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Abstract

The augmented cube AQn, proposed by Choudum and Sunitha [S.A. Choudum, V. Sunitha, Augmented cubes, Networks 40 (2)
(2002) 71–84], is a (2n − 1)-regular (2n − 1)-connected graph (n �= 3). This paper determines that the super connectivity of AQn

is 4n − 8 for n � 6 and the super edge-connectivity is 4n − 4 for n � 5. That is, for n � 6 (respectively, n � 5), at least 4n − 8
vertices (respectively, 4n − 4 edges) of AQn are removed to get a disconnected graph that contains no isolated vertices. When the
augmented cube is used to model the topological structure of a large-scale parallel processing system, these results can provide
more accurate measurements for reliability and fault tolerance of the system.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

An interconnection network is usually represented
by an undirected simple graph G = (V (G),E(G)),
where V (G) and E(G) are the vertex set and the edge
set, respectively, of G. In this paper, we use a graph and
a network interchangeably. For graph terminology and
notation not defined here we follow [15].

It is well known that interconnection networks play
an important role in parallel computing/communication
systems. The connectivity κ(G) or the edge-connectivi-
ty λ(G) of a graph G is an important measurement for
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fault-tolerance of the network, and the larger κ(G) or
λ(G) is, the more reliable the network is. It is well
known that κ(G) � λ(G) � δ(G), where δ(G) is the
minimum degree of G. As more refined indices than
connectivity and edge-connectivity, super connectivity
and super edge-connectivity were proposed in [1,3].

A subset S ⊂ V (G) (respectively, F ⊂ E(G)) is
called a super vertex-cut (respectively, super edge-cut)
if G − S (respectively, G − F ) is not connected and
every component contains at least two vertices. In gen-
eral, super vertex-cuts or super edge-cuts do not always
exist. The super connectivity κ ′(G) (respectively, super
edge-connectivity λ′(G)) is the minimum cardinality
over all super vertex-cuts (respectively, super edge-cuts)
in G if any, and, by convention, is +∞ otherwise. The
super connectivity has been studied for many networks,
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Table 1
Results of some networks

Networks Supper connectivity Supper edge-connectivity

Qn 2n − 2 (n � 3) 2n − 2 (n � 3)

CQn 2n − 2 (n � 3) 2n − 2 (n � 3)

MQn 2n − 2 (n � 3) 2n − 2 (n � 3)

AQn 4n − 8 (n � 6) 4n − 4 (n � 5)

such as [3,5,7,8,10–14,16,17]. Some of the results are
listed in Table 1.

It is well known that the hypercube is one of the most
popular interconnection networks for parallel com-
puter/communication system. As an enhancement on
the hypercube Qn, the augmented cube AQn, proposed
by Choudum and Sunitha [2], not only retains some of
the favorable properties of Qn but also possesses some
embedding properties that Qn does not (see, for exam-
ple, [6,9]). In this paper, we prove that κ ′(AQn) = 4n−8
for n � 6 and λ′(AQn) = 4n − 4 for n � 5.

For a graph G = (V ,E) and a subset S ⊂ V (G), we
set NG(S) = {X ∈ V (G)\S: ∃U ∈ S such that (U,X) ∈
E(G)}. Let NG[S] = NG(S) ∪ S. If S = {U}, we write
NG(U) and NG[U ] instead of NG(S) and NG[S], re-
spectively. We will write N(S) (respectively, N [S])
instead of NG(S) (respectively, NG[S]) if there is no
ambiguity. The minimum edge-degree of G is ξ(G) =
min{d(U) + d(V ) − 2: (U,V ) ∈ E(G)}, d(U) =
|N(U)| standing for the degree of a vertex U .

The following of this paper is organized as follows.
Section 2 gives the definition of augmented cube and
its properties. The main results are given in Section 3.
Finally, we conclude our paper in Section 4.

2. Augmented cube and its properties

The n-dimensional augmented cube AQn (n � 1) can
be defined recursively as follows.

Definition 1. AQ1 is a complete graph K2 with the ver-
tex set {0,1}. For n � 2, AQn is obtained by taking
two copies of the augmented cube AQn−1, denoted by
AQ0

n−1 and AQ1
n−1, and adding 2 × 2n−1 edges between

the two as follows:
Let V (AQ0

n−1) = {0un−1 . . . u2u1: ui = 0 or 1} and
V (AQ1

n−1) = {1un−1 . . . u2u1: ui = 0 or 1}. A vertex
U = 0un−1 . . . u2u1 of AQ0

n−1 is joined to a vertex W =
1wn−1 . . .w2w1 of AQ1

n−1 if and only if either

(i) ui = wi for 1 � i � n − 1; or
(ii) ui = w̄i for 1 � i � n − 1.
Fig. 1. Two augmented cubes AQ2 and AQ3.

The augmented cubes AQ2 and AQ3 are shown in
Fig. 1.

According to Definition 1 of augmented cubes, we
write this recursive construction of AQn symbolically as
AQn = L ⊕ R, where L ∼= AQ0

n−1 and R ∼= AQ1
n−1. We

call the edges between L and R crossed edges. Clearly
every vertex of AQn is incident with two crossed edges.

For an n-bit binary string U = unun−1 . . . u1, we
use Ui (respectively, Ūi ) to denote the binary string
un . . . ūi . . . u1 (respectively, un . . . ūi . . . ū1) which dif-
fers with U in the ith bit position (respectively, from
the first to the ith bit positions). It is clear that U1 = Ū1.
We use U1 rather than Ū1.

An alternative definition of AQn is given in the fol-
lowing.

Definition 2. The augmented cube AQn of dimension n

has 2n vertices. Each vertex is labeled by a unique
n-bit binary string as its address. Two vertices U =
unun−1 . . . u1 and W = wnwn−1 . . .w1 are joined iff ei-
ther

(i) There exists an integer i, 1 � i � n, such that W =
Ui ; in this case, the edge is called a hypercube edge
of dimension i, denoted by (U,Ui), or

(ii) There exists an integer i, 2 � i � n, such that W =
Ūi ; in this case, the edge is called a complement
edge of dimension i, denoted by (U, Ūi).

It has been shown that AQn (n �= 3) is a (2n − 1)-
regular (2n − 1)-connected graph in [2]. The following
two properties are derived directly from Definition 2.

Property 1. If (U,Ui) is a hypercube edge of dimen-
sion i (2 � i � n), then

NAQn
(U) ∩ NAQn

(Ui) =
{ {Ūi , Ūi−1} if i > 1,

{Ū2,U2} if i = 1,

that is, U and Ui have exactly two common neighbors
in AQn and |NAQn

({U,Ui})| = 4n − 6.
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Property 2. If (U, Ūi) is a complement edge of dimen-
sion i (2 � i � n − 1), then NAQn

(U) ∩ NAQn
(Ūi) =

{Ui,Ui+1, Ūi−1, Ūi+1}, that is, U and Ūi have exactly
four common neighbors in AQn and |NAQn

({U, Ūi})| =
4n−8. If (U, Ūn) is a complement edge of dimension n,
then NAQn

(U)∩NAQn
(Ūn) = {Ūn−1,Un}, that is, U and

Ūn have exactly two common neighbors in AQn and
|NAQn

({U, Ūn})| = 4n − 6.

Note that AQn can expressed as AQn = L⊕R, where
L ∼= AQ0

n−1 and R ∼= AQ1
n−1. We can also obtain the fol-

lowing property from Definition 1.

Property 3. If two vertices U and W in L (respectively,
R) have common neighbors in R (respectively, L), then
W = Ūn−1 and they have exactly two common neigh-
bors Un and Ūn in R.

With the above properties, we can obtain the follow-
ing property which is useful to us.

Property 4. Any two vertices in AQn have at most four
common neighbors for n � 3.

Proof. We prove the conclusion by induction on n. It
is trivially true for AQ3 (see Fig. 1). Suppose that the
result is true for AQn−1 with n � 4. We will prove the
result is true for AQn according to the location of the
two vertices.

Case 1. Both vertices U and W are in L or R. With-
out loss of generality, we may assume they are in L.

If U and W have no common neighbor in R, by the
induction hypothesis, they have at most four neighbors
in L. The conclusion is true.

If U and W have common neighbors in R, by Prop-
erty 3, W = Ūn−1 and they have exactly two common
neighbors in R. Then (U,W) is a complement edge
of dimension (n − 1) in L ∼= AQ0

n−1. By Property 2,
they have exactly two common neighbors in L. Thus, U

and W have exactly four common neighbors in AQn =
L ⊕ R.

Case 2. One of the two vertices is in L, the other is
in R. Without loss of generality, we may assume U ∈ L

and W ∈ R. Since U (respectively, W ) has exactly two
neighbors in R (respectively, L), they have at most four
common neighbors in AQn. �
3. Main results

Lemma 1. κ ′(AQn) � 4n − 8 for n � 6.

Proof. Let S = {U, Ūi} (2 � i � n − 1). By Property 2,
we have |N(S)| = 4n − 8. We will prove that N(S) is a
super vertex-cut, which means κ ′(AQn) � 4n−8. To the
end, we need to prove that AQn − N [S] has no isolated
vertex.

Let W be a vertex in AQn − N [S]. By Property 4,
U (respectively, Ūi ) and W have at most four common
neighbors. Hence, |N(W) ∩ N [S]| � 10. Since n � 6,
we have |N(W)| � 11. Thus, W has at least one neigh-
bor in AQn − N [S]. The lemma follows. �
Theorem 1. κ ′(AQn) = 4n − 8 for n � 6.

Proof. By Lemma 1, we only need to prove κ ′(AQn) �
4n − 8. Let S be an arbitrary set of vertices in AQn such
that |S| � 4n − 9 and there are no isolated vertices in
AQn − S. We will prove that AQn − S is connected.

Note that AQn = L ⊕ R where L ∼= AQ0
n−1 and

R ∼= AQ1
n−1. For convenience, let SL = S ∩ L and SR =

S ∩ R. Without loss of generality, we may suppose that
|SL| � |SR|. Then |SR| � (4n − 9)/2� = 2n − 5.

Since R ∼= AQ1
n−1 and κ(R) = 2(n−1)−1 = 2n−3,

we have R − SR is connected. It remains to be shown
that any vertex in L−SL is connected via a path to a ver-
tex in R − SR . Let U be an arbitrary vertex in L − SL.
Its neighbors in R are Un and Ūn. If {Un, Ūn} �⊂ SR , we
are done. So assume that {Un, Ūn} ⊂ SR below. Con-
sider the following two cases.

Case 1. Ūn−1 /∈ SL. By Property 2, we have |NL({U,

Ūn−1})| = 4n − 10. Let X = {Xi : Xi ∈ NL(U) \
{Ūn−1}}, Y = {Y j : Y j ∈ NL(Ūn−1) \NL[U ]}, and S′ =
S − {Un, Ūn}. It is not difficult to see that (NR(X) ∪
NR(Y )) ∩ {Un, Ūn} = ∅, |X| = 2n − 4, |Y | = 2n − 6
and |S′| � 4n − 11. For each vertex Xi , 1 � i � 2n − 4
(respectively, Y j , 1 � j � 2n−6), let Pi = (U,Xi,Xi

n)

(respectively, Pj = (Ūn−1, Y
j , Y

j
n )) be a path joining U

(respectively, Ūn−1) to a vertex in R. Note that these
paths are vertex disjoint except for U (respectively,
Ūn−1) and |{Pi : 1 � i � 2n − 4}| + |{Pj : 1 � j �
2n − 6}| = 4n − 10. Since |S′| � 4n − 11 and each ver-
tex in S′ can correspond to at most one such path, there
must exist a path Pi or Pj such that V (Pi) ∩ S′ = ∅
or V (Pj ) ∩ S′ = ∅. This implies that in AQn − S, ver-
tex U is connected via a path to a vertex in R − SR (see
Fig. 2(a)).

Case 2. Ūn−1 ∈ SL. There must exist a neighbor
W of U in L − SL since there are no isolated ver-
tices in AQn − S. The two neighbors of W in R is Wn

and W̄n. If {Wn, W̄n} �⊂ SR , we are done. So assume that
{Wn, W̄n} ⊂ SR . If W̄n−1 /∈ SL, we can obtain a path
joining W or W̄n−1 to a vertex in R − SR by using a
method similar to the one used in Case 1. Thus, U is
connected via a path to a vertex in R − FR . Hence, as-
sume W̄n−1 ∈ SL below.
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Fig. 2. Illustrations for the proof of Theorem 1.
By Property 4, we have |{NL({U,W }) \ {Ūn−1,

W̄n−1}| � 4n − 14. Let X = {Xi : Xi ∈ NL(U) \
{Ūn−1,W }}, Y = {Y j : Y j ∈ NL(W)\(NL[U ]∪W̄n−1)},
and S′ = S − {Un, Ūn,Wn, W̄n, Ūn−1, W̄n−1}. It is not
difficult to see that (NR(X) ∪ NR(Y )) ∩ {Un, Ūn,Wn,

W̄n} = ∅, |X| = 2n−5, |Y | � 2n−9 and |S′| = 4n−15.
For each vertex Xi , 1 � i � 2n − 5 (respectively,
Y j , 1 � j � 2n − 9), let Pi = (U,Xi,Xi

n) (respec-

tively, Pj = (W,Y j ,Y
j
n )) be a path joining U (respec-

tively, W ) to a vertex in R. Note that these paths are ver-
tex disjoint except for U (respectively, W ) and |{Pi : 1 �
i � 2n − 5}|+ |{Pj : 1 � j � 2n − 9}| = 4n − 14. Since
|S′| = 4n − 15 and each vertex in S′ can correspond to
at most one such path, there must exist a path Pi or Pj

such that V (Pi) ∩ S′ = ∅ or V (Pj ) ∩ S′ = ∅. This im-
plies that in AQn − S, vertex U is connected via a path
to a vertex in R − SR (see Fig. 2(b)).

We have proved that AQn − S is connected, which
means κ ′(AQn) � 4n − 8 for n � 6. The theorem fol-
lows. �

The following result, which can be found in [4], is
useful in the proof of Theorem 2.

Lemma 2. λ′(G) � ξ(G) for any graph G with order at
least 4 and not a star.

Theorem 2. λ′(AQn) = 4n − 4 for n � 5.

Proof. By Lemma 2, we only need to prove λ′(AQn) �
4n − 4 for n � 5.

Let F be an arbitrary subset of edges in AQn such
that |F | � 4n − 5 and there are no isolated vertices in
AQn − F . We will prove that AQn − F is connected.

For convenience, let FL = F ∩ L and FR = F ∩ R.
Without loss of generality, we may suppose that |FL| �
|FR|. Then |FR| � (4n − 5)/2� = 2n − 3.
Since R ∼= AQ1
n−1 ((n − 1) � 4) and R is (2n − 1)-

regular (2n−1)-connected graph, we conclude that R is
(2n − 1)-edge-connected. That is R − FR is connected.
It remains to be shown that any vertex in L is connected
via a path to a vertex in R. Let U be an arbitrary vertex
in L. If the two crossed edges {(U,Un), (U, Ūn)} �⊂ F ,
we are done. So assume that {(U,Un), (U, Ūn)} ⊂ F be-
low.

Since there are no isolated vertices in AQn − F ,
there is an edge (U,W) incident with U in L such
that (U,W) /∈ FL. If the two crossed edges {(W,Wn),

(W, W̄n)} �⊂ F , we are done. So assume that {(W,Wn),

(W, W̄n)} ⊂ F below.
Let E1 = {(U,Ui): (U,Ui) ∈ E(L) \ {(U,W)}},

E2 = {(W,Wj ): (W,Wj ) ∈ E(L) \ {(U,W)}}, and
F ′ = F − {(U,Un), (U, Ūn), (W,Wn), (W, W̄n)}. It is
not difficult to see that |E1| = |E2| = 2n−4, E1 ∩E2 =
∅ and |F ′| � 4n − 9. Let Pi = (U,Ui,Ui

n) (respec-
tively, Pj = (W,Wi,Wi

n)) be a path joining U (respec-
tively, W ) to a vertex in R. Note that these paths are
edge disjoint and |{Pi : 1 � i � 2n−4}|+|{Pj : 1 � j �
2n − 4}| = 4n − 8. Since |F ′| � 4n − 9 and each edge
in F ′ can correspond to at most one such path, there
must exist a path Pi or Pj such that E(Pi) ∩ F ′ = ∅ or
E(Pj ) ∩ F ′ = ∅. This implies that in AQn − F , vertex
U is connected via a path to a vertex in R.

We proved that AQn − F is connected, which means
λ′(AQn) � 4n − 4 for n � 5. The theorem follows. �
4. Conclusions

In this paper, we concentrate on two stronger mea-
sures of network reliability called super connectiv-
ity κ ′(G) and super edge-connectivity λ′(G) which not
only compensate for shortcoming but also generalize
the classical connectivity κ(G) and edge-connectivity
λ(G). For the augmented cube AQn, an enhancement
on the hypercube Qn, we proved that κ ′(AQn) = 4n− 8



M. Ma et al. / Information Processing Letters 106 (2008) 59–63 63
for n � 6 and λ′(AQn) = 4n − 4 for n � 5. The two re-
sults show that the augmented cube is robust when it is
used to model the topological structure of a large-scale
parallel processing system.
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