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Abstract. In this paper, we study the forwarding index of circulant graph. By using the
character of Cayley graph. we establish the tight upper and the lower bounds of forwarding index
for circulant graph. As applications, we determine the forwarding index for some wellknown
graphs.
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1 Introduction

In general, we use a graph to model an interconnection network which consists of
hardware and/or software entities that are interconnected to facilitate efficient computation
and communications (see[4]).

Since a directed network is naturally modelled by a digraph, we will speak about
digraph,path,vertex and arc instead of directed network,route,node and line in this paper.

A routing R of a connected (di)graph G of order n is a set of n(n—1) elementary
paths R(u,v) specified for all (ordered) pairs u,v of vertices of G. A routing R is said to be
minimal if all the paths R(u,v) of R are shortest paths from u to v, denoted by R,,. To
measure the efficiency of a routing deterministically, Chung, Coffman, Reiman and Simon
[3] introduced the concept of the forwarding index of a routing.

The load of a vertex v (resp. an edge e) in a given routing R of G=(V,E) ,denoted by
§(GyR,v) (resp. n(G,R,e)),is the number of paths of R going through v (resp. ), where
v is not an end vertex. The parameters

§(G,R) = max &G,R,v) and n(G,R) = max n(G,R,e)

vE V(G) e€ E(G)
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are defined as the vertex forwarding index and the edge forwarding index of G with respect

to R,respectively;and the parameters

§G) = mRinG(G,R) and 7(G) = mRimr(G,R)

are defined as the vertex forwarding index and the edge forwarding index of G,

respectively. Similary,we can define the parameters

£ (G) = n’:inS(G,R,,,) and 7, (G) = n;inn'(G,Rm)
Clearly, 8(G)<¢,(G) and #(G)<r,.(G). The equality however does not always hold.

The original research of the forwarding indices is motivated by the problem of the
maximizing network capacity. To minimizing the forwarding indices of a routing will result
in maximizing the network capacity. Thus,the forwarding index problem has been studied
widely by various researchers (see,for example,{2]~[7]).

Although, determining the forwarding index problem has been shown to be NP-
complete by Saad [7],the exact values of thé forwarding index of many important classes
of graphs have been determined (see,for example,{2,5]).

The topological structure of a circulant network, is a circulant digraph, which is
originally proposed by Elspas and Turner, denoted by G(nj sy 55,25 5.) or G(n; S),
consists of the vertex set V=={0,1,:-,n—1} and the edge set

E={(,)):j—i=5s (mod n),s € S},
where S={5; 4525351 &{1,2,+2,n—1} and 5, <s,<++-<s,.

For a circulant digraph,the difference of an arc (i,j) is defined as j—i (mod n). Let
us notice that if an arc (i,j) has difference d then all the arcs ((i+%)(mod n),(j+k)
(mod n)) have difference d,and they are only arcs of G(n;S) having this difference. If
every vertex i of G(n;S) can be expressed by e; s, +ens, + - +eus;, (mod 7) swhere ¢; is a
nonngative integer for 1<{i<{n—1, 1<(j<Ck, we call E={e;: 1<<i<n—1,1<j<k} an
expression of n with respect to S. Obviously,G(n;S) is strongly connected if and only if
there exist an expression E of n with respect to S. In this paper, we will give the following
results.

Theorem 1 Let G be a strongly circulant digraph G(n;S) with
S={s1,525"»5: ) ={1,2,++yn—1} and 5, <s,<-+»<s;. Then

]
(1) &G(n;9)) = m;}n{ Z(e.-l +eyt+ e te)) —(n—1);

i=1

n—1
(2) mgn{ (eq + e+ -+ ex)/k} < w(G(n;S))

i=1

< mEin{max,-e(l,z,...,,,) {e + ey + o+ emnitts
where E={e; : 1<\i<<n—1,1<j<Ck} is the expression of n with respect to S.
The proofs of the results are in Section 3. In Section 2, we will give some definitions
and also recall some known results to by used in our proofs. In Section 4,as applications of

these results,we will determine the vertex-forwarding index and the edge-forwarding index
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of some well-known graphs.

2 Definitions and Lemmas

Let I' be a non-trivial finite group,S be a non-empty subset of I" without the identity

element e of I'. Define a digraph G as follows.
V(G) = I's(z,y) € E(G) & 7'y € S,for any z,y € I".

Such defined a digraph, proposed by Cayley [1],is called a Cayley graph of the group I
with respect to S,denoted by G-(S).

Lemma 17 Let G be a circulant digraph G(n;S) with the set S={s,,5,,***»5}. Then

(a) G is a Cayley graph C; (S) of the additive group Z, of residue classes modulo =
with respect to S,and, hence,is vertex-transitive and k-regular;

(b) G is strongly connected if and only if G is connected;

(¢) G is strongly connected if and only if g.c.d. (mss1,°%,5.)=1.

Lemma 2I°”  Let D be a strong digraph of order n. Then

@ W/m Y >, (@) — 1D < ED) < &.(D) < (n— D (n—2) ,and
(b) the equalities (1/n) 3} >}  (d(x,y) —1)&(D) = £,(D) hold if and only if there

exists a routing of shortest paths in D that loads every edge equally.
Lemma 3! Let D be a strong digraph of order n. Then

(@ U/ [ED) DY) o dz,y) < 1(D) < 7, (D) < (n—D(n—2) +1, and
(b) the equalities (1/ | E(D) |) )]

LYEV(D)
d(z,y)m(D) = x,(D) hold if and only if
there exists a routing of shortest paths in D that loads every edge equally.
Lemma 41 If D=(V,E) is a Cayley graph of order n,then,for any vertex u in V,
EG) =66 = Y, du,v)—(n—1).

v€ Vyvstu

»yEV(D))

3 Main Results

In this section,our aim is to give our main results on the vertex-forwarding index and
the edge-forwarding index of the circulant digraphs.

By Lemma 1,C(#n;S) is a Cayley graph of the additive group Z, of residue classes
modulo n with respect to S. This means that the vertices of C(n;S) are the elements of Z, ,
two of them 7 and j being joined by an arc (i,j) if and only if j—i€ S. Let us denote by I'
the subgroup of autmorphisms of C(%;S) defined by

I'={% € Aut(G):k € Z,},
with #,(i) =i+ k(mod n) for any vertex i of C(n;S). Obviously ¢! (i) =%_, (i) =i—k
(mod n) for any vertex i of C(n;S). If i and j are any two vertices of C(n;S), there exist
one and only one automorphism %, of I" such that $,(:)=j and it is given by #=j—i(mod 7).
For 1<<i<Kn—1 and i=¢; 5, Fei,, T teusylet
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Re(0,1) =(0,5142515%s€n51s€151 + S29€n5 + 2525 seqs1 + €252,
vyeqs tens; + 0ttt ewp S FSiseas +ezsy +
o it Sk T 28k st € sy €Sy 0t ey St - €ase).
We can define a routing Ry as follows.
Re(isj) = $,(Re(0,8..(j)) fori,j € V,
where ¢, is the unique element of I" such that i=9,(0).
Lemma 5 Let G be a circulant digraph G(7;S) with the set S={s,,5;**»5:} and
§1<s,<++*<s;. Then

n—1
§G(n;9)) = min{ 2] (ea +ea + - +ea)} — (n—1),
i=1
where E={¢; : 1<{i<<n—1,1<j<k} is the expression of n with respect to S.

Proof For a vertex i in V(G),let d;=d(0,7). By Lemma 1,G(n;S) is a Cayley
digraph,and so by Lemma 4 we have

1
8G(n;S)) = D di— (n—1).
i=1
Let P;=(0,v;,vz,**yv, (=1)) be a shortest path between 0 and i,and d; the number
of edges in P; with difference s; for 1<<i<<n—1,1<{j<Ck. Then D={d; : 1<\i<<n— 1, 1<j<Ch)
is an expression of n with respect to S and Ejzld,-j = d; . On the othere hand, for any

expression E,we have dy +d;+ -+ +ds<<eq+ez++ei. Then

n—1
8G(n; SN = Y (da+dp++ds)—(n—1)
i=1

-1
= min{ 2} (ea + ez + - +ewd) — (n— D)
i=1

as required.

Lemma 6 For any expression E of n with respect to S,two arcs (i,7) and 'y of
G(n;S) have the same load in the routing R if they have the same difference.

Proof Let $._, be the unique element of T' such that $,_, (i) =i'. Let $;_; be the
unique element of I" such that ¢j:_j=j'. Since (i,7) and (i',j") have the same difference,
we have $,_, =¢j'_j. Then every path Rg(x,y) going through (i,;) is transformed by b,
into a path of Rg, Rg (%, (x),%:_; (y)), going through (i’yj’). Indeed, let $, be the
element of " such that #,(0)=x. We have $,_, + $, € and $,_, + $,(0)=9,_.(x) and so,
from the definition of Rp($,_,(x),$,_,(3)) ,we have

Re($,_(x) 8, (3))=8$._, « $.(R:(0,(%,_, - B RCANEY)))
=8, , . (R:(0,%(3)) = $._, (Re(xy ).

Moreover,as $;_, is an automorphism, if x5z or y#y yRe($._,(x),9%._,(y)) is
distinct from Rg($._,(z"),%,_,(y")). Therefore,

7(C(n3S) R+ (irj)) < n(C(n;8) R, (7’457
and by symmetry,n(C(n;S),Rg,(i,j))=n(C(n;S),Re, Gi' i’ ).

We get the result.
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Lemma 7 For the strongly connected circulant digraph G(n;S) with
S={s1s529""*s5:} and s5,<s,<*+*<s;. Then
7(G(n;S) << rnEin{max,»e(l,z,...,,,) {er; +ex + " +ewnil)s
where E={e; : 1<<i<<n—1,1<{j<Ck} is the expression of n with respect to S.
Proof For any expression E,we can define a routing Rg. Use B; to denote the sum of

the edges used in Rg with difference s; for 1<{j<Ck. Then B; = n X (Z:: e; ). Since there

exist only n edges with difference s; in G(n;S) ,by Lemma 6,we can get the result.
Combining Lemma 5, Lemma 7 with Lemma 3, we obtain the following results
immediately.
Theorem 1 Let G be a strongly circulant digraph G(n; S) with S={s;,5,5**y5, } &
{1,2,+,m—1} and s, <Tsy<{++-<s;. Then

n—1
(D) &G(;9) = min{ Y] (en +ez ++ +exd)}) —(n—1) 5
i=1

n—1
(2) min{ 37 (ea + €2 + = + ex)/k}) < 7(G(n;5))
i=1

< mgn{max;g<1,2,...,k; {ev +en+ -+ €m1i} )

where E={¢; ; 1<<i<<n—1,1<j<(k} is the expression of n with respect to S.

4 Applocations

Example 1 The circulant digraph G(n;S) with n=d",S={1,d,**,d™ '} and d=>2.
For the vertex i,1<{i<{d"—1, there exist an expression A= {a; : 1<i<<d™"—1,1<j<{m}
of d™ with respect to S such that i=a, +and+ - +a, d™! for 0<{a;<<d—1. We can

check easily that

i

&G(d";5)) = min{ Dientep+rFe))—d —1D
i=1

d"—1
= an tag+ e +am)}— (@ — D).
Let Vi={j.d'<j<{d'—1},where 1<{i<(m. Use A, denote the sum of the distance
between 0 and j in R, where jEV,, 1<li<{m.
We partition the set V; into d—1 subsets
Va ={d™,d™ +1,,d" + @ - D},
Vo =1{2d7,2d7 + 1,++,2d7 + (d"' - 1)},
Viwey = {(d—Dd™,(d—1)d" + 1,0, (d — 1) d™! +dTP -1},
But the sum of the distance from 0 to all the vertices in Viis jd" '+ A, +A, ++A,_,,
where 1<{i<Kim, 1<(j<{d— 1. So
Ar=1424+-4+d—-1) =dld—1)/2;
Ay =@+AD+Qd+A) + - +[(d—Dd+A]=(d—1A, +dA,;
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Ay =[d® + (A + A ]+ [2d" + (A + A ]+ =+ [(d— Dd* + (A, + Ay)]
=(d—1)(A, +A,) +dA,;

A, =[d""+ A +A+ -+ A D]+[2d + A+ A+ +A D]+
oo [ d=Dd™ 4+ (A + A, + - +A,)]
=(d— 1)(A1 +Az + oo +Am-1) +dm_1A1
Then
Al +A2 + e +Am
=(A +A+F+A D +FE=DWA +A, 4+ +A, ) +d A ]
= (A +A 4+ +ADd+d A

= Ay d™ 4+ (m—1)d™ A,
=md™ A, = (d—1)d"m/2.
So we have §(G(d™;S))=(d—1)d"m/2—(d™—1) and n(G(d";S))=(d—1)d"/2.

On the other hand,we need to show 7(G(d™;S) )< (d—1)d"/2.

Suppose that the routing R, is decided by A. By Theorem 1,
r(G(d™;S)) < maxe 1,2, ,m (ar; + az + *** + acm—1yi).

Let RS denote the paths with start vertex 0 and the end vertex V(G) —{0} in R4. For
every i€ {0,1,+,m—1},we use B; to denote the sum of the edges with difference d’ in the
paths of RS. We partition the set V(G) into d"~“*? « d=d™"* subsets where

by ={(k—1d" + (j—Dd',(k—1d™"!
+G=Ddi+1,,(k—1d" + G —Dd" +d — 1}
and 1 < B d™Y,1 < j<d.

But the sum of the edges with difference d' for the paths in R} with end vertex in each
by is (G—1d* for 1<h<d™™ Y, 1<(j<d.

Then

B, =d™ ' e d[1+2++(d—1]=(d—1d"/2;
B =d"?+d'[1+2+4 4+ (d—D]=Wd—-1Dd"/2;

By =d +d ' [14+ 2+ +(d—1D]=(d—Dd"/2.

By Theorem 1,we have 7(G(d™;S))<<(d—1)d" /2. Then n(G(d";S)) =(d—1)ad"/2.

Example 2 The directed cycle C,=G(n;1) is a digraph consisting of the vertex set
V(C,.)={O,.1,'-',n—1} and the edge set

E(C,) = {(iyj):j—i=1 (mod n)}.
Then
gCH =[1+2++@—D]-—1)=G-Dhn-2)/2,

and wWC)=[1+2++n—1D]=nn—1)/2.

Example 3(Heydemann et al[5]) Suppose C,=G(n;1,n—1) is the cycle of length
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n,n=3. Then

(1) £,(C,) = &(C,) = [%(n—Z)ZJ,

(@) 7,(C) = 7(C) = [ ).
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