Information Processing Letters

The super connectivity of augmented cubes ${ }^{2 \pi}$

Meijie $\mathrm{Ma}^{\mathrm{a}, *}$, Guizhen Liu ${ }^{\mathrm{b}}$, Jun-Ming Xu^{c}
${ }^{\text {a }}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\text {b }}$ School of Mathematics and System Science, Shandong University, Jinan 250100, China
${ }^{c}$ Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 19 February 2007; received in revised form 2 October 2007; accepted 10 October 2007

Communicated by A.A. Bertossi

Abstract

The augmented cube $A Q_{n}$, proposed by Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71-84], is a $(2 n-1)$-regular $(2 n-1)$-connected graph $(n \neq 3)$. This paper determines that the super connectivity of $A Q_{n}$ is $4 n-8$ for $n \geqslant 6$ and the super edge-connectivity is $4 n-4$ for $n \geqslant 5$. That is, for $n \geqslant 6$ (respectively, $n \geqslant 5$), at least $4 n-8$ vertices (respectively, $4 n-4$ edges) of $A Q_{n}$ are removed to get a disconnected graph that contains no isolated vertices. When the augmented cube is used to model the topological structure of a large-scale parallel processing system, these results can provide more accurate measurements for reliability and fault tolerance of the system.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Interconnection networks; Augmented cube; Super connectivity; Super edge-connectivity

1. Introduction

An interconnection network is usually represented by an undirected simple graph $G=(V(G), E(G))$, where $V(G)$ and $E(G)$ are the vertex set and the edge set, respectively, of G. In this paper, we use a graph and a network interchangeably. For graph terminology and notation not defined here we follow [15].

It is well known that interconnection networks play an important role in parallel computing/communication systems. The connectivity $\kappa(G)$ or the edge-connectivity $\lambda(G)$ of a graph G is an important measurement for

[^0]fault-tolerance of the network, and the larger $\kappa(G)$ or $\lambda(G)$ is, the more reliable the network is. It is well known that $\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)$, where $\delta(G)$ is the minimum degree of G. As more refined indices than connectivity and edge-connectivity, super connectivity and super edge-connectivity were proposed in [1,3].

A subset $S \subset V(G)$ (respectively, $F \subset E(G)$) is called a super vertex-cut (respectively, super edge-cut) if $G-S$ (respectively, $G-F$) is not connected and every component contains at least two vertices. In general, super vertex-cuts or super edge-cuts do not always exist. The super connectivity $\kappa^{\prime}(G)$ (respectively, super edge-connectivity $\left.\lambda^{\prime}(G)\right)$ is the minimum cardinality over all super vertex-cuts (respectively, super edge-cuts) in G if any, and, by convention, is $+\infty$ otherwise. The super connectivity has been studied for many networks,

Table 1
Results of some networks

Networks	Supper connectivity	Supper edge-connectivity
Q_{n}	$2 n-2(n \geqslant 3)$	$2 n-2(n \geqslant 3)$
$C Q_{n}$	$2 n-2(n \geqslant 3)$	$2 n-2(n \geqslant 3)$
$M Q_{n}$	$2 n-2(n \geqslant 3)$	$2 n-2(n \geqslant 3)$
$A Q_{n}$	$4 n-8(n \geqslant 6)$	$4 n-4(n \geqslant 5)$

such as $[3,5,7,8,10-14,16,17]$. Some of the results are listed in Table 1.

It is well known that the hypercube is one of the most popular interconnection networks for parallel computer/communication system. As an enhancement on the hypercube Q_{n}, the augmented cube $A Q_{n}$, proposed by Choudum and Sunitha [2], not only retains some of the favorable properties of Q_{n} but also possesses some embedding properties that Q_{n} does not (see, for example, $[6,9])$. In this paper, we prove that $\kappa^{\prime}\left(A Q_{n}\right)=4 n-8$ for $n \geqslant 6$ and $\lambda^{\prime}\left(A Q_{n}\right)=4 n-4$ for $n \geqslant 5$.

For a graph $G=(V, E)$ and a subset $S \subset V(G)$, we set $N_{G}(S)=\{X \in V(G) \backslash S: \exists U \in S$ such that $(U, X) \in$ $E(G)\}$. Let $N_{G}[S]=N_{G}(S) \cup S$. If $S=\{U\}$, we write $N_{G}(U)$ and $N_{G}[U]$ instead of $N_{G}(S)$ and $N_{G}[S]$, respectively. We will write $N(S)$ (respectively, $N[S]$) instead of $N_{G}(S)$ (respectively, $\left.N_{G}[S]\right)$ if there is no ambiguity. The minimum edge-degree of G is $\xi(G)=$ $\min \{d(U)+d(V)-2: \quad(U, V) \in E(G)\}, d(U)=$ $|N(U)|$ standing for the degree of a vertex U.

The following of this paper is organized as follows. Section 2 gives the definition of augmented cube and its properties. The main results are given in Section 3. Finally, we conclude our paper in Section 4.

2. Augmented cube and its properties

The n-dimensional augmented cube $A Q_{n}(n \geqslant 1)$ can be defined recursively as follows.

Definition 1. $A Q_{1}$ is a complete graph K_{2} with the vertex set $\{0,1\}$. For $n \geqslant 2, A Q_{n}$ is obtained by taking two copies of the augmented cube $A Q_{n-1}$, denoted by $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$, and adding $2 \times 2^{n-1}$ edges between the two as follows:

Let $V\left(A Q_{n-1}^{0}\right)=\left\{0 u_{n-1} \ldots u_{2} u_{1}: u_{i}=0\right.$ or 1$\}$ and $V\left(A Q_{n-1}^{1}\right)=\left\{1 u_{n-1} \ldots u_{2} u_{1}: u_{i}=0\right.$ or 1$\}$. A vertex $U=0 u_{n-1} \ldots u_{2} u_{1}$ of $A Q_{n-1}^{0}$ is joined to a vertex $W=$ $1 w_{n-1} \ldots w_{2} w_{1}$ of $A Q_{n-1}^{1}$ if and only if either
(i) $u_{i}=w_{i}$ for $1 \leqslant i \leqslant n-1$; or
(ii) $u_{i}=\bar{w}_{i}$ for $1 \leqslant i \leqslant n-1$.

Fig. 1. Two augmented cubes $A Q_{2}$ and $A Q_{3}$.

The augmented cubes $A Q_{2}$ and $A Q_{3}$ are shown in Fig. 1.

According to Definition 1 of augmented cubes, we write this recursive construction of $A Q_{n}$ symbolically as $A Q_{n}=L \oplus R$, where $L \cong A Q_{n-1}^{0}$ and $R \cong A Q_{n-1}^{1}$. We call the edges between L and R crossed edges. Clearly every vertex of $A Q_{n}$ is incident with two crossed edges.

For an n-bit binary string $U=u_{n} u_{n-1} \ldots u_{1}$, we use U_{i} (respectively, \bar{U}_{i}) to denote the binary string $u_{n} \ldots \bar{u}_{i} \ldots u_{1}$ (respectively, $u_{n} \ldots \bar{u}_{i} \ldots \bar{u}_{1}$) which differs with U in the i th bit position (respectively, from the first to the i th bit positions). It is clear that $U_{1}=\bar{U}_{1}$. We use U_{1} rather than \bar{U}_{1}.

An alternative definition of $A Q_{n}$ is given in the following.

Definition 2. The augmented cube $A Q_{n}$ of dimension n has 2^{n} vertices. Each vertex is labeled by a unique n-bit binary string as its address. Two vertices $U=$ $u_{n} u_{n-1} \ldots u_{1}$ and $W=w_{n} w_{n-1} \ldots w_{1}$ are joined iff either
(i) There exists an integer $i, 1 \leqslant i \leqslant n$, such that $W=$ U_{i}; in this case, the edge is called a hypercube edge of dimension i, denoted by $\left(U, U_{i}\right)$, or
(ii) There exists an integer $i, 2 \leqslant i \leqslant n$, such that $W=$ \bar{U}_{i}; in this case, the edge is called a complement edge of dimension i, denoted by $\left(U, \bar{U}_{i}\right)$.

It has been shown that $A Q_{n}(n \neq 3)$ is a $(2 n-1)$ regular $(2 n-1)$-connected graph in [2]. The following two properties are derived directly from Definition 2.

Property 1. If $\left(U, U_{i}\right)$ is a hypercube edge of dimension $i(2 \leqslant i \leqslant n)$, then
$N_{A Q_{n}}(U) \cap N_{A Q_{n}}\left(U_{i}\right)= \begin{cases}\left\{\bar{U}_{i}, \bar{U}_{i-1}\right\} & \text { if } i>1, \\ \left\{\bar{U}_{2}, U_{2}\right\} & \text { if } i=1,\end{cases}$
that is, U and U_{i} have exactly two common neighbors in $A Q_{n}$ and $\left|N_{A Q_{n}}\left(\left\{U, U_{i}\right\}\right)\right|=4 n-6$.

Property 2. If $\left(U, \bar{U}_{i}\right)$ is a complement edge of dimension $i(2 \leqslant i \leqslant n-1)$, then $N_{A Q_{n}}(U) \cap N_{A Q_{n}}\left(\bar{U}_{i}\right)=$ $\left\{U_{i}, U_{i+1}, \bar{U}_{i-1}, \bar{U}_{i+1}\right\}$, that is, U and \bar{U}_{i} have exactly four common neighbors in $A Q_{n}$ and $\left|N_{A Q_{n}}\left(\left\{U, \bar{U}_{i}\right\}\right)\right|=$ $4 n-8$. If $\left(U, \bar{U}_{n}\right)$ is a complement edge of dimension n, then $N_{A Q_{n}}(U) \cap N_{A Q_{n}}\left(\bar{U}_{n}\right)=\left\{\bar{U}_{n-1}, U_{n}\right\}$, that is, U and \bar{U}_{n} have exactly two common neighbors in $A Q_{n}$ and $\left|N_{A Q_{n}}\left(\left\{U, \bar{U}_{n}\right\}\right)\right|=4 n-6$.

Note that $A Q_{n}$ can expressed as $A Q_{n}=L \oplus R$, where $L \cong A Q_{n-1}^{0}$ and $R \cong A Q_{n-1}^{1}$. We can also obtain the following property from Definition 1.

Property 3. If two vertices U and W in L (respectively, R) have common neighbors in R (respectively, L), then $W=\bar{U}_{n-1}$ and they have exactly two common neighbors U_{n} and \bar{U}_{n} in R.

With the above properties, we can obtain the following property which is useful to us.

Property 4. Any two vertices in $A Q_{n}$ have at most four common neighbors for $n \geqslant 3$.

Proof. We prove the conclusion by induction on n. It is trivially true for $A Q_{3}$ (see Fig. 1). Suppose that the result is true for $A Q_{n-1}$ with $n \geqslant 4$. We will prove the result is true for $A Q_{n}$ according to the location of the two vertices.

Case 1. Both vertices U and W are in L or R. Without loss of generality, we may assume they are in L.

If U and W have no common neighbor in R, by the induction hypothesis, they have at most four neighbors in L. The conclusion is true.

If U and W have common neighbors in R, by Property $3, W=\bar{U}_{n-1}$ and they have exactly two common neighbors in R. Then (U, W) is a complement edge of dimension $(n-1)$ in $L \cong A Q_{n-1}^{0}$. By Property 2 , they have exactly two common neighbors in L. Thus, U and W have exactly four common neighbors in $A Q_{n}=$ $L \oplus R$.

Case 2. One of the two vertices is in L, the other is in R. Without loss of generality, we may assume $U \in L$ and $W \in R$. Since U (respectively, W) has exactly two neighbors in R (respectively, L), they have at most four common neighbors in $A Q_{n}$.

3. Main results

Lemma 1. $\kappa^{\prime}\left(A Q_{n}\right) \leqslant 4 n-8$ for $n \geqslant 6$.
Proof. Let $S=\left\{U, \bar{U}_{i}\right\}(2 \leqslant i \leqslant n-1)$. By Property 2 , we have $|N(S)|=4 n-8$. We will prove that $N(S)$ is a
super vertex-cut, which means $\kappa^{\prime}\left(A Q_{n}\right) \leqslant 4 n-8$. To the end, we need to prove that $A Q_{n}-N[S]$ has no isolated vertex.

Let W be a vertex in $A Q_{n}-N[S]$. By Property 4 , U (respectively, \bar{U}_{i}) and W have at most four common neighbors. Hence, $|N(W) \cap N[S]| \leqslant 10$. Since $n \geqslant 6$, we have $|N(W)| \geqslant 11$. Thus, W has at least one neighbor in $A Q_{n}-N[S]$. The lemma follows.

Theorem 1. $\kappa^{\prime}\left(A Q_{n}\right)=4 n-8$ for $n \geqslant 6$.
Proof. By Lemma 1, we only need to prove $\kappa^{\prime}\left(A Q_{n}\right) \geqslant$ $4 n-8$. Let S be an arbitrary set of vertices in $A Q_{n}$ such that $|S| \leqslant 4 n-9$ and there are no isolated vertices in $A Q_{n}-S$. We will prove that $A Q_{n}-S$ is connected.

Note that $A Q_{n}=L \oplus R$ where $L \cong A Q_{n-1}^{0}$ and $R \cong A Q_{n-1}^{1}$. For convenience, let $S_{L}=S \cap L$ and $S_{R}=$ $S \cap R$. Without loss of generality, we may suppose that $\left|S_{L}\right| \geqslant\left|S_{R}\right|$. Then $\left|S_{R}\right| \leqslant\lfloor(4 n-9) / 2\rfloor=2 n-5$.

Since $R \cong A Q_{n-1}^{1}$ and $\kappa(R)=2(n-1)-1=2 n-3$, we have $R-S_{R}$ is connected. It remains to be shown that any vertex in $L-S_{L}$ is connected via a path to a vertex in $R-S_{R}$. Let U be an arbitrary vertex in $L-S_{L}$. Its neighbors in R are U_{n} and \bar{U}_{n}. If $\left\{U_{n}, \bar{U}_{n}\right\} \not \subset S_{R}$, we are done. So assume that $\left\{U_{n}, \bar{U}_{n}\right\} \subset S_{R}$ below. Consider the following two cases.

Case $1 . \bar{U}_{n-1} \notin S_{L}$. By Property 2 , we have $\mid N_{L}(\{U$, $\left.\left.\bar{U}_{n-1}\right\}\right) \mid=4 n-10$. Let $X=\left\{X^{i}: X^{i} \in N_{L}(U) \backslash\right.$ $\left.\left\{\bar{U}_{n-1}\right\}\right\}, Y=\left\{Y^{j}: Y^{j} \in N_{L}\left(\bar{U}_{n-1}\right) \backslash N_{L}[U]\right\}$, and $S^{\prime}=$ $S-\left\{U_{n}, \bar{U}_{n}\right\}$. It is not difficult to see that $\left(N_{R}(X) \cup\right.$ $\left.N_{R}(Y)\right) \cap\left\{U_{n}, \bar{U}_{n}\right\}=\emptyset,|X|=2 n-4,|Y|=2 n-6$ and $\left|S^{\prime}\right| \leqslant 4 n-11$. For each vertex $X^{i}, 1 \leqslant i \leqslant 2 n-4$ (respectively, $Y^{j}, 1 \leqslant j \leqslant 2 n-6$), let $P_{i}=\left(U, X^{i}, X_{n}^{i}\right)$ (respectively, $P_{j}=\left(\bar{U}_{n-1}, Y^{j}, Y_{n}^{j}\right)$) be a path joining U (respectively, \vec{U}_{n-1}) to a vertex in R. Note that these paths are vertex disjoint except for U (respectively, $\left.\bar{U}_{n-1}\right)$ and $\left|\left\{P_{i}: 1 \leqslant i \leqslant 2 n-4\right\}\right|+\mid\left\{P_{j}: 1 \leqslant j \leqslant\right.$ $2 n-6\} \mid=4 n-10$. Since $\left|S^{\prime}\right| \leqslant 4 n-11$ and each vertex in S^{\prime} can correspond to at most one such path, there must exist a path P_{i} or P_{j} such that $V\left(P_{i}\right) \cap S^{\prime}=\emptyset$ or $V\left(P_{j}\right) \cap S^{\prime}=\emptyset$. This implies that in $A Q_{n}-S$, vertex U is connected via a path to a vertex in $R-S_{R}$ (see Fig. 2(a)).

Case 2. $\bar{U}_{n-1} \in S_{L}$. There must exist a neighbor W of U in $L-S_{L}$ since there are no isolated vertices in $A Q_{n}-S$. The two neighbors of W in R is W_{n} and \bar{W}_{n}. If $\left\{W_{n}, \bar{W}_{n}\right\} \not \subset S_{R}$, we are done. So assume that $\left\{W_{n}, \bar{W}_{n}\right\} \subset S_{R}$. If $\bar{W}_{n-1} \notin S_{L}$, we can obtain a path joining W or \bar{W}_{n-1} to a vertex in $R-S_{R}$ by using a method similar to the one used in Case 1. Thus, U is connected via a path to a vertex in $R-F_{R}$. Hence, assume $\bar{W}_{n-1} \in S_{L}$ below.

Fig. 2. Illustrations for the proof of Theorem 1.

By Property 4, we have $\mid\left\{N_{L}(\{U, W\}) \backslash\left\{\bar{U}_{n-1}\right.\right.$, $\left.\bar{W}_{n-1}\right\} \mid \geqslant 4 n-14$. Let $X=\left\{X^{i}: X^{i} \in N_{L}(U) \backslash\right.$ $\left.\left\{\bar{U}_{n-1}, W\right\}\right\}, Y=\left\{Y^{j}: Y^{j} \in N_{L}(W) \backslash\left(N_{L}[U] \cup \bar{W}_{n-1}\right)\right\}$, and $S^{\prime}=S-\left\{U_{n}, \bar{U}_{n}, W_{n}, \bar{W}_{n}, \bar{U}_{n-1}, \bar{W}_{n-1}\right\}$. It is not difficult to see that $\left(N_{R}(X) \cup N_{R}(Y)\right) \cap\left\{U_{n}, \bar{U}_{n}, W_{n}\right.$, $\left.\bar{W}_{n}\right\}=\emptyset,|X|=2 n-5,|Y| \geqslant 2 n-9$ and $\left|S^{\prime}\right|=4 n-15$. For each vertex $X^{i}, 1 \leqslant i \leqslant 2 n-5$ (respectively, $\left.Y^{j}, 1 \leqslant j \leqslant 2 n-9\right)$, let $P_{i}=\left(U, X^{i}, X_{n}^{i}\right)$ (respectively, $\left.P_{j}=\left(W, Y^{j}, Y_{n}^{j}\right)\right)$ be a path joining U (respectively, W) to a vertex in R. Note that these paths are vertex disjoint except for U (respectively, W) and $\mid\left\{P_{i}: 1 \leqslant\right.$ $i \leqslant 2 n-5\}\left|+\left|\left\{P_{j}: 1 \leqslant j \leqslant 2 n-9\right\}\right|=4 n-14\right.$. Since $\left|S^{\prime}\right|=4 n-15$ and each vertex in S^{\prime} can correspond to at most one such path, there must exist a path P_{i} or P_{j} such that $V\left(P_{i}\right) \cap S^{\prime}=\emptyset$ or $V\left(P_{j}\right) \cap S^{\prime}=\emptyset$. This implies that in $A Q_{n}-S$, vertex U is connected via a path to a vertex in $R-S_{R}$ (see Fig. 2(b)).

We have proved that $A Q_{n}-S$ is connected, which means $\kappa^{\prime}\left(A Q_{n}\right) \geqslant 4 n-8$ for $n \geqslant 6$. The theorem follows.

The following result, which can be found in [4], is useful in the proof of Theorem 2.

Lemma 2. $\lambda^{\prime}(G) \leqslant \xi(G)$ for any graph G with order at least 4 and not a star.

Theorem 2. $\lambda^{\prime}\left(A Q_{n}\right)=4 n-4$ for $n \geqslant 5$.

Proof. By Lemma 2, we only need to prove $\lambda^{\prime}\left(A Q_{n}\right) \geqslant$ $4 n-4$ for $n \geqslant 5$.

Let F be an arbitrary subset of edges in $A Q_{n}$ such that $|F| \leqslant 4 n-5$ and there are no isolated vertices in $A Q_{n}-F$. We will prove that $A Q_{n}-F$ is connected.

For convenience, let $F_{L}=F \cap L$ and $F_{R}=F \cap R$. Without loss of generality, we may suppose that $\left|F_{L}\right| \geqslant$ $\left|F_{R}\right|$. Then $\left|F_{R}\right| \leqslant\lfloor(4 n-5) / 2\rfloor=2 n-3$.

Since $R \cong A Q_{n-1}^{1}((n-1) \geqslant 4)$ and R is $(2 n-1)$ regular $(2 n-1)$-connected graph, we conclude that R is ($2 n-1$)-edge-connected. That is $R-F_{R}$ is connected. It remains to be shown that any vertex in L is connected via a path to a vertex in R. Let U be an arbitrary vertex in L. If the two crossed edges $\left\{\left(U, U_{n}\right),\left(U, \bar{U}_{n}\right)\right\} \not \subset F$, we are done. So assume that $\left\{\left(U, U_{n}\right),\left(U, \bar{U}_{n}\right)\right\} \subset F$ below.

Since there are no isolated vertices in $A Q_{n}-F$, there is an edge (U, W) incident with U in L such that $(U, W) \notin F_{L}$. If the two crossed edges $\left\{\left(W, W_{n}\right)\right.$, $\left.\left(W, \bar{W}_{n}\right)\right\} \not \subset F$, we are done. So assume that $\left\{\left(W, W_{n}\right)\right.$, $\left.\left(W, \bar{W}_{n}\right)\right\} \subset F$ below.

Let $E_{1}=\left\{\left(U, U^{i}\right):\left(U, U^{i}\right) \in E(L) \backslash\{(U, W)\}\right\}$, $E_{2}=\left\{\left(W, W^{j}\right):\left(W, W^{j}\right) \in E(L) \backslash\{(U, W)\}\right\}$, and $F^{\prime}=F-\left\{\left(U, U_{n}\right),\left(U, \bar{U}_{n}\right),\left(W, W_{n}\right),\left(W, \bar{W}_{n}\right)\right\}$. It is not difficult to see that $\left|E_{1}\right|=\left|E_{2}\right|=2 n-4, E_{1} \cap E_{2}=$ \emptyset and $\left|F^{\prime}\right| \leqslant 4 n-9$. Let $P_{i}=\left(U, U^{i}, U_{n}^{i}\right)$ (respectively, $\left.P_{j}=\left(W, W^{i}, W_{n}^{i}\right)\right)$ be a path joining U (respectively, W) to a vertex in R. Note that these paths are edge disjoint and $\left|\left\{P_{i}: 1 \leqslant i \leqslant 2 n-4\right\}\right|+\mid\left\{P_{j}: 1 \leqslant j \leqslant\right.$ $2 n-4\} \mid=4 n-8$. Since $\left|F^{\prime}\right| \leqslant 4 n-9$ and each edge in F^{\prime} can correspond to at most one such path, there must exist a path P_{i} or P_{j} such that $E\left(P_{i}\right) \cap F^{\prime}=\emptyset$ or $E\left(P_{j}\right) \cap F^{\prime}=\emptyset$. This implies that in $A Q_{n}-F$, vertex U is connected via a path to a vertex in R.

We proved that $A Q_{n}-F$ is connected, which means $\lambda^{\prime}\left(A Q_{n}\right) \geqslant 4 n-4$ for $n \geqslant 5$. The theorem follows.

4. Conclusions

In this paper, we concentrate on two stronger measures of network reliability called super connectivity $\kappa^{\prime}(G)$ and super edge-connectivity $\lambda^{\prime}(G)$ which not only compensate for shortcoming but also generalize the classical connectivity $\kappa(G)$ and edge-connectivity $\lambda(G)$. For the augmented cube $A Q_{n}$, an enhancement on the hypercube Q_{n}, we proved that $\kappa^{\prime}\left(A Q_{n}\right)=4 n-8$
for $n \geqslant 6$ and $\lambda^{\prime}\left(A Q_{n}\right)=4 n-4$ for $n \geqslant 5$. The two results show that the augmented cube is robust when it is used to model the topological structure of a large-scale parallel processing system.

Acknowledgements

We are grateful to the anonymous referees for their good suggestions that greatly improve the quality of the paper.

References

[1] F.T. Boesch, Synthesis of reliable networks-a survey, IEEE Trans. Reliability 35 (1986) 240-246.
[2] S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2) (2002) 71-84.
[3] A.H. Esfahanian, Generalized measures of fault tolerance with application to n-cube networks, IEEE Trans. Comput. 38 (11) (1989) 1586-1591.
[4] A.H. Esfahanian, S.L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (1988) 195-199.
[5] Y.-M. Fan, J.-M. Xu, M. Lu, The restricted edge-connectivity of Kautz undirected graphs, Ars Combin. 81 (4) (2006) 369-379.
[6] H.-C. Hsu, L.-C. Chiang, J.J.M. Tan, L.-H. Hsu, Fault hamiltonicity of augmented cubes, Parallel Comput. 31 (2005) 130 145.
[7] M. Lü, G.-L. Chen, J.-M. Xu, On super edge-connectivity of Cartesian product graphs, Networks 49 (2) (2007) 135-157.
[8] M. Lü, J.-M. Xu, Super connectivity of line graphs and digraphs, Acta Math. Appl. Sinica 22 (1) (2006) 43-48.
[9] M. Ma, G. Liu, J.-M. Xu, Panconnectivity and edge-faulttolerant pancyclicity of augmented cubes, Parallel Comput. 33 (2007) 36-42.
[10] J.-M. Xu, M. Lü, On restricted arc-connectivity of regular digraphs, Taiwan J. Math. 9 (4) (2005) 661-670.
[11] J.-M. Xu, M. Lü, M.-J. Ma, A. Hellwig, Super connectivity of line graphs, Inform. Process. Lett. 94 (4) (2005) 191-195.
[12] J.-M. Xu, W.-W. Wang, On super and restricted connectivity of some interconnection networks, Ars Combin., in press.
[13] J.-M. Xu, K.-L. Xu, On restricted edge-connectivity of graphs, Discrete Math. 243 (1-3) (2002) 291-298.
[14] J.-M. Xu, M. Xu, Q. Zhu, The super connectivity of shufflecubes, Inform. Process. Lett. 96 (2005) 123-127.
[15] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[16] Q. Zhu, J.-M. Xu, X.-M. Hou, X. Xu, On reliability of the folded hypercubes, Inform. Sci. 177 (8) (2007) 1782-1788.
[17] Q. Zhu, J.-M. Xu, M. Lü, Edge fault tolerance analysis of a class of interconnection networks, Appl. Math. Comput. 172 (1) (2006) 111-121.

[^0]: \# The work is supported by China Postdoctoral Science Foundation, NSFC (No. 60673047, 10671191) and SRFDP (20040422004).

 * Corresponding author.

 E-mail address: mameij@sdu.edu.cn (M. Ma).

