On Distance Connected Domination Numbers of Graphs *

Fang Tian^{$a,b\dagger$} Jun-Ming Xu^a

a. Department of Mathematics

University of Science and Technology of China, Hefei, Anhui, 230026, China b. Department of Applied Mathematics

Shanghai University of Finance and Economics, Shanghai, 200133, China

Abstract Let k be a positive integer and G = (V, E) be a connected graph of order n. A set $D \subseteq V$ is called a k-dominating set of G if each $x \in V(G) - D$ is within distance k from some vertex of D. A connected k-dominating set is a k-dominating set that induces a connected subgraph of G. The connected k-domination number of G, denoted by $\gamma_k^c(G)$, is the minimum cardinality of a connected k-dominating set. Let δ and Δ denote the minimum and the maximum degree of G, respectively. This paper establishes that $\gamma_k^c(G) \leq \max\{1, n - 2k - \Delta + 2\}$, and $\gamma_k^c(G) \leq (1+o_{\delta}(1))n\frac{\ln[m(\delta+1)+2-t]}{m(\delta+1)+2-t}$, where $m = \lceil \frac{k}{3} \rceil$, $t = 3\lceil \frac{k}{3} \rceil - k$, and $o_{\delta}(1)$ denotes a function that tends to 0 as $\delta \to \infty$. The later generalizes the result of Caro *et al*'s in [Connected domination and spanning trees with many leaves. SIAM J. Discrete Math. 13 (2000), 202-211] for k = 1.

Keywords: domination, connected k-domination number, distance.

AMS Subject Classification: 05C69 05C12

1 Introduction

For terminology and notation on graph theory not given here, the reader is referred to [2] or [13]. Let G = (V, E) be a finite simple graph with vertex set V = V(G) and edge set E = E(G). The order, the maximum degree and the minimum degree of vertices of G are denoted by n(G), $\Delta(G)$ and $\delta(G)$, respectively. The distance $d_G(x, y)$ between two vertices

^{*} The work was supported by NNSF of China (No.10271114 and No.10301031).

[†] Corresponding author: tianf@mail.shufe.edu.cn

¹

x and y is the length of a shortest xy-path in G. For $S \subseteq V(G)$, G[S] denotes the subgraph of G induced by S, and for $v \in V(G)$, $d_G(v, S) = \min_{u \in V(S)} \{d_G(v, u)\}$. The eccentricity $e_G(v)$ of v is $\max_{x \in V(G)} \{d_G(v, x)\}$. The radius rad(G) is the smallest eccentricity of a vertex in G. Let k be a positive integer. For every vertex $x \in V(G)$, the k-neighborhood $N_k(x)$ of x is defined by $N_k(x) = \{y \in V(G) : d_G(x, y) \leq k, x \neq y\}$, and $N_1(x)$ is usually called the neighborhood of x in G.

A set D of vertices in G is called a k-dominating set of G if every vertex of V(G)-D is within distance k from some vertex of D. A k-dominating set D is called to be connected if G[D] is connected. The minimum cardinality among all k-dominating sets (resp. connected k-dominating sets) of G is called the k-domination number (resp. connected k-domination number) of G and is denoted by $\gamma_k(G)$ (resp. $\gamma_k^c(G)$). The concept of the k-dominating set was first introduced by Chang and Nemhauser [4, 5].

Since the distance versions of domination have a strong background of applications, many efforts have been made by several authors to consider the distance parameters (see, for example, $[4] \sim [10], [12, 14]$).

It is quite difficult to determine the value of $\gamma_k(G)$ or $\gamma_k^c(G)$ for any given graph G. In this paper, we prove that for any nontrivial connected graph G with order n, $\gamma_k^c(G) = \min \gamma_k^c(T)$, where the minimum is taken over all spanning trees T of G. We also get two upper bounds for $\gamma_k^c(G)$ in terms of the maximum degree $\Delta = \Delta(G)$, that is,

$$\gamma_k^c(G) \le \max\{1, n - 2k - \Delta + 2\},\$$

and the minimum degree $\delta = \delta(G)$, that is,

$$\gamma_k^c(G) \le (1 + o_\delta(1))n \frac{\ln[m(\delta + 1) + 2 - t]}{m(\delta + 1) + 2 - t},$$

where $m = \lceil \frac{k}{3} \rceil$, $t = 3 \lceil \frac{k}{3} \rceil - k$, and $o_{\delta}(1)$ denotes a function that tends to 0 as $\delta \to \infty$. The later generalizes the result of Caro *et al*'s [3] for k = 1, that is,

$$\gamma_1^c(G) \le (1 + o_{\delta}(1))n \frac{\ln(\delta + 1)}{\delta + 1}.$$

The method used here is a generalization and refinement of theirs.

2 Elementary Results

Theorem 1 Let G be a nontrivial connected graph, and k be a positive integer. Then $\gamma_k^c(G) = \min \gamma_k^c(T)$, where the minimum is taken over all spanning trees T of G.

Proof Let G be a nontrivial connected graph and T be a spanning tree of G. Then any connected k-dominating set of T is also a connected k-dominating set of G. Therefore, $\gamma_k^c(G) \leq \gamma_k^c(T)$. Thus we have that $\gamma_k^c(G) \leq \min \gamma_k^c(T)$, where the minimum is taken over all spanning trees T of G.

Now we show the reverse inequality. If G is a tree, then the theorem holds trivially. So we may assume that G is a connected graph containing cycles. Let D be a minimum connected k-dominating set of G and C be a cycle in G. If we can prove that D is also a connected k-dominating set of G - e for some cycle edge $e \in E(C)$, then $\gamma_k^c(G - e) \leq |D| = \gamma_k^c(G)$. By applying this process a finite number of times, we have $\gamma_k^c(T) \leq \gamma_k^c(G)$ for some spanning tree T of G. Thus, we have that $\min \gamma_k^c(T) \leq \gamma_k^c(G)$, where the minimum is taken over all spanning trees T of G.

If $V(C) \subseteq V(D)$, then obviously G[D] - e for any $e \in E(C)$ is also connected and the vertices in V(G) - D are also all within distance k to D.

If $V(C) \not\subseteq V(D)$, then we select an edge xy in C such that $d_G(x, D) + d_G(y, D) = \max\{d_G(u, D) + d_G(v, D) : uv \in E(C)\}$. Now we will show that D is a connected k-dominating set of $G - \{xy\}$.

First for any two adjacent vertices u and v in G, we have $|d_G(u, D) - d_G(v, D)| \leq 1$. Then if w is a vertex in V(C) such that $d_G(w, D) = \max\{d_G(v, D) : v \in V(C)\}$, we have that w = x or w = y. Without loss of generality, suppose that $d_G(x, D) = \max\{d_G(v, D) : v \in V(C)\}$.

Let z be another neighbor of x different from y in V(C). So we immediately have that $d_G(z, D) \leq d_G(y, D)$. Thus, we get the distance between a vertex in V(G) - D and D is not influenced by deleting the edge $\{xy\}$. That is to say, $d_{G-xy}(v, D) = d_G(v, D)$ for all vertices v in V(G). Hence, D is also a connected k-dominating set of G - e for some cycle edge e.

Proposition 2 Let G = (V, E) be a nontrivial connected graph, and k be a positive integer. If $rad(G) \leq k$, then $\gamma_k^c(G) = 1$.

3 Main Results

Theorem 3 Let G be a connected graph of order $n \ge 2$ with maximum degree $\Delta = \Delta(G)$, and k be a positive integer, then

$$\gamma_k^c(G) \le \max\{1, n - 2k - \Delta + 2\}.$$

Proof By Theorem 1, it is sufficient to show that $\gamma_k^c(T) \leq \max\{1, n - 2k - \Delta + 2\}$, for any spanning tree T with maximum degree $\Delta = \Delta(T)$.

If $\operatorname{rad}(T) \leq k$, then by Theorem 2, we get $\gamma_k^c(T) = 1$. So we may assume that $\operatorname{rad}(T) > k$. Let P be a longest path in T with end-vertices u and

v. Then there exists two vertices x and y of P such that $d_T(x, u) = k$ and $d_T(y, v) = k$. Let P_{xy} be the xy-subpath of P, and let $D' = V(P) - V(P_{xy})$. Let $D = V(T) - (D' \cup \mathscr{L}(T))$, where $\mathscr{L}(T)$ is the set of leaves of V(T). Thus D must contain a connected k-dominating set of T. Since $u, v \in D' \cap \mathscr{L}(T)$, and $\mathscr{L}(T) \ge \Delta$, we have

$$\begin{array}{ll} \gamma_k^c(T) & \leq |V(T)| - |D' \cup \mathscr{L}(T)| \\ & \leq |V(T)| - |D'| - |\mathscr{L}(T)| + |D' \cap \mathscr{L}(T)| \\ & \leq n - 2k - \Delta + 2 \end{array}$$

as required.

We use probabilistic method to give an upper bound of $\gamma_k^c(G)$ in terms of the minimum degree $\delta = \delta(G)$ below. This bound improves the results of Caro *et al* [3] for k = 1 and the method is a generalization and refinement of theirs.

For an event A and for a random variable Z of an arbitrary probability space, P[A] and E[Z] denote the probability of A, the expectation of Z, respectively.

Lemma 4 (Xu, Tian and Huang [14]) Let S be a k-dominating set of a connected graph G. If G[S] has h components, then

$$\gamma_k^c(G) \le |S| + 2(h-1)k$$

Theorem 5 Let G be a nontrivial connected graph of order n with minimum degree δ , then

$$\gamma_k^c(G) < n \frac{72k + 20km^2 + 17 + 0.5\sqrt{\ln q} + \ln q}{q},\tag{1}$$

where $q = m(\delta + 1) + 2 - t$, $m = \lfloor \frac{k}{3} \rfloor$ and $t = 3 \lfloor \frac{k}{3} \rfloor - k$.

Proof Let k = 3m - t, where $m \ge 1$, $0 \le t \le 2$. For $\delta(G) < 72\lfloor \frac{k}{m} \rfloor + 20km$, we immediately have $\gamma_k^c(G) \le n$, and the theorem holds. We assume that $\delta(G) \ge 72\lfloor \frac{k}{m} \rfloor + 20km \ge 92$ below. Let $p = \frac{\ln q}{q}$, where $q = m(\delta + 1) + 2 - t$, and let us pick, randomly and independently, each vertex of V with probability p. Let X be the set of vertices picked. Let Y be the random set of all vertices that are not picked and have no k-neighbors in X. By the choice of Y, $X \cup Y$ is a k-dominating set of G.

Claim 1 $d_G(X, Y) = k + 1.$

Proof of Claim 1. It is clear from the choice of Y that $d_G(X, Y) \ge k+1$. Now let $a \in X$, $b \in Y$ be two vertices whose distance in G is the smallest, that is, $d_G(a, b) = d_G(X, Y)$. Let P be any shortest path from a to b and let v be the second-last vertex on P. Then $v \notin Y$. If $d_G(a, b) \ge k+2$, then v has no k-neighbors in X. By definition of Y, we should get $v \in Y$, a contradiction.

4

ĺ

Let $\alpha = |X|$, $\beta = |Y|$ and P_{XY} denote one shortest path from X to Y. By Claim 1, we have $|V(P_{XY})| = k + 2$. Let μ denote the number of components in G[X]. Then $X \cup Y \cup V(P_{XY})$ is a subgraph of G having at most $\mu + \beta - 1$ components. By Lemma 4, we have

$$\gamma_k^c(G) \le \alpha + \beta + k + 2(\mu + \beta - 1 - 1)k = \alpha + (2k + 1)\beta + 2k\mu - 3k.$$

In order to prove (1), it therefore suffices to show that with positive probability,

$$\alpha + (2k+1)\beta + 2k\mu - 3k < n\frac{72k + 20km^2 + 17 + 0.5\sqrt{\ln q} + \ln q}{q}.$$
 (2)

Claim 2 $|N_k(v)| \ge m(\delta+1) + 1 - t$ for any $v \in V(G)$.

Proof of Claim 2 Let $X_i(v) = \{u \in V(G) : d_G(u, v) = i\}.$

If $v \in X \cup Y$, then by $d_G(X,Y) = k+1$ and G is connected, $X_i(v) \neq \emptyset$ for $i = 1, \dots, k$. Clearly, $|X_1(v)| \ge \delta$. For $2 \le i \le k-2$, we have that $|X_i(v)| + |X_{i+1}(v)| + |X_{i+2}(v)| \ge \delta + 1$. In fact, for any $u \in X_{i+1}(v), N_1(u) \subseteq X_i(v) \cup X_{i+1}(v) \cup X_{i+2}(v)$, thus, $|X_i(v)| + |X_{i+1}(v)| - 1 + |X_{i+2}(v)| \ge \delta$. So, we have

$$|N_k(v)| = |X_1(v)| + |X_2(v)| + \dots + |X_k(v)|$$

$$\geq \delta + \left\lfloor \frac{k-1}{3} \right\rfloor (\delta+1) + \left(k-1-3\left\lfloor \frac{k-1}{3} \right\rfloor \right)$$

$$= \delta + (m-1)(\delta+1) + (2-t)$$

$$= m(\delta+1) + 1 - t.$$

Let $v \in V(G) - (X \cup Y)$. If $d_G(v, Y) \ge k$ or $d_G(v, X) \ge k$, using the same discussion as above we get $|N_k(v)| \ge m(\delta + 1) + 1 - t$. Now suppose that $d_G(v, Y) < k$ and $d_G(v, X) < k$. Since $d_G(X, Y) = k + 1$, there must exist a shortest path between a vertex $a \in X$ and a vertex $b \in Y$ through v such that $d_G(a, b) \ge k + 1$, $d_G(v, b) < k$ and $d_G(a, v) < k$. We only consider the worst case $d_G(a, b) = k + 1$, and let P_{ab} denote the shortest path from a to b passing through v.

Let v_1 and v_2 be two neighbors of v on P_{ab} from b to v and from a to v, respectively. Let $d_G(b, v_1) = \ell_1$, $d_G(a, v_2) = \ell_2$. Thus, $\ell_1 + \ell_2 = k - 1$. We only consider three cases. The other one are analogue or immediate by symmetry.

If $\ell_1 \equiv 1 \pmod{3}$, $\ell_2 \equiv 1 \pmod{3}$, then $k \equiv 0 \pmod{3}$, that is, k = 3m, t = 0.

$$|N_k(v)| \geq \delta + \left(\left\lfloor \frac{\ell_1}{3} \right\rfloor + \left\lfloor \frac{\ell_2}{3} \right\rfloor\right) (\delta + 1) + 2$$
$$= \delta + \frac{\ell_1 + \ell_2 - 2}{3} (\delta + 1) + 2$$

$$= \delta + \frac{k-3}{3}(\delta+1) + 2 = \delta + (m-1)(\delta+1) + 2 = m(\delta+1) + 1$$

If $\ell_1 \equiv 1 \pmod{3}$, $\ell_2 \equiv 2 \pmod{3}$, then $k \equiv 1 \pmod{3}$, that is, k = 3m-2, t = 2. Notice $\ell_2 \equiv 2 \pmod{3}$ and $d_G(v, a) < k$, then $N_1(a) \subseteq N_k(v)$, thus $|X_{\ell_2-1}(v_2)| + |X_{\ell_2}(v_2)| + |X_{\ell_2+1}(v_2)| \ge \delta + 1$. So we have

$$\begin{aligned} |N_k(v)| &\geq \delta + \left(\left\lfloor \frac{\ell_1}{3} \right\rfloor + \left\lfloor \frac{\ell_2}{3} \right\rfloor \right) (\delta+1) + 1 + (\delta+1) \\ &= \delta + \frac{\ell_1 - 1 + \ell_2 - 2}{3} (\delta+1) + \delta + 2 \\ &= \delta + \frac{k-4}{3} (\delta+1) + \delta + 2 \\ &= m(\delta+1) \\ &> m(\delta+1) + 1 - t \end{aligned}$$

If $\ell_1 \equiv 2 \pmod{3}$, $\ell_2 \equiv 2 \pmod{3}$, then $k \equiv 2 \pmod{3}$, that is, k = 3m-1, t = 1. By the discussion as above, we also get $|X_{\ell_1-1}(v_1)| + |X_{\ell_1}(v_1)| + |X_{$ $|X_{\ell_1+1}(v_1)| \ge \delta + 1$. Thus, we have,

$$\begin{aligned} |N_k(v)| &\geq \delta + \left(\left\lfloor \frac{\ell_1}{3} \right\rfloor + \left\lfloor \frac{\ell_2}{3} \right\rfloor \right) (\delta+1) + 2(\delta+1) \\ &= \delta + \frac{\ell_1 - 2 + \ell_2 - 2}{3} (\delta+1) + 2\delta + 2 \\ &= \delta + \frac{k - 5}{3} (\delta+1) + 2\delta + 2 \\ &= m(\delta+1) + \delta \\ &> m(\delta+1) \end{aligned}$$

The Claim 2 follows.

Claim 3 $P\left[\beta > 17\frac{n}{q}\right] < 0.059.$ *Proof of Claim 3* For each vertex v, the probability that $v \in Y$ is that $P[v \in Y] = (1-p)^{|N_k(v)|+1}$. By Claim 2, we already have that $|N_k(v)| \geq m(\delta+1) + 1 - t$ for any $v \in V(G)$ and since β can be written as a sum of n indicator random variables χ_v , where $\chi_v = 1$ if $v \in Y$ and $\chi_v = 0$ otherwise, it follows that the expectation of β satisfies $E[\beta] \leq n(1-p)^q$. By using Taylor's formula,

$$\left(1 - \frac{\ln q}{q}\right)^q < \left(e^{-\frac{\ln q}{q}}\right)^q = \frac{1}{q},$$

r	
	١
L.	ļ

we have $E[\beta] < \frac{n}{q}$. By Markov's inequality, for any s > 0, $P[\beta > s] < \frac{E[\beta]}{s}$, we have,

$$P\left[\beta > 17\frac{n}{q}\right] < \frac{1}{17} < 0.059$$

as required.

Claim 4 $P\left[\alpha > n\frac{\ln q}{q} + n\frac{0.5\sqrt{\ln q}}{q}\right] < 0.892.$ *Proof of Claim 4* Since α can also be written as a sum of n indicator

random variables that each having probability p of success, we also have $E[\alpha] = np = n \frac{\ln q}{q}$. We use an inequality attributed to Chernoff in [1], that is, for any $s \ge 0$:

$$P[\alpha > E[\alpha] + s] \le \exp\left\{\frac{-s^2}{2(E[\alpha] + \frac{s}{3})}\right\}.$$

Take $s = n \frac{0.5 \sqrt{\ln q}}{q}$ to this inequality, we have

$$\begin{split} P\left[\alpha > n\frac{\ln q}{q} + n\frac{0.5\sqrt{\ln q}}{q}\right] \\ \leq & \exp\left(-\frac{n}{8q + \frac{4}{3}q\frac{1}{\sqrt{\ln q}}}\right) \\ < & \exp\left(-\frac{1}{8+1.34\frac{1}{\sqrt{\ln [93m+2-t]}}}\right) \\ \leq & \exp\left(-\frac{1}{8+1.34\frac{1}{\sqrt{\ln 93}}}\right) < 0.892. \end{split}$$

Here $n \ge |N_k(v)| + 1 \ge q$. The Claim 4 follows.

Like [3], we say that a vertex $v \in V(G)$ is weakly dominated if v has fewer than $\frac{1}{8m^2} \ln q$ neighbors in X. Let $N_1^X(v)$ denote the set of neighbors of v in X. Let \mathscr{D} denote the set of weakly dominated vertices in X. **Claim 5** $P\left[|\mathscr{D}| > 19n\frac{\ln q}{q^{1.34}}\right] < 0.047.$ *Proof of Claim 5* First we have, for any $v \in V(G)$,

$$E\left[|N_1^X(v)|\right] = |N_1(v)|p \ge \delta p$$

= $\frac{\delta}{q} \ln q$
$$\ge \frac{92}{93m+2-t} \ln q$$

$$\ge \frac{92}{93m+2} \ln q,$$

7

where $\frac{\delta}{q}$ is an increasing function for δ . By using linearity of expectation and another inequality of Chernoff [1], that is, for any $s \geq 0$,

$$P\left[|N_1^X(v)| < E[|N_1^X(v)|] - s\right] \le \exp\left(-\frac{s^2}{2E[|N_1^X(v)|]}\right),$$

we have,

$$\begin{split} &P\left[|N_1^X(v)| < \frac{1}{8m^2} \ln q\right] = P\left[m|N_1^X(v)| < \frac{1}{8m} \ln q\right] \\ &\leq P\left[m|N_1^X(v)| < \frac{(93m+2)}{8m\times92} E[|N_1^X(v)|]\right] \\ &= P\left[m|N_1^X(v)| - E[m|N_1^X(v)|] < -\left(m - \frac{(93m+2)}{8m\times92}\right) E[|N_1^X(v)|]\right] \\ &< \exp\left(-\frac{\left(m - \frac{(93m+2)}{8m\times92}\right)^2 E^2[|N_1^X(v)|]}{2m E[|N_1^X(v)|]}\right) \\ &= \exp\left(-\frac{\left(m - \frac{(93m+2)}{8m\times92}\right)^2 E[|N_1^X(v)|]}{2m}\right) \\ &\leq \exp\left(-\frac{46}{93m^2+2m} \left(m - \frac{(93m+2)}{8m\times92}\right)^2 \ln q\right) \\ &\leq \exp\left(-\frac{46m^2}{93m^2+2m} \left(1 - \frac{(93m+2)}{8m^2\times92}\right)^2 \ln q\right) \\ &\leq \exp\left(-\frac{46}{95} \left(1 - \frac{95}{736}\right)^2 \ln q\right) \\ &\leq \left(\frac{1}{q}\right)^{0.367}. \end{split}$$

Since the event that a vertex v is picked into X is independent of the event that v is a weakly dominated vertex. Hence, the probability that a vertex is in X and is weakly dominated is,

$$P\left[v \in X; \ |N_1^X(v)| < \frac{1}{8m^2} \ln q\right]$$
$$= P\left[v \in X\right] \cdot P\left[|N_1^X(v)| < \frac{1}{8m^2} \ln q\right]$$
$$\leq p\left(\frac{1}{q}\right)^{0.367}.$$

Thus, we have

$$E\left[|\mathscr{D}|\right] \le np\left(\frac{1}{q}\right)^{0.367} = n\frac{\ln q}{q^{1.367}}.$$

By Markov's inequality,

$$P\left[|\mathscr{D}| > 19n\frac{\ln q}{q^{1.34}}\right] < \frac{1}{19q^{0.027}} < \frac{1}{19 \times 93^{0.027}} < 0.047$$

as required.

From Claim 3, Claim 4 and Claim 5, we find that all of these events that

$$\begin{array}{rcl} \alpha & \leq & n \frac{\ln q}{q} + n \frac{0.5 \sqrt{\ln q}}{q} \\ \beta & \leq & 17 \frac{n}{q} \\ |\mathcal{D}| & \leq & 19n \frac{\ln q}{q^{1.34}} \end{array}$$

could happen simultaneously with positive probability, that is,

$$1 - 0.892 - 0.059 - 0.047 = 0.002 > 0$$

Now we choose a set X satisfying all of these events simultaneously. Every component of X that contains no weakly dominated vertex has size at least $\frac{1}{8m^2} \ln q$, and \mathscr{D} has at most $|\mathscr{D}|$ components. Thus, we have the number of components in G[X] satisfies,

$$\mu \le \frac{\alpha}{\frac{1}{8m^2}\ln q} + 19n \frac{\ln q}{q^{1.34}} \ .$$

Since $f(\delta) = \frac{\ln q}{q^{0.34}}$ is a decreasing function for $\delta \ge 72\lfloor \frac{k}{m} \rfloor + 20km \ge 92$, we obtain

$$\frac{\ln q}{q^{0.34}} \le \frac{\ln(93m+2-t)}{(93m+2-t)^{0.34}} \le \frac{\ln(95-t)}{(95-t)^{0.34}} \le \frac{\ln(93)}{(93)^{0.34}} < 1,$$

that is $19n \frac{\ln q}{q^{1.34}} < 19 \frac{n}{q}$. Now we take

$$\alpha \le n \frac{\ln q}{q} + n \frac{0.5\sqrt{\ln q}}{q}$$

to the inequality above, we have

$$\begin{split} \mu &< n \frac{8m^2}{q} + n \frac{4m^2}{q} \frac{1}{\sqrt{\ln q}} + \frac{19n}{q} \\ &< n \frac{8m^2}{q} + n \frac{4m^2}{q} \times \frac{1}{2} + n \frac{19}{q} \\ &= n \frac{10m^2 + 19}{q}, \end{split}$$

where

$$\frac{1}{\sqrt{\ln q}} \leq \frac{1}{\sqrt{\ln(93m+2-t)}} \leq \frac{1}{\sqrt{\ln(95-t)}} < \frac{1}{\sqrt{\ln(93)}} < \frac{1}{2}.$$

9

Finally, we have

$$\alpha + (2k+1)\beta + 2k\mu - 3k < n\frac{72k + 20km^2 + 17 + 0.5\sqrt{\ln q} + \ln q}{q}.$$

So, the inequality (2) is proved and the theorem follows. **Remark 1** For k=1,

$$\gamma_1^c(G) < n \frac{109 + 0.5\sqrt{\ln(\delta + 1)} + \ln(\delta + 1)}{(\delta + 1)}.$$

It improves the bound in [3], that is,

$$\gamma_1^c(G) < n \frac{145 + 0.5\sqrt{\ln(\delta + 1)} + \ln(\delta + 1)}{(\delta + 1)}.$$

Remark 2 Since $X \cup Y$ is also a k-dominating set of G, and $E[\alpha] + E[\beta] \le n \frac{1+\ln q}{q}$, there is at least one choice of $X \subseteq V(G)$ such that $\gamma_k(G) \le |X \cup Y| \le n \frac{1+\ln q}{q}$, where $q = m(\delta + 1) + 2 - t$, $m = \lceil \frac{k}{3} \rceil$, and $t = 3 \lceil \frac{k}{3} \rceil - k$. It improves the well-known result of Lovász [11], that is,

$$\gamma_1(G) \le n \frac{1 + \ln(\delta + 1)}{\delta + 1}.$$

Theorem 6 For any nontrivial connected graph G with order n and minimum degree δ ,

$$\gamma_k^c(G) \le (1 + o_\delta(1))n \frac{\ln q}{q},$$

where $q = m(\delta + 1) + 2 - t$, $m = \lceil \frac{k}{3} \rceil$, and $t = 3 \lceil \frac{k}{3} \rceil - k$. *Proof* By Theorem 5, we have

$$\gamma_k^c(G) < n \frac{\ln q}{q} \left(1 + \frac{72k + 20km^2 + 17}{\ln q} + \frac{0.5}{\sqrt{\ln q}} \right).$$

We get the theorem as

$$\lim_{\delta \to \infty} \left(\frac{72k + 20km^2 + 17}{\ln q} + \frac{0.5}{\sqrt{\ln q}} \right) = 0.$$

Remark 3 Theorem 6 generalizes the result of Caro *et al* [3] for k = 1, that is,

$$\gamma_1^c(G) \le (1 + o_{\delta}(1))n \frac{\ln(\delta + 1)}{\delta + 1}.$$

For δ is sufficiently large, we also find that the upper bound for $\gamma_k^c(G)$ behaves like the upper bound for $\gamma_k(G)$.

References

- [1] Bollobás, B., Random Graphs. Cambridge University Press, 2001.
- [2] Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications. New York: North Holland, 1976.
- [3] Caro, Y. West, D. B. and Yuster, R., Connected domination and spanning trees with many leaves. SIAM J. Discrete Math., 13(2) (2000), 202-211.
- [4] Chang, G. J., k-domination and graph covering problems. Ph.D. Thesis, School of OR and IE, Cornell University, Ithaca, NY(1982).
- [5] Chang, G. J. and Nemhauser, G. L., The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods, 5 (1984), 332-345.
- [6] Hattingh, J. H. and Henning, M. A., The ratio of the distance irredundance and domination numbers of a graph. J. Graph Theory, 18 (1994), 1-9.
- [7] Henning, M. A., Oellermann, O. R. and Swart, H. C., Bounds on distance domination parameters. J. Combin. Inform. Systems Sci., 16 (1991), 11-18.
- [8] Henning, M. A., Oellermann, O. R. and Swart, H. C., Relations between distance domination parameters. *Math. Pannon.*, 5(1) (1994), 69-79.
- [9] Henning, M. A., Oellermann, O. R. and Swart, H. C., The diversity of domination. *Discrete Math.*, 161 (1996), 161-173.
- [10] Li, S.-G., On connected k-domination numbers of graphs. Discrete Math., 274 (2004), 303-310.
- [11] Lovász, L., On the ratio of optimal and integral fractional covers. Discrete Math., 13 (1975), 383-390.
- [12] Rautenbach, D. and Volkmann, L., On $\alpha_r \gamma_s(k)$ -perfect graphs. *Discrete Math.*, **270** (2003), 241-250.
- [13] Xu, J.-M., Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
- [14] Xu, J.-M., Tian, F. and Huang, J., Distance irredundance and connected domination numbers of a graph, a manuscript submitted to Discrete Mathematics.