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Abstract Let k be a positive integer and G = (V, E) be a connected
graph of order n. A set D C V is called a k-dominating set of G if each
x € V(G) — D is within distance k from some vertex of D. A connected
k-dominating set is a k-dominating set that induces a connected subgraph
of G. The connected k-domination number of G, denoted by v5(G), is
the minimum cardinality of a connected k-dominating set. Let § and A
denote the minimum and the maximum degree of G, respectively. This
paper establishes that v5(G) < max{l,n — 2k — A + 2}, and 75(G) <
(1+05(1))n 2222l where m = [4], £ = 3[5] — k, and 05(1) denotes
a function that tends to 0 as & — oo. The later generalizes the result
of Caro et al's in [Connected domination and spanning trees with many
leaves. STAM J. Discrete Math. 13 (2000), 202-211] for k = 1.
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1 Introduction

For terminology and notation on graph theory not given here, the
reader is referred to [2] or [13]. Let G = (V, E) be a finite simple graph with
vertex set V = V(G) and edge set E = F(G). The order, the maximum
degree and the minimum degree of vertices of G are denoted by n(G),
A(G) and 6(G), respectively. The distance dg(x,y) between two vertices
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x and y is the length of a shortest xy-path in G. For S C V(G), G[S]
denotes the subgraph of G induced by S, and for v € V(G), dg(v,S) =
min, ey (s){da(v,u)}. The eccentricity eg(v) of v is max,ey (){da(v,v)}.
The radius rad(G) is the smallest eccentricity of a vertex in G. Let k be a
positive integer. For every vertex z € V(G), the k-neighborhood Ny (z) of
x is defined by Ni(z) = {y € V(GQ) : dg(z,y) < k,z # y}, and Ny(x) is
usually called the neighborhood of x in G.

A set D of vertices in G is called a k-dominating set of G if every vertex
of V(@) — D is within distance k from some vertex of D. A k-dominating set
D is called to be connected if G[D] is connected. The minimum cardinality
among all k-dominating sets (resp. connected k-dominating sets) of G is
called the k-domination number (resp. connected k-domination number) of
G and is denoted by 74 (G) (resp. 75(G)). The concept of the k-dominating
set was first introduced by Chang and Nemhauser [4, 5].

Since the distance versions of domination have a strong background of
applications, many efforts have been made by several authors to consider
the distance parameters (see, for example, [4] ~ [10], [12, 14]).

It is quite difficult to determine the value of ¥4 (G) or v5(G) for any
given graph G. In this paper, we prove that for any nontrivial connected
graph G with order n, v¢(G) = minyg(7T'), where the minimum is taken
over all spanning trees T of G. We also get two upper bounds for v (G) in
terms of the maximum degree A = A(G), that is,

Yi(G) < max{l,n — 2k — A + 2},
and the minimum degree § = §(G), that is,

Infm(d+1) +2 —t
m@@+1)+2—¢ ’

%(G) < (1+0s(1))n

where m = [£], ¢t = 3[£] — k, and 05(1) denotes a function that tends to
0 as § — oco. The later generalizes the result of Caro et al’s [3] for k = 1,
that is,
In(6 +1)

d+1 7

The method used here is a generalization and refinement of theirs.

71 (G) < (1 +05(1)n

2 Elementary Results

Theorem 1 Let G be a nontrivial connected graph, and k£ be a
positive integer. Then ~;(G) = minyg(T), where the minimum is taken
over all spanning trees T" of G.



Proof Let G be a nontrivial connected graph and T be a spanning
tree of G. Then any connected k-dominating set of T is also a connected
k-dominating set of G. Therefore, v¢(G) < ~vg(T). Thus we have that
75 (G) < minyg(T'), where the minimum is taken over all spanning trees T
of G.

Now we show the reverse inequality. If G is a tree, then the theorem
holds trivially. So we may assume that G is a connected graph containing
cycles. Let D be a minimum connected k-dominating set of G and C' be a
cycle in G. If we can prove that D is also a connected k-dominating set of
G — e for some cycle edge e € E(C), then v7(G —e) < |D| = vi(G). By
applying this process a finite number of times, we have v (T') < v (G) for
some spanning tree 7" of G. Thus, we have that minvyg(7T") < 7 (G), where
the minimum is taken over all spanning trees T of G.

If V(C) C V(D), then obviously G[D] — e for any e € E(C) is also
connected and the vertices in V(G) — D are also all within distance k to
D.

If V(C) € V(D), then we select an edge zy in C such that dg(z, D) +
da(y, D) = max{dg(u, D) + dg(v,D) : w € E(C)}. Now we will show
that D is a connected k-dominating set of G — {zy}.

First for any two adjacent vertices v and v in G, we have |dg(u, D) —
dg(v,D)] < 1. Then if w is a vertex in V(C) such that dg(w,D) =
max{dg(v,D) : v € V(C)}, we have that w = z or w = y. Without loss
of generality, suppose that dg(x, D) = max{dg(v,D): v € V(C)}.

Let z be another neighbor of z different from y in V(C). So we imme-
diately have that dg(z, D) < dg(y, D). Thus, we get the distance between
a vertex in V(G) — D and D is not influenced by deleting the edge {zy}.
That is to say, dg—zy(v, D) = dg(v, D) for all vertices v in V(G). Hence,
D is also a connected k-dominating set of G — e for some cycle edge e. 1

Proposition 2 Let G = (V, E) be a nontrivial connected graph, and
k be a positive integer. If rad(G) < k, then v4(G) = 1.

3 Main Results

Theorem 3 Let G be a connected graph of order n > 2 with maxi-
mum degree A = A(G), and k be a positive integer, then

Y (G) < max{1l,n — 2k — A 4 2}.

Proof By Theorem 1, it is sufficient to show that v§(T") < max{l,n —
2k — A + 2}, for any spanning tree T' with maximum degree A = A(T).

If rad(T) < k, then by Theorem 2, we get v¢(Z") = 1. So we may assume
that rad(7") > k. Let P be a longest path in 7" with end-vertices u and



v. Then there exists two vertices « and y of P such that dr(z,u) = k and
dr(y,v) = k. Let P,y be the xy-subpath of P, and let D' = V(P) -V (P,,).
Let D =V(T)—(D'UZL(T)), where £ (T) is the set of leaves of V(T'). Thus
D must contain a connected k-dominating set of T'. Since u,v € D'N.Z(T),
and .Z(T) > A, we have

(1) < |V(T)|—|D'uZ(T)|
< V(D)= D' = [£(D)| + D' n2(T)|
<n—-2k—A+2

as required. ]

We use probabilistic method to give an upper bound of 75 (G) in terms
of the minimum degree 6 = §(G) below. This bound improves the results of
Caro et al [3] for k = 1 and the method is a generalization and refinement
of theirs.

For an event A and for a random variable Z of an arbitrary probability
space, P[A] and E[Z] denote the probability of A, the expectation of Z,
respectively.

Lemma 4 (Xu, Tian and Huang [14]) Let S be a k-dominating set of
a connected graph G. If G[S] has h components, then
%(G) < |5]+2(h = Dk.

Theorem 5 Let G be a nontrivial connected graph of order n with
minimum degree §, then

n72k +20km? + 17+ 0.5y/Inq +Ing

Q) <
%() q

(1)

where g =m(5+1)+2—t, m=[£] and t = 3[£] — k.

Proof Let k = 3m —t, where m > 1, 0 < t < 2. For 6(G) <
72| £ | 4+ 20km, we immediately have vf(G) < n, and the theorem holds.
We assume that 6(G) > 72| £ | + 20km > 92 below. Let p = lan, where
qg=m(0+1)+2—t, and let us pick, randomly and independently, each
vertex of V' with probability p. Let X be the set of vertices picked. Let Y be
the random set of all vertices that are not picked and have no k-neighbors
in X. By the choice of Y, X UY is a k-dominating set of G.

Claim 1 dg(X,Y)=Fk+ 1.

Proof of Claim 1. It is clear from the choice of Y that dg(X,Y) > k+1.
Now let a € X, b € Y be two vertices whose distance in G is the smallest,
that is, dg(a,b) = dg(X,Y). Let P be any shortest path from a to b and
let v be the second-last vertex on P. Then v ¢ Y. If dg(a,b) > k + 2,
then v has no k-neighbors in X. By definition of Y, we should get v € Y,
a contradiction. ]



Let « = |X|, B = |Y] and Pxy denote one shortest path from X to
Y. By Claim 1, we have |[V(Pxy)| = k + 2. Let u denote the number of
components in G[X]. Then X UY UV (Pxy) is a subgraph of G having at
most pu + # — 1 components. By Lemma 4, we have

(G <a+p+k+2pn+—-1-1k=a+ (2k+1)5+ 2ku — 3k.

In order to prove (1), it therefore suffices to show that with positive prob-
ability,

72k + 20km? + 17 + 0.5y/In g + Ing
; .

Claim 2 |Ni(v)| >m(6+1)+1—t for any v € V(G).

Proof of Claim 2 Let X;(v) ={u e V(G) : dg(u,v) =i}

If v e XUY, then by dg(X,Y) =k + 1 and G is connected, X;(v) # 0
for i = 1,---,k. Clearly, |X1(v)] > 4. For 2 < i < k — 2, we have that
| X, () |+ X 41 (v)|+]| Xig2(v)| > 0+1. In fact, for any u € X;41(v), N1(u) C
Xi(’l)) U Xi+1(v) U Xi+2(v), thus, |XZ(U)‘ + ‘Xi-i-l (’U)| -1+ |XH_2(’U)| > 0.
So, we have

INk()] = [X1(v)[ + [X2(v)[ + - 4+ [ X (v)]

5o (o5

d+(m—-10+1)+(2-1)
= m@@+1)+1-t.

a+ (2k+1)B+2kp—3k<n (2)

v

Let v € V(G) — (X UY). If dg(v,Y) > k or dg(v, X) > k, using the
same discussion as above we get |[Ng(v)] > m(d+1) + 1 —¢t. Now suppose
that dg(v,Y) < k and dg(v, X) < k. Since dg(X,Y) = k + 1, there must
exist a shortest path between a vertex a € X and a vertex b € Y through v
such that dg(a,b) > k+1, dg(v,b) < k and dg(a,v) < k. We only consider
the worst case dg(a,b) = k+ 1, and let P,;, denote the shortest path from
a to b passing through v.

Let v; and vs be two neighbors of v on P, from b to v and from a to
v, respectively. Let dg(b,v1) = {1, dg(a,v2) = €3. Thus, {1 + o = k — 1.
We only consider three cases. The other one are analogue or immediate by
symmetry.

If 41 = 1(mod 3), ¢ = 1(mod 3), then k£ = 0(mod 3), that is, k = 3m,

t=0.
INe(v)] > 0+ (V;J + V;D(6+1)+2
6+W#(5+1)+2



k—3
= d+5-(0+1)+2

= d+(m—-1)(F0+1)+2
= m(d+1)+1

If ¢, = 1(mod 3), {2 = 2(mod 3), then k = 1(mod 3), that is, k = 3m—2,
t = 2. Notice ¢3 = 2(mod 3) and dg(v,a) < k, then Ni(a) C Ni(v), thus
[ Xey—1(v2)| + | Xe, (02)| + | Xey+1(v2)] = 0 + 1. So we have

5+<V§J +V;D(§+1)+1+(5+1)

b1 —1+465—2
3

k—4
= 0+ (@+1)+0+2

= m(d+1)
> m@@+1)+1—t

Y

[Nk (v)]

= 0+ (+1)+0+2

If ¢ = 2(mod 3), {2 = 2(mod 3), then k = 2(mod 3), that is, k = 3m—1,
t = 1. By the discussion as above, we also get | Xy, —1(v1)] + | Xe, (v1)| +
| X, +1(v1)| > 6 + 1. Thus, we have,

/ ?
[Nk (v)] > 5+Q§J+HJ>(5+1)+2(5+1)

) )

= 5+%(5+1)+2é+2

= 5+—k;5(5+1)+25+2

= m(@d+1)+¢

> m(d+1)

The Claim 2 follows. 1

Claim 3 P [ﬂ > 173} < 0.059.

Proof of Claim 8 For each vertex v, the probability that v € Y is
that Plv € Y] = (1 — p)/V+@I+1 By Claim 2, we already have that
[Nk (v)] > m(6+1)+1—t for any v € V(G) and since 5 can be written as a
sum of n indicator random variables x,,, where x, =1 if v € Y and x, =0
otherwise, it follows that the expectation of [ satisfies E[5] < n(1 — p)9.
By using Taylor’s formula,

(1 — lnq>q < (e_lan>q = 17
q q



n Yot : E[B]
we have E[f] < . By Markov’s inequality, for any s > 0, P[3 > s] < =+,

we have,

1
Plg>170 < = <0059
q 17

as required. ]
05yIng } < 0.892.

q

Proof of Claim 4 Since a can also be written as a sum of n indicator
random variables that each having probability p of success, we also have
Ela) =np = nlan. We use an inequality attributed to Chernoff in [1], that
is, for any s > 0:

Claim 4 P oz>n1an+n

Pla> Ela] + 5] < exp{2_825)}.

(Ela] + 3
0.54/Ingq .. .
Take s = n—Y—— to this inequality, we have
Ing 0.54/In q
P {oz >n=; + n—g — }
___n
e
1
< exp| — -
( S e s q)
< exp| —s—=t——) < 0.892.
= p( 8+1.34\/1i?>
Here n > |Ni(v)| + 1 > ¢q. The Claim 4 follows. 1

Like [3], we say that a vertex v € V(G) is weakly dominated if v has
fewer than ¢l Ing neighbors in X. Let Ni*(v) denote the set of neighbors
of v in X. Let 2 denote the set of weakly dominated vertices in X.

Claim 5 P [|@| > 19n;%{1} < 0.047.

Proof of Claim 5 First we have, for any v € V(G),

E[IN{ )] = [Ni(v)lp > dp
= élnq
q
92
> —— Ing
93m+2—1t
92
> —1
= 9Bmiz P



where g is an increasing function for . By using linearity of expectation

and another inequality of Chernoff [1], that is, for any s > 0,

P [IN{*(v)| < BIIN{* (v)]) = 8] < exp (‘ m ) ’

we have,

P [IN{(v)| < gz Ing] = P [m|N{ (v)| < 55 Ing]

8m?

93m+2
< P m|N{(v)] < G2 BN (v)]]
93m+2
= P [mINF @) = EmINF ()] < - (m - Cr2) BINK (0)]]
(m— G2 ) B2 INY ()]
8m X 92 1
< exp- 2m B[N (0)]]
(m<zi’n@zz>)2mmm>
= e&Xp| — 2m
< 46 (93m+2) 21
S XD\ T93mzrom (™ Bmxo2 nq
2
46m2 (93m+2)
< eXP | ~o3mziam (1* 8m2><92> lnq>
46 95 \2
< eXP(*%( ~ 755) lnq>
0.367
< (l) .
- q

Since the event that a vertex v is picked into X is independent of the
event that v is a weakly dominated vertex. Hence, the probability that a
vertex is in X and is weakly dominated is,

1
. X
P |:’U EX, |N1 (’U)| < Wlnq}

=PveX]-P [|N1X(v)| < 8;21114

(1)0.367
=p|- .
q

1\ 0367 Ing
E[|Z]] <np (q> :nW-

Thus, we have

By Markov’s inequality,

< 0.047

1 1
P {@ > 19n “q}

1
ql-34 < 19¢0-027 < 19 x 930027



as required. ]
From Claim 3, Claim 4 and Claim 5, we find that all of these events
that

1 5/l
o < pnd,,05ving
q
go< 17t
q
Ing

could happen simultaneously with positive probability, that is,
1—0.892 — 0.059 — 0.047 = 0.002 > 0.

Now we choose a set X satisfying all of these events simultaneously.
Every component of X that contains no weakly dominated vertex has size
at least ﬁ Ing, and 2 has at most |2| components. Thus, we have the
number of components in G[X] satisfies,

« Ingq
u< — +19nq1.34 .

8m?

Inq

Since f(d) = ;5‘7‘14 is a decreasing function for § > 72 £ | 4+ 20km > 92, we
obtain

Ing < In(93m + 2 —t) < In(95 — t) < In(93)

1
@031 = (93m + 2 — £)031 = (95 — )0-34 = (93)0-34 <5
that is 19nq1{1. L < 19%. Now we take
1 51
a< nﬂ + nio Sving
q q
to the inequality above, we have
< n8m2 +n4m2 1 n 19n
: q ¢ VIng ¢
8m? 4m? 1 19
< n—+n—X - +n—
q q 2
10m? + 19
= n—-,
q
where
1 < 1 < 1 - 1 < 1
vIng = /In(93m +2—¢) = /In(95 —t)  /In(93) 2



Finally, we have

72k + 20km? + 17 4+ 0.5y/Inq + Ingq

a+(2k+1)8+ 2k — 3k < n ;

So, the inequality (2) is proved and the theorem follows. 1
Remark 1 For k=1,

(G < 109 4 0.5y/In(6 + 1) + In(6 + 1)
! (6+1) :

It improves the bound in [3], that is,

“(G) < 1454 0.5y/In(6 + 1) + In(6 + 1)
" (0+1) '

Remark 2 Since X UY is also a k-dominating set of G, and E[a] +
E[g] < n1+T1“q, there is at least one choice of X C V(G) such that 4 (G) <
[XUY| < n1+T1nq, where g =m(6+1)+2—t, m = [£], and t = 3[¥] — k.
It improves the well-known result of Lovdsz [11], that is,

1+In(s +1)

<
1(G) <n S+ 1

Theorem 6 For any nontrivial connected graph G with order n and

minimum degree ¢,

(G) < (14 os<1>>n1“7q,

where g=m(d+1)+2—-t, m= (%L andt:3[§] — k.
Proof By Theorem 5, we have

| 72k + 20km? + 17 0.5
7,2(G)<n% <1—|— AT )

Ing + VIng

We get the theorem as

Ing * VIng

Remark 3 Theorem 6 generalizes the result of Caro et al [3] for k = 1,
that is,

d—o0

) 72k + 20km? + 17 0.5
lim =0.

In(d + 1)

d+1
For § is sufficiently large, we also find that the upper bound for v¢(G)
behaves like the upper bound for v4(G).

71 (G) < (1 +05(1)n

10
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