On Distance Connected Domination Numbers of Graphs *

Fang Tian ${ }^{a, b \dagger}$ Jun-Ming Xu ${ }^{a}$
a. Department of Mathematics
University of Science and Technology of China, Hefei, Anhui, 230026, China
b. Department of Applied Mathematics
Shanghai University of Finance and Economics, Shanghai, 200133, China

Abstract

Let k be a positive integer and $G=(V, E)$ be a connected graph of order n. A set $D \subseteq V$ is called a k-dominating set of G if each $x \in V(G)-D$ is within distance k from some vertex of D. A connected k-dominating set is a k-dominating set that induces a connected subgraph of G . The connected k-domination number of G , denoted by $\gamma_{k}^{c}(G)$, is the minimum cardinality of a connected k-dominating set. Let δ and Δ denote the minimum and the maximum degree of G, respectively. This paper establishes that $\gamma_{k}^{c}(G) \leq \max \{1, n-2 k-\Delta+2\}$, and $\gamma_{k}^{c}(G) \leq$ $\left(1+o_{\delta}(1)\right) n \frac{\ln [m(\delta+1)+2-t]}{m(\delta+1)+2-t}$, where $m=\left\lceil\frac{k}{3}\right\rceil, t=3\left\lceil\frac{k}{3}\right\rceil-k$, and $o_{\delta}(1)$ denotes a function that tends to 0 as $\delta \rightarrow \infty$. The later generalizes the result of Caro et al's in [Connected domination and spanning trees with many leaves. SIAM J. Discrete Math. 13 (2000), 202-211] for $k=1$.

Keywords: domination, connected k-domination number, distance.
AMS Subject Classification: 05C69 05C12

1 Introduction

For terminology and notation on graph theory not given here, the reader is referred to [2] or [13]. Let $G=(V, E)$ be a finite simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The order, the maximum degree and the minimum degree of vertices of G are denoted by $n(G)$, $\Delta(G)$ and $\delta(G)$, respectively. The distance $d_{G}(x, y)$ between two vertices

[^0]x and y is the length of a shortest $x y$-path in G. For $S \subseteq V(G), G[S]$ denotes the subgraph of G induced by S, and for $v \in V(G), d_{G}(v, S)=$ $\min _{u \in V(S)}\left\{d_{G}(v, u)\right\}$. The eccentricity $e_{G}(v)$ of v is $\max _{x \in V(G)}\left\{d_{G}(v, x)\right\}$. The radius $\operatorname{rad}(G)$ is the smallest eccentricity of a vertex in G. Let k be a positive integer. For every vertex $x \in V(G)$, the k-neighborhood $N_{k}(x)$ of x is defined by $N_{k}(x)=\left\{y \in V(G): d_{G}(x, y) \leq k, x \neq y\right\}$, and $N_{1}(x)$ is usually called the neighborhood of x in G.

A set D of vertices in G is called a k-dominating set of G if every vertex of $V(G)-D$ is within distance k from some vertex of D. A k-dominating set D is called to be connected if $G[D]$ is connected. The minimum cardinality among all k-dominating sets (resp. connected k-dominating sets) of G is called the k-domination number (resp. connected k-domination number) of G and is denoted by $\gamma_{k}(G)$ (resp. $\gamma_{k}^{c}(G)$). The concept of the k-dominating set was first introduced by Chang and Nemhauser [4, 5].

Since the distance versions of domination have a strong background of applications, many efforts have been made by several authors to consider the distance parameters (see, for example, [4] ~ [10], [12, 14]).

It is quite difficult to determine the value of $\gamma_{k}(G)$ or $\gamma_{k}^{c}(G)$ for any given graph G. In this paper, we prove that for any nontrivial connected graph G with order $n, \gamma_{k}^{c}(G)=\min \gamma_{k}^{c}(T)$, where the minimum is taken over all spanning trees T of G. We also get two upper bounds for $\gamma_{k}^{c}(G)$ in terms of the maximum degree $\Delta=\Delta(G)$, that is,

$$
\gamma_{k}^{c}(G) \leq \max \{1, n-2 k-\Delta+2\},
$$

and the minimum degree $\delta=\delta(G)$, that is,

$$
\gamma_{k}^{c}(G) \leq\left(1+o_{\delta}(1)\right) n \frac{\ln [m(\delta+1)+2-t]}{m(\delta+1)+2-t}
$$

where $m=\left\lceil\frac{k}{3}\right\rceil, t=3\left\lceil\frac{k}{3}\right\rceil-k$, and $o_{\delta}(1)$ denotes a function that tends to 0 as $\delta \rightarrow \infty$. The later generalizes the result of Caro et al's [3] for $k=1$, that is,

$$
\gamma_{1}^{c}(G) \leq\left(1+o_{\delta}(1)\right) n \frac{\ln (\delta+1)}{\delta+1}
$$

The method used here is a generalization and refinement of theirs.

2 Elementary Results

Theorem 1 Let G be a nontrivial connected graph, and k be a positive integer. Then $\gamma_{k}^{c}(G)=\min \gamma_{k}^{c}(T)$, where the minimum is taken over all spanning trees T of G.

Proof Let G be a nontrivial connected graph and T be a spanning tree of G. Then any connected k-dominating set of T is also a connected k-dominating set of G. Therefore, $\gamma_{k}^{c}(G) \leq \gamma_{k}^{c}(T)$. Thus we have that $\gamma_{k}^{c}(G) \leq \min \gamma_{k}^{c}(T)$, where the minimum is taken over all spanning trees T of G.

Now we show the reverse inequality. If G is a tree, then the theorem holds trivially. So we may assume that G is a connected graph containing cycles. Let D be a minimum connected k-dominating set of G and C be a cycle in G. If we can prove that D is also a connected k-dominating set of $G-e$ for some cycle edge $e \in E(C)$, then $\gamma_{k}^{c}(G-e) \leq|D|=\gamma_{k}^{c}(G)$. By applying this process a finite number of times, we have $\gamma_{k}^{c}(T) \leq \gamma_{k}^{c}(G)$ for some spanning tree T of G. Thus, we have that $\min \gamma_{k}^{c}(T) \leq \gamma_{k}^{c}(G)$, where the minimum is taken over all spanning trees T of G.

If $V(C) \subseteq V(D)$, then obviously $G[D]-e$ for any $e \in E(C)$ is also connected and the vertices in $V(G)-D$ are also all within distance k to D.

If $V(C) \nsubseteq V(D)$, then we select an edge $x y$ in C such that $d_{G}(x, D)+$ $d_{G}(y, D)=\max \left\{d_{G}(u, D)+d_{G}(v, D): u v \in E(C)\right\}$. Now we will show that D is a connected k-dominating set of $G-\{x y\}$.

First for any two adjacent vertices u and v in G, we have $\mid d_{G}(u, D)-$ $d_{G}(v, D) \mid \leq 1$. Then if w is a vertex in $V(C)$ such that $d_{G}(w, D)=$ $\max \left\{d_{G}(v, D): v \in V(C)\right\}$, we have that $w=x$ or $w=y$. Without loss of generality, suppose that $d_{G}(x, D)=\max \left\{d_{G}(v, D): v \in V(C)\right\}$.

Let z be another neighbor of x different from y in $V(C)$. So we immediately have that $d_{G}(z, D) \leq d_{G}(y, D)$. Thus, we get the distance between a vertex in $V(G)-D$ and D is not influenced by deleting the edge $\{x y\}$. That is to say, $d_{G-x y}(v, D)=d_{G}(v, D)$ for all vertices v in $V(G)$. Hence, D is also a connected k-dominating set of $G-e$ for some cycle edge e.

Proposition 2 Let $G=(V, E)$ be a nontrivial connected graph, and k be a positive integer. If $\operatorname{rad}(G) \leq k$, then $\gamma_{k}^{c}(G)=1$.

3 Main Results

Theorem 3 Let G be a connected graph of order $n \geq 2$ with maximum degree $\Delta=\Delta(G)$, and k be a positive integer, then

$$
\gamma_{k}^{c}(G) \leq \max \{1, n-2 k-\Delta+2\}
$$

Proof By Theorem 1, it is sufficient to show that $\gamma_{k}^{c}(T) \leq \max \{1, n-$ $2 k-\Delta+2\}$, for any spanning tree T with maximum degree $\Delta=\Delta(T)$.

If $\operatorname{rad}(T) \leq k$, then by Theorem 2 , we get $\gamma_{k}^{c}(T)=1$. So we may assume that $\operatorname{rad}(T)>k$. Let P be a longest path in T with end-vertices u and
v. Then there exists two vertices x and y of P such that $d_{T}(x, u)=k$ and $d_{T}(y, v)=k$. Let $P_{x y}$ be the $x y$-subpath of P, and let $D^{\prime}=V(P)-V\left(P_{x y}\right)$. Let $D=V(T)-\left(D^{\prime} \cup \mathscr{L}(T)\right)$, where $\mathscr{L}(T)$ is the set of leaves of $V(T)$. Thus D must contain a connected k-dominating set of T. Since $u, v \in D^{\prime} \cap \mathscr{L}(T)$, and $\mathscr{L}(T) \geq \Delta$, we have

$$
\begin{aligned}
\gamma_{k}^{c}(T) & \leq|V(T)|-\left|D^{\prime} \cup \mathscr{L}(T)\right| \\
& \leq|V(T)|-\left|D^{\prime}\right|-|\mathscr{L}(T)|+\left|D^{\prime} \cap \mathscr{L}(T)\right| \\
& \leq n-2 k-\Delta+2
\end{aligned}
$$

as required.
We use probabilistic method to give an upper bound of $\gamma_{k}^{c}(G)$ in terms of the minimum degree $\delta=\delta(G)$ below. This bound improves the results of Caro et al [3] for $k=1$ and the method is a generalization and refinement of theirs.

For an event A and for a random variable Z of an arbitrary probability space, $P[A]$ and $E[Z]$ denote the probability of A, the expectation of Z, respectively.

Lemma 4 (Xu, Tian and Huang [14]) Let S be a k-dominating set of a connected graph G. If $G[S]$ has h components, then

$$
\gamma_{k}^{c}(G) \leq|S|+2(h-1) k .
$$

Theorem 5 Let G be a nontrivial connected graph of order n with minimum degree δ, then

$$
\begin{equation*}
\gamma_{k}^{c}(G)<n \frac{72 k+20 k m^{2}+17+0.5 \sqrt{\ln q}+\ln q}{q} \tag{1}
\end{equation*}
$$

where $q=m(\delta+1)+2-t, m=\left\lceil\frac{k}{3}\right\rceil$ and $t=3\left\lceil\frac{k}{3}\right\rceil-k$.
Proof Let $k=3 m-t$, where $m \geq 1,0 \leq t \leq 2$. For $\delta(G)<$ $72\left\lfloor\frac{k}{m}\right\rfloor+20 k m$, we immediately have $\gamma_{k}^{c}(G) \leq n$, and the theorem holds. We assume that $\delta(G) \geq 72\left\lfloor\frac{k}{m}\right\rfloor+20 k m \geq 92$ below. Let $p=\frac{\ln q}{q}$, where $q=m(\delta+1)+2-t$, and let us pick, randomly and independently, each vertex of V with probability p. Let X be the set of vertices picked. Let Y be the random set of all vertices that are not picked and have no k-neighbors in X. By the choice of $Y, X \cup Y$ is a k-dominating set of G.

Claim $1 \quad d_{G}(X, Y)=k+1$.
Proof of Claim 1. It is clear from the choice of Y that $d_{G}(X, Y) \geq k+1$. Now let $a \in X, b \in Y$ be two vertices whose distance in G is the smallest, that is, $d_{G}(a, b)=d_{G}(X, Y)$. Let P be any shortest path from a to b and let v be the second-last vertex on P. Then $v \notin Y$. If $d_{G}(a, b) \geq k+2$, then v has no k-neighbors in X. By definition of Y, we should get $v \in Y$, a contradiction.

Let $\alpha=|X|, \beta=|Y|$ and $P_{X Y}$ denote one shortest path from X to Y. By Claim 1, we have $\left|V\left(P_{X Y}\right)\right|=k+2$. Let μ denote the number of components in $G[X]$. Then $X \cup Y \cup V\left(P_{X Y}\right)$ is a subgraph of G having at most $\mu+\beta-1$ components. By Lemma 4, we have

$$
\gamma_{k}^{c}(G) \leq \alpha+\beta+k+2(\mu+\beta-1-1) k=\alpha+(2 k+1) \beta+2 k \mu-3 k
$$

In order to prove (1), it therefore suffices to show that with positive probability,

$$
\begin{equation*}
\alpha+(2 k+1) \beta+2 k \mu-3 k<n \frac{72 k+20 k m^{2}+17+0.5 \sqrt{\ln q}+\ln q}{q} . \tag{2}
\end{equation*}
$$

Claim $2\left|N_{k}(v)\right| \geq m(\delta+1)+1-t$ for any $v \in V(G)$.
Proof of Claim 2 Let $X_{i}(v)=\left\{u \in V(G): d_{G}(u, v)=i\right\}$.
If $v \in X \cup Y$, then by $d_{G}(X, Y)=k+1$ and G is connected, $X_{i}(v) \neq \emptyset$ for $i=1, \cdots, k$. Clearly, $\left|X_{1}(v)\right| \geq \delta$. For $2 \leq i \leq k-2$, we have that $\left|X_{i}(v)\right|+\left|X_{i+1}(v)\right|+\left|X_{i+2}(v)\right| \geq \delta+1$. In fact, for any $u \in X_{i+1}(v), N_{1}(u) \subseteq$ $X_{i}(v) \cup X_{i+1}(v) \cup X_{i+2}(v)$, thus, $\left|X_{i}(v)\right|+\left|X_{i+1}(v)\right|-1+\left|X_{i+2}(v)\right| \geq \bar{\delta}$. So, we have

$$
\begin{aligned}
\left|N_{k}(v)\right| & =\left|X_{1}(v)\right|+\left|X_{2}(v)\right|+\cdots+\left|X_{k}(v)\right| \\
& \geq \delta+\left\lfloor\frac{k-1}{3}\right\rfloor(\delta+1)+\left(k-1-3\left\lfloor\frac{k-1}{3}\right\rfloor\right) \\
& =\delta+(m-1)(\delta+1)+(2-t) \\
& =m(\delta+1)+1-t .
\end{aligned}
$$

Let $v \in V(G)-(X \cup Y)$. If $d_{G}(v, Y) \geq k$ or $d_{G}(v, X) \geq k$, using the same discussion as above we get $\left|N_{k}(v)\right| \geq m(\delta+1)+1-t$. Now suppose that $d_{G}(v, Y)<k$ and $d_{G}(v, X)<k$. Since $d_{G}(X, Y)=k+1$, there must exist a shortest path between a vertex $a \in X$ and a vertex $b \in Y$ through v such that $d_{G}(a, b) \geq k+1, d_{G}(v, b)<k$ and $d_{G}(a, v)<k$. We only consider the worst case $d_{G}(a, b)=k+1$, and let $P_{a b}$ denote the shortest path from a to b passing through v.

Let v_{1} and v_{2} be two neighbors of v on $P_{a b}$ from b to v and from a to v, respectively. Let $d_{G}\left(b, v_{1}\right)=\ell_{1}, d_{G}\left(a, v_{2}\right)=\ell_{2}$. Thus, $\ell_{1}+\ell_{2}=k-1$. We only consider three cases. The other one are analogue or immediate by symmetry.

If $\ell_{1} \equiv 1(\bmod 3), \ell_{2} \equiv 1(\bmod 3)$, then $k \equiv 0(\bmod 3)$, that is, $k=3 m$, $t=0$.

$$
\begin{aligned}
\left|N_{k}(v)\right| & \geq \delta+\left(\left\lfloor\frac{\ell_{1}}{3}\right\rfloor+\left\lfloor\frac{\ell_{2}}{3}\right\rfloor\right)(\delta+1)+2 \\
& =\delta+\frac{\ell_{1}+\ell_{2}-2}{3}(\delta+1)+2
\end{aligned}
$$

$$
\begin{aligned}
& =\delta+\frac{k-3}{3}(\delta+1)+2 \\
& =\delta+(m-1)(\delta+1)+2 \\
& =m(\delta+1)+1
\end{aligned}
$$

If $\ell_{1} \equiv 1(\bmod 3), \ell_{2} \equiv 2(\bmod 3)$, then $k \equiv 1(\bmod 3)$, that is, $k=3 m-2$, $t=2$. Notice $\ell_{2} \equiv 2(\bmod 3)$ and $d_{G}(v, a)<k$, then $N_{1}(a) \subseteq N_{k}(v)$, thus $\left|X_{\ell_{2}-1}\left(v_{2}\right)\right|+\left|X_{\ell_{2}}\left(v_{2}\right)\right|+\left|X_{\ell_{2}+1}\left(v_{2}\right)\right| \geq \delta+1$. So we have

$$
\begin{aligned}
\left|N_{k}(v)\right| & \geq \delta+\left(\left\lfloor\frac{\ell_{1}}{3}\right\rfloor+\left\lfloor\frac{\ell_{2}}{3}\right\rfloor\right)(\delta+1)+1+(\delta+1) \\
& =\delta+\frac{\ell_{1}-1+\ell_{2}-2}{3}(\delta+1)+\delta+2 \\
& =\delta+\frac{k-4}{3}(\delta+1)+\delta+2 \\
& =m(\delta+1) \\
& >m(\delta+1)+1-t
\end{aligned}
$$

If $\ell_{1} \equiv 2(\bmod 3), \ell_{2} \equiv 2(\bmod 3)$, then $k \equiv 2(\bmod 3)$, that is, $k=3 m-1$, $t=1$. By the discussion as above, we also get $\left|X_{\ell_{1}-1}\left(v_{1}\right)\right|+\left|X_{\ell_{1}}\left(v_{1}\right)\right|+$ $\left|X_{\ell_{1}+1}\left(v_{1}\right)\right| \geq \delta+1$. Thus, we have,

$$
\begin{aligned}
\left|N_{k}(v)\right| & \geq \delta+\left(\left\lfloor\frac{\ell_{1}}{3}\right\rfloor+\left\lfloor\frac{\ell_{2}}{3}\right\rfloor\right)(\delta+1)+2(\delta+1) \\
& =\delta+\frac{\ell_{1}-2+\ell_{2}-2}{3}(\delta+1)+2 \delta+2 \\
& =\delta+\frac{k-5}{3}(\delta+1)+2 \delta+2 \\
& =m(\delta+1)+\delta \\
& >m(\delta+1)
\end{aligned}
$$

The Claim 2 follows.
Claim $3 \quad P\left[\beta>17 \frac{n}{q}\right]<0.059$.
Proof of Claim 3 For each vertex v, the probability that $v \in Y$ is that $P[v \in Y]=(1-p)^{\left|N_{k}(v)\right|+1}$. By Claim 2, we already have that $\left|N_{k}(v)\right| \geq m(\delta+1)+1-t$ for any $v \in V(G)$ and since β can be written as a sum of n indicator random variables χ_{v}, where $\chi_{v}=1$ if $v \in Y$ and $\chi_{v}=0$ otherwise, it follows that the expectation of β satisfies $E[\beta] \leq n(1-p)^{q}$. By using Taylor's formula,

$$
\left(1-\frac{\ln q}{q}\right)^{q}<\left(e^{-\frac{\ln q}{q}}\right)^{q}=\frac{1}{q}
$$

we have $E[\beta]<\frac{n}{q}$. By Markov's inequality, for any $s>0, P[\beta>s]<\frac{E[\beta]}{s}$, we have,

$$
P\left[\beta>17 \frac{n}{q}\right]<\frac{1}{17}<0.059
$$

as required.
Claim $4 P\left[\alpha>n \frac{\ln q}{q}+n \frac{0.5 \sqrt{\ln q}}{q}\right]<0.892$.
Proof of Claim 4 Since α can also be written as a sum of n indicator random variables that each having probability p of success, we also have $E[\alpha]=n p=n \frac{\ln q}{q}$. We use an inequality attributed to Chernoff in [1], that is, for any $s \geq 0$:

$$
P[\alpha>E[\alpha]+s] \leq \exp \left\{\frac{-s^{2}}{2\left(E[\alpha]+\frac{s}{3}\right)}\right\}
$$

Take $s=n \frac{0.5 \sqrt{\ln q}}{q}$ to this inequality, we have

$$
\begin{aligned}
& P\left[\alpha>n \frac{\ln q}{q}+n \frac{0.5 \sqrt{\ln q}}{q}\right] \\
\leq & \exp \left(-\frac{n}{8 q+\frac{4}{3} q \frac{1}{\sqrt{\ln q}}}\right) \\
< & \exp \left(-\frac{1}{8+1.34 \frac{1}{\sqrt{\ln [93 m+2-t]}}}\right) \\
\leq & \exp \left(-\frac{1}{8+1.34 \frac{1}{\sqrt{\ln 93}}}\right)<0.892 .
\end{aligned}
$$

Here $n \geq\left|N_{k}(v)\right|+1 \geq q$. The Claim 4 follows.
Like [3], we say that a vertex $v \in V(G)$ is weakly dominated if v has fewer than $\frac{1}{8 m^{2}} \ln q$ neighbors in X. Let $N_{1}^{X}(v)$ denote the set of neighbors of v in X. Let \mathscr{D} denote the set of weakly dominated vertices in X.

Claim $5 \quad P\left[|\mathscr{D}|>19 n \frac{\ln q}{q^{1.34}}\right]<0.047$.
Proof of Claim 5 First we have, for any $v \in V(G)$,

$$
\begin{aligned}
E\left[\left|N_{1}^{X}(v)\right|\right] & =\left|N_{1}(v)\right| p \geq \delta p \\
& =\frac{\delta}{q} \ln q \\
& \geq \frac{92}{93 m+2-t} \ln q \\
& \geq \frac{92}{93 m+2} \ln q
\end{aligned}
$$

where $\frac{\delta}{q}$ is an increasing function for δ. By using linearity of expectation and another inequality of Chernoff [1], that is, for any $s \geq 0$,

$$
P\left[\left|N_{1}^{X}(v)\right|<E\left[\left|N_{1}^{X}(v)\right|\right]-s\right] \leq \exp \left(-\frac{s^{2}}{2 E\left[\left|N_{1}^{X}(v)\right|\right]}\right)
$$

we have,

$$
\begin{aligned}
& P\left[\left|N_{1}^{X}(v)\right|<\frac{1}{8 m^{2}} \ln q\right]=P\left[m\left|N_{1}^{X}(v)\right|<\frac{1}{8 m} \ln q\right] \\
\leq & P\left[m\left|N_{1}^{X}(v)\right|<\frac{(93 m+2)}{8 m \times 92} E\left[\left|N_{1}^{X}(v)\right|\right]\right] \\
= & P\left[m\left|N_{1}^{X}(v)\right|-E\left[m\left|N_{1}^{X}(v)\right|\right]<-\left(m-\frac{(93 m+2)}{8 m \times 92}\right) E\left[\left|N_{1}^{X}(v)\right|\right]\right] \\
< & \exp \left(-\frac{\left(m-\frac{(93 m+2)}{8 m \times 92}\right)^{2} E^{2}\left[\left|N_{1}^{X}(v)\right|\right]}{2 m E\left[\left|N_{1}^{X}(v)\right|\right]}\right) \\
= & \exp \left(-\frac{\left(m-\frac{(93 m+2)}{8 m \times 92}\right)^{2} E\left[\left|N_{1}^{X}(v)\right|\right]}{2 m}\right)^{2} \\
\leq & \exp \left(-\frac{46}{93 m^{2}+2 m}\left(m-\frac{(93 m+2)}{8 m \times 92}\right)^{2} \ln q\right) \\
\leq & \exp \left(-\frac{46 m^{2}}{93 m^{2}+2 m}\left(1-\frac{(93 m+2)}{8 m^{2} \times 92}\right)^{2} \ln q\right) \\
\leq & \exp \left(-\frac{46}{95}\left(1-\frac{95}{736}\right)^{2} \ln q\right) \\
\leq & \left(\frac{1}{q}\right)^{0.367} .
\end{aligned}
$$

Since the event that a vertex v is picked into X is independent of the event that v is a weakly dominated vertex. Hence, the probability that a vertex is in X and is weakly dominated is,

$$
\begin{gathered}
\quad P\left[v \in X ;\left|N_{1}^{X}(v)\right|<\frac{1}{8 m^{2}} \ln q\right] \\
=P[v \in X] \cdot P\left[\left|N_{1}^{X}(v)\right|<\frac{1}{8 m^{2}} \ln q\right] \\
\leq p\left(\frac{1}{q}\right)^{0.367} .
\end{gathered}
$$

Thus, we have

$$
E[|\mathscr{D}|] \leq n p\left(\frac{1}{q}\right)^{0.367}=n \frac{\ln q}{q^{1.367}}
$$

By Markov's inequality,

$$
P\left[|\mathscr{D}|>19 n \frac{\ln q}{q^{1.34}}\right]<\frac{1}{19 q^{0.027}}<\frac{1}{19 \times 93^{0.027}}<0.047
$$

as required.
From Claim 3, Claim 4 and Claim 5, we find that all of these events that

$$
\begin{aligned}
\alpha & \leq n \frac{\ln q}{q}+n \frac{0.5 \sqrt{\ln q}}{q} \\
\beta & \leq 17 \frac{n}{q} \\
|\mathscr{D}| & \leq 19 n \frac{\ln q}{q^{1.34}}
\end{aligned}
$$

could happen simultaneously with positive probability, that is,

$$
1-0.892-0.059-0.047=0.002>0
$$

Now we choose a set X satisfying all of these events simultaneously. Every component of X that contains no weakly dominated vertex has size at least $\frac{1}{8 m^{2}} \ln q$, and \mathscr{D} has at most $|\mathscr{D}|$ components. Thus, we have the number of components in $G[X]$ satisfies,

$$
\mu \leq \frac{\alpha}{\frac{1}{8 m^{2}} \ln q}+19 n \frac{\ln q}{q^{1.34}} .
$$

Since $f(\delta)=\frac{\ln q}{q^{0.34}}$ is a decreasing function for $\delta \geq 72\left\lfloor\frac{k}{m}\right\rfloor+20 k m \geq 92$, we obtain

$$
\frac{\ln q}{q^{0.34}} \leq \frac{\ln (93 m+2-t)}{(93 m+2-t)^{0.34}} \leq \frac{\ln (95-t)}{(95-t)^{0.34}} \leq \frac{\ln (93)}{(93)^{0.34}}<1,
$$

that is $19 n \frac{\ln q}{q^{1.34}}<19 \frac{n}{q}$. Now we take

$$
\alpha \leq n \frac{\ln q}{q}+n \frac{0.5 \sqrt{\ln q}}{q}
$$

to the inequality above, we have

$$
\begin{aligned}
\mu & <n \frac{8 m^{2}}{q}+n \frac{4 m^{2}}{q} \frac{1}{\sqrt{\ln q}}+\frac{19 n}{q} \\
& <n \frac{8 m^{2}}{q}+n \frac{4 m^{2}}{q} \times \frac{1}{2}+n \frac{19}{q} \\
& =n \frac{10 m^{2}+19}{q}
\end{aligned}
$$

where

$$
\frac{1}{\sqrt{\ln q}} \leq \frac{1}{\sqrt{\ln (93 m+2-t)}} \leq \frac{1}{\sqrt{\ln (95-t)}}<\frac{1}{\sqrt{\ln (93)}}<\frac{1}{2}
$$

Finally, we have

$$
\alpha+(2 k+1) \beta+2 k \mu-3 k<n \frac{72 k+20 k m^{2}+17+0.5 \sqrt{\ln q}+\ln q}{q}
$$

So, the inequality (2) is proved and the theorem follows.
Remark 1 For $k=1$,

$$
\gamma_{1}^{c}(G)<n \frac{109+0.5 \sqrt{\ln (\delta+1)}+\ln (\delta+1)}{(\delta+1)}
$$

It improves the bound in [3], that is,

$$
\gamma_{1}^{c}(G)<n \frac{145+0.5 \sqrt{\ln (\delta+1)}+\ln (\delta+1)}{(\delta+1)}
$$

Remark 2 Since $X \cup Y$ is also a k-dominating set of G, and $E[\alpha]+$ $E[\beta] \leq n \frac{1+\ln q}{q}$, there is at least one choice of $X \subseteq V(G)$ such that $\gamma_{k}(G) \leq$ $|X \cup Y| \leq n \frac{1+\ln q}{q}$, where $q=m(\delta+1)+2-t, m=\left\lceil\frac{k}{3}\right\rceil$, and $t=3\left\lceil\frac{k}{3}\right\rceil-k$. It improves the well-known result of Lovász [11], that is,

$$
\gamma_{1}(G) \leq n \frac{1+\ln (\delta+1)}{\delta+1}
$$

Theorem 6 For any nontrivial connected graph G with order n and minimum degree δ,

$$
\gamma_{k}^{c}(G) \leq\left(1+o_{\delta}(1)\right) n \frac{\ln q}{q}
$$

where $q=m(\delta+1)+2-t, m=\left\lceil\frac{k}{3}\right\rceil$, and $t=3\left\lceil\frac{k}{3}\right\rceil-k$.
Proof By Theorem 5, we have

$$
\gamma_{k}^{c}(G)<n \frac{\ln q}{q}\left(1+\frac{72 k+20 k m^{2}+17}{\ln q}+\frac{0.5}{\sqrt{\ln q}}\right)
$$

We get the theorem as

$$
\lim _{\delta \rightarrow \infty}\left(\frac{72 k+20 k m^{2}+17}{\ln q}+\frac{0.5}{\sqrt{\ln q}}\right)=0
$$

Remark 3 Theorem 6 generalizes the result of Caro et al $[3]$ for $k=1$, that is,

$$
\gamma_{1}^{c}(G) \leq\left(1+o_{\delta}(1)\right) n \frac{\ln (\delta+1)}{\delta+1}
$$

For δ is sufficiently large, we also find that the upper bound for $\gamma_{k}^{c}(G)$ behaves like the upper bound for $\gamma_{k}(G)$.

References

[1] Bollobás, B., Random Graphs. Cambridge University Press, 2001.
[2] Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications. New York: North Holland, 1976.
[3] Caro, Y. West, D. B. and Yuster, R., Connected domination and spanning trees with many leaves. SIAM J. Discrete Math., 13(2) (2000), 202-211.
[4] Chang, G. J., k-domination and graph covering problems. Ph.D. Thesis, School of OR and IE, Cornell University, Ithaca, NY(1982).
[5] Chang, G. J. and Nemhauser, G. L., The k-domination and k-stability problems on sun-free chordal graphs. SIAM J. Algebraic Discrete Methods, 5 (1984), 332-345.
[6] Hattingh, J. H. and Henning, M. A., The ratio of the distance irredundance and domination numbers of a graph. J. Graph Theory, 18 (1994), 1-9.
[7] Henning, M. A., Oellermann, O. R. and Swart, H. C., Bounds on distance domination parameters. J. Combin. Inform. Systems Sci., 16 (1991), 11-18.
[8] Henning, M. A., Oellermann, O. R. and Swart, H. C., Relations between distance domination parameters. Math. Pannon., 5(1) (1994), 69-79.
[9] Henning, M. A., Oellermann, O. R. and Swart, H. C., The diversity of domination. Discrete Math., 161 (1996), 161-173.
[10] Li, S.-G., On connected k-domination numbers of graphs. Discrete Math., 274 (2004), 303-310.
[11] Lovász, L., On the ratio of optimal and integral fractional covers. Discrete Math., 13 (1975), 383-390.
[12] Rautenbach, D. and Volkmann, L., On $\alpha_{r} \gamma_{s}(k)$-perfect graphs. Discrete Math., 270 (2003), 241-250.
[13] Xu, J.-M., Theory and Application of Graphs. Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[14] Xu, J.-M., Tian, F. and Huang, J., Distance irredundance and connected domination numbers of a graph, a manuscript submitted to Discrete Mathematics.

[^0]: * The work was supported by NNSF of China (No. 10271114 and No.10301031).
 \dagger Corresponding author: tianf@mail.shufe.edu.cn

