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Abstract

A set D of vertices in a connected graph G is called a k-dominating set if every vertex in G − D is within distance k from
some vertex of D. The k-domination number of G, γk(G), is the minimum cardinality over all k-dominating sets of G. A graph
G is k-distance domination-critical if γk(G − x) < γk(G) for any vertex x in G. This work considers properties of k-distance
domination-critical graphs and establishes a best possible upper bound on the diameter of a 2-distance domination-critical graph
G, that is, d(G) ≤ 3(γ2 − 1) for γ2 ≥ 2.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For the terminology and notation of graph theory not given here, the reader is referred to [1] or [11]. Let
G = (V, E) be a connected simple graph. For S ⊆ V (G), G[S] denotes a subgraph of G induced by S. The distance
dG(x, y) between two vertices x and y is the length of a shortest xy-path in G. The diameter of G, d(G), is the
maximum distance between any two vertices in G. Let k be a positive integer. For every vertex x ∈ V (G), the open
k-neighborhood Nk(x) of x is defined as Nk(x) = {y ∈ V (G) : 1 ≤ dG(x, y) ≤ k}. The closed k-neighborhood
Nk[x] of x in G is defined as Nk(x) ∪ {x}. Let

∆k(G) = max{|Nk(x)| : for any x ∈ V (G)}.

Clearly, ∆1(G) = ∆(G). For a set X ⊂ V (G), let

Nk(X) =

⋃
x∈X

Nk(x) and Nk[X ] =

⋃
x∈X

Nk[x].

A set D ⊂ V (G) is called a k-dominating set of G if every vertex in G − D is within distance k from some
vertex of D. The minimum cardinality over all k-dominating sets of G is called the k-domination number of G and is
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denoted by γk(G). A minimum k-dominating set is called a γk-set for short. The concept of the k-dominating set was
introduced by Chang and Nemhauser [5,6] and could find applications for many situations and structures which give
rise to graphs; see the books by Haynes et al. [2,3].

Brigham et al. [4] define a vertex v of a graph G as being critical if γ (G − v) < γ (G). The graph G is vertex
domination-critical (or γ -critical) if each vertex is critical, which has been extensively studied (see, for example,
[4,7–9]). For k ≥ 1, a vertex v is k-distance domination-critical if γk(G−v) < γk(G) and G is k-distance domination-
critical, γk-critical for short, if each vertex in G is k-distance domination-critical, which was studied by Henning
et al. [10].

Fulman et al. [8] showed that a γ -critical graph G is regular if its order is (∆ + 1)(γ − 1) + 1, and its diameter
d ≤ 2(γ − 1) if γ ≥ 2. In this work, we show that for a γk-critical graph G, |Nk(x)| = ∆k for any x ∈ V (G) if its
order is (∆k + 1)(γk − 1) + 1, and its diameter d ≤ 2k(γk − 1). In particular, for k = 2, we have d ≤ 3(γ2 − 1) if
γ2 ≥ 2. Clearly, our results generalize ones of Fulman et al.

2. Some lemmas

In what follows, for any a vertex v in G, we use Dv to denote a minimum k-dominating set of the subgraph
Gv = G − v, and Du

v to denote the set Dv ∪ {u} for u ∈ V (G).

Lemma 2.1. If G is a connected γk-critical graph, then γk(G − v) = γk(G) − 1 for any v ∈ V (G).

Proof. Let G be a γk-critical graph. Then, it is clear that γk(G −v) ≤ γk(G)−1 for any v ∈ V (G). But if there exists
a vertex u ∈ V (G) such that γk(G − u) < γk(G) − 1, then Du

u is a k-dominating set of G with cardinality less than
γk(G), a contradiction. Thus, γk(G − v) = γk(G) − 1 for any v ∈ V (G). �

Let k be a positive integer. The k-th power of a graph G is the graph Gk with vertex set V (Gk) = V (G) and edge
set E(Gk) = {xy : 1 ≤ dG(x, y) ≤ k}. The following lemma holds directly from the definition of Gk .

Lemma 2.2. ∆(Gk) = ∆k(G) and γ (Gk) = γk(G) for any graph G and each k ≥ 1.

Lemma 2.3 (G. MacGillvray). For each k ≥ 1, a graph G is γk(G)-critical if and only if Gk is γ (Gk)-critical.

Proof. This is clear for k = 1, so we assume k ≥ 2 below.
Suppose that G is a γk-critical graph. Let x ∈ V (G). By the Lemma 2.2, a k-dominating set of G−x is a dominating

set of (G − x)k . Since (G − x)k is a spanning subgraph of Gk
− x , then it follows that Gk is γ (Gk)-critical.

For the converse, suppose that Gk is γ (Gk)-critical. Then there must exist a dominating set D of Gk
− x such

that D contains no vertex y such that dG(x, y) ≤ k. Therefore, no edge of Gk joining a vertex of D to a vertex of
V (Gk) − (D ∪ {x}) arises in Gk from a path of length at most k that contains x . It follows that D is a dominating set
of (G − x)k , and hence a k-dominating set of G − x . This completes the proof. �

Remarks. Lemma 2.3 and its proof are due to G. MacGillvray [unpublished].

Lemma 2.4. For each k ≥ 1, if the vertices x and y are two vertices in G such that dG(x, y) = d(G), then
dGk (x, y) = d(Gk). Furthermore, d(Gk) = d

d(G)
k e.

Proof. Suppose x and y are two vertices in G such that dG(x, y) = d(G). If dGk (x, y) < d(Gk), then there must
exist two vertices x ′ and y′ such that dGk (x ′, y′) = d(Gk). By the definition of Gk , we get a contradiction for
dG(x ′, y′) > dG(x, y) = d(G).

Let d(G) = mk + t , where 0 ≤ t < k. For t = 0, we have d(Gk) = m =
d(G)

k by the definition of Gk . For t 6= 0,
let x and y be two vertices in G such that dG(x, y) = d(G), and we consider an xy-path of length d(G). Then there
must exist a vertex v on this xy-path such that dG(x, v) = mk and dG(v, y) = t . By the definition of Gk , we have
dGk (x, v) = m and dGk (v, y) = 1. Therefore, d(Gk) = dGk (x, y) = dGk (x, v) + dGk (v, y) = m + 1 = d

d(G)
k e. �

Lemma 2.5 (Fulman et al. [8]). If G is a γ -critical graph with order n, then dG(x) = ∆(G) for any x ∈ V (G) if
n = (∆ + 1)(γ − 1) + 1, and its diameter d ≤ 2(γ − 1) if γ ≥ 2.
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3. Main results

Theorem 3.1. Let G be a connected γk-critical graph and v ∈ V (G); then there are two vertices x and y in Nk(v)

such that dG(x, y) > k.

Proof. We only need to show that G must not be γk-critical if dG(x, y) ≤ k for any two vertices x and y in Nk(v).
Suppose on the contrary that G is γk-critical. Take x ∈ Nk(v) and consider the subgraph Gx . Since any γk-set Dx of
Gx must include a vertex, say y, in Nk[v], then Dx must also k-dominate x since dG(x, y) ≤ k. Thus, Dx is also a
k-dominating set of G with cardinality less than γk(G), which contradicts the definition of γk(G). �

Theorem 3.2. Let G be a γk-critical graph of order n. Then n ≤ (∆k(G) + 1)(γk(G) − 1) + 1. Moreover, if the
equality holds then |Nk(x)| = ∆k(G) for any x ∈ V (G).

Proof. Let v be a vertex of G. Since G is a γk-critical graph of order n, |Dv| = γk(G) − 1 by Lemma 2.1. Since each
vertex of Dv can k-dominate at most (∆k(G) + 1) vertices, then Dv can k-dominate at most (∆k(G) + 1)(γk(G) − 1)

vertices, which implies that

n = |V (Gv)| + 1 ≤ (∆k(G) + 1)(γk(G) − 1) + 1.

We now assume n = |V (Gv)| + 1 = (∆k(G) + 1)(γk(G) − 1) + 1. By Lemma 2.2, we have γ (Gk) = γk(G). By
Lemma 2.3, we have Gk is γ (Gk)-critical graph. By Lemma 2.5, we have |dGk (x)| = ∆(Gk) for any x ∈ V (G). By
the definition of Gk , |Nk(x)| = |dGk (x)| = ∆(Gk) = ∆k(G) for any x ∈ V (G). �

Theorem 3.3. Let G be a γk-critical graph. Then its diameter d(G) ≤ 2k(γk − 1) if γk ≥ 2.

Proof. By Lemmas 2.2–2.5, we have d(G)
k ≤ d(Gk) ≤ 2(γ (Gk) − 1). So we get the theorem. �

By Theorem 3.3, we have d(G) ≤ 4(γ2 −1) for k = 2. However, we can get a better upper bound than Theorem 3.3
and this bound is tight.

Theorem 3.4. Let G be a γ2-critical graph. If γ2 ≥ 2, then the diameter G

d(G) ≤ 3(γ2 − 1),

and this bound is best possible.

Proof. Let x and y be two vertices in G such that dG(x, y) = d. Define X j = {z ∈ V (G) : dG(x, z) = j} and
U j = X0 ∪ X1 ∪ · · · ∪ X j , where 0 ≤ j ≤ d .

Let D be a γ2-set of G. For j > 1, the subgraph G[U j ] is said to be D-full if it satisfies that j ≤ 3(|D ∩ U j | − 1).
It is easy to check that G[U3] is Dx

x -full.
If G[Ud ] is D-full for some γ2-set D, then d ≤ 3(|D ∩ Ud | − 1) = 3(γ2 − 1), and so the theorem follows since

G = G[Ud ]. Suppose that G[Ud ] is not D-full for any γ2-set D below. Since G[U3] is Dx
x -full, there must exist an

integer h < d such that for any γ2-set D, G[Ui ] is not D-full for any i > h, but there exists a γ2-set D such that
G[Uh] is D-full. Let D be such a γ2-set below.

Now we have h ≤ 3(|D∩Uh |−1), h+1 > 3(|D∩Uh+1|−1) and h+2 > 3(|D∩Uh+2|−1). Then |D∩Uh | ≥ 1+
h
3 ,

|D ∩ Uh+1| < 1 +
h+1

3 and |D ∩ Uh+2| < 1 +
h+2

3 .
Let h = 3m + r for some integer m, where 0 ≤ r ≤ 2. If 1 ≤ r ≤ 2, then |D ∩ Uh | ≥ 1 + d

3m+r
3 e = 2 + m, while

|D ∩ Uh+1| < 1 + d
3m+r+1

3 e = 2 + m, so they contradict each other. Therefore, h = 3m, |D ∩ Uh | ≥ 1 + m while
|D ∩ Uh+1| < 1 + d

3m+1
3 e and |D ∩ Uh+2| < 1 + d

3m+2
3 e. Thus we have |D ∩ Uh | = 1 + m, D ∩ Xh+1 = ∅ and

D ∩ Xh+2 = ∅.
Suppose that d > h + 2. If D ∩ Xh+3 6= ∅, then |D ∩ Uh+3| ≥ 1 + (1 + m) = 2 + m = 1 +

h+3
3 ,

contradicting the maximality of h, so D ∩ Xh+3 = ∅. Hence we have d > h + 3. But if |D ∩ Xh+4| ≥ 2, we
have |D ∩ Uh+4| ≥ 2 + (1 + m) = 3 + m > 1 +

h+4
3 , again contradicting the maximality of h. So |D ∩ Xh+4| ≤ 1.

Case 1. |D ∩ Xh+4| = 1, that is, there is exactly one vertex of D, say u, in Xh+4.
We first claim that the vertex u must 2-dominate Xh+3. Otherwise, there exists at least one vertex of the

2-dominating set D in Xh+5, that is D∩ Xh+5 6= ∅. Then |D∩Uh+5| ≥ 1+(2+m) = 3+m > 1+
h+5

3 , contradicting
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the maximality of h; then D ∩ Xh+5 = ∅. If u could not 2-dominate Xh+4, then there must exist at least one vertex
in Xh+5 or Xh+6, that is, D ∩ Xh+5 6= ∅ or D ∩ Xh+6 6= ∅; thus |D ∩ Uh+5| ≥ 1 + (2 + m) = 3 + m = 1 +

h+5
3

or |D ∩ Uh+6| ≥ 1 + (2 + m) = 3 + m = 1 +
h+6

3 , contradicting the maximality of h. So u could 2-dominate
Xh+3 ∪ Xh+4.

Now consider Gu and the minimum 2-dominating set Du of Gu . Then Du ∩(Xh+3∪Xh+4) = ∅; otherwise, Du also
could 2-dominate u. Assume that |Du ∩ Uh+2| ≥ 1 + m and take a vertex w ∈ V (Xh+3); then Dw

u could 2-dominate
G, and |Dw

u ∩ Uh+3| ≥ 2 + m = 1 +
h+3

3 , contradicting the maximality of h. Thus we have |Du ∩ Uh+2| ≤ m.
Noticing that Du ∩ (Xh+3 ∪ Xh+4) = ∅, then |Du ∩ Uh+4| ≤ m.

Let D′
= (D − Uh+2) ∪ (Du ∩ Uh+4). We claim that D′ is a 2-dominating set of G, since G − Uh+2 must be able

to be 2-dominated by D − Uh+2, and the vertices in Uh+2 must be able to be 2-dominated by Du ∩ Uh+4.
But |D′

| ≤ (γ2(G) − 1 − m) + m ≤ γ2(G) − 1, a contradiction to the minimality of γ2(G). So |D ∩ Xh+4| 6= 1.
Case 2. |D ∩ Xh+4| = 0; then we have d > h + 4.
Since D is a 2-dominating set of G, then D ∩ Xh+5 6= ∅. But if |D ∩ Xh+5| ≥ 2, then |D ∩ Uh+5| ≥ 2 + (1 + m)

= 3 + m > 1 +
h+5

3 , a contradiction to the maximality of h. Then |D ∩ Xh+5| = 1, that is there is exactly one vertex
u in Xh+5 and u could 2-dominate the vertices in Xh+3. But if u could not 2-dominate all the vertices in Xh+4, then
D ∩ Xh+6 6= ∅. If D ∩ Xh+6 ≥ 1, then |D ∩ Uh+6| ≥ 1 + (2 + m) = 3 + m = 1 +

h+6
3 , a contradiction to the

maximality of h. Then |D ∩ Xh+6| = ∅, and u also 2-dominates Xh+3 ∪ Xh+4.
Now consider Gu and the minimum 2-dominating set Du of Gu . Then Du ∩ (Xh+3 ∪ Xh+4) = ∅; otherwise, Du

also could 2-dominate u. Assume that |Du ∩Uh+2| ≥ 1 + m. Take a vertex w ∈ V (Xh+3); then Dw
u could 2-dominate

G, and |Dw
u ∩ Uh+3| ≥ 2 + m = 1 +

h+3
3 , contradicting the maximality of h. Thus we have |Du ∩ Uh+2| ≤ m.

Noticing that Du ∩ (Xh+3 ∪ Xh+4) = ∅, then |Du ∩ Uh+4| ≤ m.
Let D′

= (D − Uh+2) ∪ (Du ∩ Uh+4). We claim that D′ is a 2-dominating set of G, since G − Uh+2 must be able
to be 2-dominated by D − Uh+2, and the vertices in Uh+2 must be able to be 2-dominated by Du ∩ Uh+4.

But |D′
| ≤ (γ2(G) − 1 − m) + m ≤ γ2(G) − 1, a contradiction to the minimality of γ2(G). Then |D ∩ Xh+4| 6= 0.

Now we have that h < d ≤ h + 2, that is, d = 3m + 1 or d = 3m + 2; otherwise d ≤ 3(γ2 − 1). This implies that
the theorem is true for any graph whose diameter is a multiple of 3.

Now assume that d = 3m + 1 or d = 3m + 2. Let G1, G2 and G3 be three vertex disjoint copies of G.
And let x1 be an end-vertex of the diameter of the graph G1, let x2 and x ′

2 be two end-vertices of the diameter
of the graph G2 such that dG2(x2, x ′

2) = d , and x3 be an end-vertex of the diameter of the graph G3. And let
{a1, a2}, {b1, b2}, {c1, c2} and {d1, d2} be four edges. Let H be the graph constructed from the disjoint union
G1 ∪ G2 ∪ G3 ∪ {a1, a2} ∪ {b1, b2} ∪ {c1, c2} ∪ {d1, d2} by adding the edges x1a1, x1b1, x2a2, x2b2, x ′

2c1,x ′

2d1,
x3c2 and x3d2. Then the diameter of H is 3d + 6, which is a multiple of 3.

We claim that H is 3γ2-critical. First we show that γ2(H) = 3γ2(G). Because Dx1
x1 ∪ Dx2

x2 ∪ Dx3
x3 is a 2-dominating

set of H , then γ2(H) ≤ 3γ2(G). Suppose that γ2(H) < 3γ2(G) and assume that DH is a minimum 2-dominating set
of H .

(a) If DH ∩ {a1, a2, b1, b2, c1, c2, d1, d2} = ∅, then some Gi , where i ∈ {1, 2, 3}, could be 2-dominated by some
vertex set with cardinality less than γ2(G) vertices. This is a contradiction to the minimality of γ2(G).

(b) If DH ∩ {a1, a2, b1, b2, c1, c2, d1, d2} 6= ∅, and since {a1, a2, b1, b2} and {c1, c2, d1, d2} are all to be
2-dominated by DH , then we must have |DH ∩{x1, x2, a1, a2, b1, b2}| ≥ 2 and |DH ∩{x ′

2, x3, c1, c2, d1, d2}| ≥ 2. And
by the minimality of DH , we have |DH ∩ {x1, x2, a1, a2, b1, b2}| = 2 and |DH ∩ {x ′

2, x3, c1, c2, d1, d2}| = 2. Then
we construct a new set D′

H = (DH − {a1, a2, b1, b2, c1, c2, d1, d2}) ∪ {x1, x2, x ′

2, x3}, and D′

H is also a 2-dominating
set of H such that D′

H ∩ {a1, a2, b1, b2, c1, c2, d1, d2} = ∅. By (a), we also get a contradiction.
It follows from (a) and (b) that we have γ2(H) = 3γ2(G).
In what follows, we show that H is 3γ2-critical.
(a′) If a vertex is removed from a copy of G in H , say a vertex y in G1, then Dy ∪ Dx2

x2 ∪ Dx3
x3 is a 2-dominating

set of H − {y} with cardinality 3γ2(G) − 1.
(b′) If a vertex in {a1, a2, b1, b2, c1, c2, d1, d2} is removed from H , say a1, then Dx1 ∪ Dx2 ∪ Dx3

x3 ∪ {b2} is a
2-dominating set of H − {a1} with cardinality 3γ2(G) − 1.

It follows from (a′) and (b′) that we have that H is 3γ2-critical. And d(H) = 3d + 6.
Since the theorem is true for all graphs whose diameter is a multiple of 3, then 3d + 6 ≤ 3(3γ2 − 1), which implies

that d ≤ 3(γ2 − 1) as desired.
In order to complete the proof of the theorem, we show that this bound is best possible.
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Let G be a path on n vertices, denoted by {u1, u2, . . . , un}. Replacing each edge by two internally disjoint paths of
length 3, then for the resulting graph H it is easily verified that H is an n-critical graph with diameter d(H) = 3(n−1).
Then the proof of the theorem is completed. �
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