 0.047
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as required.
From Claim 3, Claim 4 and Claim 5, we find that all of these events

that

α ≤ n
ln q

q
+ n

0.5
√

ln q

q

β ≤ 17
n

q

|D | ≤ 19n
ln q

q1.34

could happen simultaneously with positive probability, that is,

1− 0.892− 0.059− 0.047 = 0.002 > 0.

Now we choose a set X satisfying all of these events simultaneously.
Every component of X that contains no weakly dominated vertex has size
at least 1

8m2 ln q, and D has at most |D | components. Thus, we have the
number of components in G[X] satisfies,

µ ≤ α
1

8m2 ln q
+ 19n

ln q

q1.34
.

Since f(δ) = ln q
q0.34 is a decreasing function for δ ≥ 72b k

mc+ 20km ≥ 92, we
obtain

ln q

q0.34
≤ ln(93m + 2− t)

(93m + 2− t)0.34
≤ ln(95− t)

(95− t)0.34
≤ ln(93)

(93)0.34
< 1,

that is 19n ln q
q1.34 < 19n

q . Now we take

α ≤ n
ln q

q
+ n

0.5
√

ln q

q

to the inequality above, we have

µ < n
8m2

q
+ n

4m2

q

1√
ln q

+
19n

q

< n
8m2

q
+ n

4m2

q
× 1

2
+ n

19
q

= n
10m2 + 19

q
,

where

1√
ln q

≤ 1√
ln(93m + 2− t)

≤ 1√
ln(95− t)

<
1√

ln(93)
<

1
2
.
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Finally, we have

α + (2k + 1)β + 2kµ− 3k < n
72k + 20km2 + 17 + 0.5

√
ln q + ln q

q
.

So, the inequality (2) is proved and the theorem follows.
Remark 1 For k=1,

γc
1(G) < n

109 + 0.5
√

ln(δ + 1) + ln(δ + 1)
(δ + 1)

.

It improves the bound in [3], that is,

γc
1(G) < n

145 + 0.5
√

ln(δ + 1) + ln(δ + 1)
(δ + 1)

.

Remark 2 Since X ∪ Y is also a k-dominating set of G, and E[α] +
E[β] ≤ n 1+ln q

q , there is at least one choice of X ⊆ V (G) such that γk(G) ≤
|X ∪Y | ≤ n 1+ln q

q , where q = m(δ +1)+2− t, m = dk
3 e, and t = 3dk

3 e− k.
It improves the well-known result of Lovász [11], that is,

γ1(G) ≤ n
1 + ln(δ + 1)

δ + 1
.

Theorem 6 For any nontrivial connected graph G with order n and
minimum degree δ,

γc
k(G) ≤ (1 + oδ(1))n

ln q

q
,

where q = m(δ + 1) + 2− t, m = dk
3 e, and t = 3dk

3 e − k.
Proof By Theorem 5, we have

γc
k(G) < n

ln q

q

(
1 +

72k + 20km2 + 17
ln q

+
0.5√
ln q

)
.

We get the theorem as

lim
δ→∞

(
72k + 20km2 + 17

ln q
+

0.5√
ln q

)
= 0.

Remark 3 Theorem 6 generalizes the result of Caro et al [3] for k = 1,
that is,

γc
1(G) ≤ (1 + oδ(1))n

ln(δ + 1)
δ + 1

.

For δ is sufficiently large, we also find that the upper bound for γc
k(G)

behaves like the upper bound for γk(G).
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