Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

Volume 21, Number 4, April 2008

Applied

 Mathematics Lettersan international journal of rapid publication

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author's institution, sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

Distance domination-critical graphs ${ }^{\text {T }}$

Fang Tian ${ }^{\text {a }}$, Jun-Ming Xu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai, 200433, China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China

Received 13 April 2005; received in revised form 26 March 2007; accepted 30 May 2007

Abstract

A set D of vertices in a connected graph G is called a k-dominating set if every vertex in $G-D$ is within distance k from some vertex of D. The k-domination number of $G, \gamma_{k}(G)$, is the minimum cardinality over all k-dominating sets of G. A graph G is k-distance domination-critical if $\gamma_{k}(G-x)<\gamma_{k}(G)$ for any vertex x in G. This work considers properties of k-distance domination-critical graphs and establishes a best possible upper bound on the diameter of a 2-distance domination-critical graph G, that is, $d(G) \leq 3\left(\gamma_{2}-1\right)$ for $\gamma_{2} \geq 2$. (C) 2007 Elsevier Ltd. All rights reserved.

Keywords: k-domination number; k-distance domination-critical; Diameter; k-neighborhood

1. Introduction

For the terminology and notation of graph theory not given here, the reader is referred to [1] or [11]. Let $G=(V, E)$ be a connected simple graph. For $S \subseteq V(G), G[S]$ denotes a subgraph of G induced by S. The distance $d_{G}(x, y)$ between two vertices x and y is the length of a shortest $x y$-path in G. The diameter of $G, d(G)$, is the maximum distance between any two vertices in G. Let k be a positive integer. For every vertex $x \in V(G)$, the open k-neighborhood $N_{k}(x)$ of x is defined as $N_{k}(x)=\left\{y \in V(G): 1 \leq d_{G}(x, y) \leq k\right\}$. The closed k-neighborhood $N_{k}[x]$ of x in G is defined as $N_{k}(x) \cup\{x\}$. Let

$$
\Delta_{k}(G)=\max \left\{\left|N_{k}(x)\right|: \text { for any } x \in V(G)\right\}
$$

Clearly, $\Delta_{1}(G)=\Delta(G)$. For a set $X \subset V(G)$, let

$$
N_{k}(X)=\bigcup_{x \in X} N_{k}(x) \quad \text { and } \quad N_{k}[X]=\bigcup_{x \in X} N_{k}[x]
$$

A set $D \subset V(G)$ is called a k-dominating set of G if every vertex in $G-D$ is within distance k from some vertex of D. The minimum cardinality over all k-dominating sets of G is called the k-domination number of G and is

[^0]denoted by $\gamma_{k}(G)$. A minimum k-dominating set is called a γ_{k}-set for short. The concept of the k-dominating set was introduced by Chang and Nemhauser [5,6] and could find applications for many situations and structures which give rise to graphs; see the books by Haynes et al. [2,3].

Brigham et al. [4] define a vertex v of a graph G as being critical if $\gamma(G-v)<\gamma(G)$. The graph G is vertex domination-critical (or γ-critical) if each vertex is critical, which has been extensively studied (see, for example, [4,7-9]). For $k \geq 1$, a vertex v is k-distance domination-critical if $\gamma_{k}(G-v)<\gamma_{k}(G)$ and G is k-distance dominationcritical, γ_{k}-critical for short, if each vertex in G is k-distance domination-critical, which was studied by Henning et al. [10].

Fulman et al. [8] showed that a γ-critical graph G is regular if its order is $(\Delta+1)(\gamma-1)+1$, and its diameter $d \leq 2(\gamma-1)$ if $\gamma \geq 2$. In this work, we show that for a γ_{k}-critical graph $G,\left|N_{k}(x)\right|=\Delta_{k}$ for any $x \in V(G)$ if its order is $\left(\Delta_{k}+1\right)\left(\gamma_{k}-1\right)+1$, and its diameter $d \leq 2 k\left(\gamma_{k}-1\right)$. In particular, for $k=2$, we have $d \leq 3\left(\gamma_{2}-1\right)$ if $\gamma_{2} \geq 2$. Clearly, our results generalize ones of Fulman et al.

2. Some lemmas

In what follows, for any a vertex v in G, we use D_{v} to denote a minimum k-dominating set of the subgraph $G_{v}=G-v$, and D_{v}^{u} to denote the set $D_{v} \cup\{u\}$ for $u \in V(G)$.

Lemma 2.1. If G is a connected γ_{k}-critical graph, then $\gamma_{k}(G-v)=\gamma_{k}(G)-1$ for any $v \in V(G)$.
Proof. Let G be a γ_{k}-critical graph. Then, it is clear that $\gamma_{k}(G-v) \leq \gamma_{k}(G)-1$ for any $v \in V(G)$. But if there exists a vertex $u \in V(G)$ such that $\gamma_{k}(G-u)<\gamma_{k}(G)-1$, then D_{u}^{u} is a k-dominating set of G with cardinality less than $\gamma_{k}(G)$, a contradiction. Thus, $\gamma_{k}(G-v)=\gamma_{k}(G)-1$ for any $v \in V(G)$.

Let k be a positive integer. The k-th power of a graph G is the graph G^{k} with vertex set $V\left(G^{k}\right)=V(G)$ and edge set $E\left(G^{k}\right)=\left\{x y: 1 \leq d_{G}(x, y) \leq k\right\}$. The following lemma holds directly from the definition of G^{k}.

Lemma 2.2. $\Delta\left(G^{k}\right)=\Delta_{k}(G)$ and $\gamma\left(G^{k}\right)=\gamma_{k}(G)$ for any graph G and each $k \geq 1$.
Lemma 2.3 (G. MacGillvray). For each $k \geq 1$, a graph G is $\gamma_{k}(G)$-critical if and only if G^{k} is $\gamma\left(G^{k}\right)$-critical.
Proof. This is clear for $k=1$, so we assume $k \geq 2$ below.
Suppose that G is a γ_{k}-critical graph. Let $x \in V(G)$. By the Lemma 2.2, a k-dominating set of $G-x$ is a dominating set of $(G-x)^{k}$. Since $(G-x)^{k}$ is a spanning subgraph of $G^{k}-x$, then it follows that G^{k} is $\gamma\left(G^{k}\right)$-critical.

For the converse, suppose that G^{k} is $\gamma\left(G^{k}\right)$-critical. Then there must exist a dominating set D of $G^{k}-x$ such that D contains no vertex y such that $d_{G}(x, y) \leq k$. Therefore, no edge of G^{k} joining a vertex of D to a vertex of $V\left(G^{k}\right)-(D \cup\{x\})$ arises in G^{k} from a path of length at most k that contains x. It follows that D is a dominating set of $(G-x)^{k}$, and hence a k-dominating set of $G-x$. This completes the proof.

Remarks. Lemma 2.3 and its proof are due to G. MacGillvray [unpublished].
Lemma 2.4. For each $k \geq 1$, if the vertices x and y are two vertices in G such that $d_{G}(x, y)=d(G)$, then $d_{G^{k}}(x, y)=d\left(G^{k}\right)$. Furthermore, $d\left(G^{k}\right)=\left\lceil\frac{d(G)}{k}\right\rceil$.

Proof. Suppose x and y are two vertices in G such that $d_{G}(x, y)=d(G)$. If $d_{G^{k}}(x, y)<d\left(G^{k}\right)$, then there must exist two vertices x^{\prime} and y^{\prime} such that $d_{G^{k}}\left(x^{\prime}, y^{\prime}\right)=d\left(G^{k}\right)$. By the definition of G^{k}, we get a contradiction for $d_{G}\left(x^{\prime}, y^{\prime}\right)>d_{G}(x, y)=d(G)$.

Let $d(G)=m k+t$, where $0 \leq t<k$. For $t=0$, we have $d\left(G^{k}\right)=m=\frac{d(G)}{k}$ by the definition of G^{k}. For $t \neq 0$, let x and y be two vertices in G such that $d_{G}(x, y)=d(G)$, and we consider an $x y$-path of length $d(G)$. Then there must exist a vertex v on this $x y$-path such that $d_{G}(x, v)=m k$ and $d_{G}(v, y)=t$. By the definition of G^{k}, we have $d_{G^{k}}(x, v)=m$ and $d_{G^{k}}(v, y)=1$. Therefore, $d\left(G^{k}\right)=d_{G^{k}}(x, y)=d_{G^{k}}(x, v)+d_{G^{k}}(v, y)=m+1=\left\lceil\frac{d(G)}{k}\right\rceil$.

Lemma 2.5 (Fulman et al. [8]). If G is a γ-critical graph with order n, then $d_{G}(x)=\Delta(G)$ for any $x \in V(G)$ if $n=(\Delta+1)(\gamma-1)+1$, and its diameter $d \leq 2(\gamma-1)$ if $\gamma \geq 2$.

3. Main results

Theorem 3.1. Let G be a connected γ_{k}-critical graph and $v \in V(G)$; then there are two vertices x and y in $N_{k}(v)$ such that $d_{G}(x, y)>k$.

Proof. We only need to show that G must not be γ_{k}-critical if $d_{G}(x, y) \leq k$ for any two vertices x and y in $N_{k}(v)$. Suppose on the contrary that G is γ_{k}-critical. Take $x \in N_{k}(v)$ and consider the subgraph G_{x}. Since any γ_{k}-set D_{x} of G_{x} must include a vertex, say y, in $N_{k}[v]$, then D_{x} must also k-dominate x since $d_{G}(x, y) \leq k$. Thus, D_{x} is also a k-dominating set of G with cardinality less than $\gamma_{k}(G)$, which contradicts the definition of $\gamma_{k}(G)$.

Theorem 3.2. Let G be a γ_{k}-critical graph of order n. Then $n \leq\left(\Delta_{k}(G)+1\right)\left(\gamma_{k}(G)-1\right)+1$. Moreover, if the equality holds then $\left|N_{k}(x)\right|=\Delta_{k}(G)$ for any $x \in V(G)$.

Proof. Let v be a vertex of G. Since G is a γ_{k}-critical graph of order $n,\left|D_{v}\right|=\gamma_{k}(G)-1$ by Lemma 2.1. Since each vertex of D_{v} can k-dominate at most $\left(\Delta_{k}(G)+1\right)$ vertices, then D_{v} can k-dominate at most $\left(\Delta_{k}(G)+1\right)\left(\gamma_{k}(G)-1\right)$ vertices, which implies that

$$
n=\left|V\left(G_{v}\right)\right|+1 \leq\left(\Delta_{k}(G)+1\right)\left(\gamma_{k}(G)-1\right)+1
$$

We now assume $n=\left|V\left(G_{v}\right)\right|+1=\left(\Delta_{k}(G)+1\right)\left(\gamma_{k}(G)-1\right)+1$. By Lemma 2.2, we have $\gamma\left(G^{k}\right)=\gamma_{k}(G)$. By Lemma 2.3, we have G^{k} is $\gamma\left(G^{k}\right)$-critical graph. By Lemma 2.5, we have $\left|d_{G^{k}}(x)\right|=\Delta\left(G^{k}\right)$ for any $x \in V(G)$. By the definition of $G^{k},\left|N_{k}(x)\right|=\left|d_{G^{k}}(x)\right|=\Delta\left(G^{k}\right)=\Delta_{k}(G)$ for any $x \in V(G)$.

Theorem 3.3. Let G be a γ_{k}-critical graph. Then its diameter $d(G) \leq 2 k\left(\gamma_{k}-1\right)$ if $\gamma_{k} \geq 2$.
Proof. By Lemmas 2.2-2.5, we have $\frac{d(G)}{k} \leq d\left(G^{k}\right) \leq 2\left(\gamma\left(G^{k}\right)-1\right)$. So we get the theorem.
By Theorem 3.3, we have $d(G) \leq 4\left(\gamma_{2}-1\right)$ for $k=2$. However, we can get a better upper bound than Theorem 3.3 and this bound is tight.

Theorem 3.4. Let G be a γ_{2}-critical graph. If $\gamma_{2} \geq 2$, then the diameter G

$$
d(G) \leq 3\left(\gamma_{2}-1\right)
$$

and this bound is best possible.
Proof. Let x and y be two vertices in G such that $d_{G}(x, y)=d$. Define $X_{j}=\left\{z \in V(G): d_{G}(x, z)=j\right\}$ and $U_{j}=X_{0} \cup X_{1} \cup \cdots \cup X_{j}$, where $0 \leq j \leq d$.

Let D be a γ_{2}-set of G. For $j>1$, the subgraph $G\left[U_{j}\right]$ is said to be D-full if it satisfies that $j \leq 3\left(\left|D \cap U_{j}\right|-1\right)$. It is easy to check that $G\left[U_{3}\right]$ is D_{x}^{x}-full.

If $G\left[U_{d}\right]$ is D-full for some γ_{2}-set D, then $d \leq 3\left(\left|D \cap U_{d}\right|-1\right)=3\left(\gamma_{2}-1\right)$, and so the theorem follows since $G=G\left[U_{d}\right]$. Suppose that $G\left[U_{d}\right]$ is not D-full for any γ_{2}-set D below. Since $G\left[U_{3}\right]$ is D_{x}^{x}-full, there must exist an integer $h<d$ such that for any γ_{2}-set $D, G\left[U_{i}\right]$ is not D-full for any $i>h$, but there exists a γ_{2}-set D such that $G\left[U_{h}\right]$ is D-full. Let D be such a γ_{2}-set below.

Now we have $h \leq 3\left(\left|D \cap U_{h}\right|-1\right), h+1>3\left(\left|D \cap U_{h+1}\right|-1\right)$ and $h+2>3\left(\left|D \cap U_{h+2}\right|-1\right)$. Then $\left|D \cap U_{h}\right| \geq 1+\frac{h}{3}$, $\left|D \cap U_{h+1}\right|<1+\frac{h+1}{3}$ and $\left|D \cap U_{h+2}\right|<1+\frac{h+2}{3}$.

Let $h=3 m+r$ for some integer m, where $0 \leq r \leq 2$. If $1 \leq r \leq 2$, then $\left|D \cap U_{h}\right| \geq 1+\left\lceil\frac{3 m+r}{3}\right\rceil=2+m$, while $\left|D \cap U_{h+1}\right|<1+\left\lceil\frac{3 m+r+1}{3}\right\rceil=2+m$, so they contradict each other. Therefore, $h=3 m,\left|D \cap U_{h}\right| \geq 1+m$ while $\left|D \cap U_{h+1}\right|<1+\left\lceil\frac{3 m+1}{3}\right\rceil$ and $\left|D \cap U_{h+2}\right|<1+\left\lceil\frac{3 m+2}{3}\right\rceil$. Thus we have $\left|D \cap U_{h}\right|=1+m, D \cap X_{h+1}=\emptyset$ and $D \cap X_{h+2}=\emptyset$.

Suppose that $d>h+2$. If $D \cap X_{h+3} \neq \emptyset$, then $\left|D \cap U_{h+3}\right| \geq 1+(1+m)=2+m=1+\frac{h+3}{3}$, contradicting the maximality of h, so $D \cap X_{h+3}=\emptyset$. Hence we have $d>h+3$. But if $\left|D \cap X_{h+4}\right| \geq 2$, we have $\left|D \cap U_{h+4}\right| \geq 2+(1+m)=3+m>1+\frac{h+4}{3}$, again contradicting the maximality of h. So $\left|D \cap X_{h+4}\right| \leq 1$.

Case $1 .\left|D \cap X_{h+4}\right|=1$, that is, there is exactly one vertex of D, say u, in X_{h+4}.
We first claim that the vertex u must 2-dominate X_{h+3}. Otherwise, there exists at least one vertex of the 2-dominating set D in X_{h+5}, that is $D \cap X_{h+5} \neq \emptyset$. Then $\left|D \cap U_{h+5}\right| \geq 1+(2+m)=3+m>1+\frac{h+5}{3}$, contradicting
the maximality of h; then $D \cap X_{h+5}=\emptyset$. If u could not 2-dominate X_{h+4}, then there must exist at least one vertex in X_{h+5} or X_{h+6}, that is, $D \cap X_{h+5} \neq \emptyset$ or $D \cap X_{h+6} \neq \emptyset$; thus $\left|D \cap U_{h+5}\right| \geq 1+(2+m)=3+m=1+\frac{h+5}{3}$ or $\left|D \cap U_{h+6}\right| \geq 1+(2+m)=3+m=1+\frac{h+6}{3}$, contradicting the maximality of h. So u could 2-dominate $X_{h+3} \cup X_{h+4}$.

Now consider G_{u} and the minimum 2-dominating set D_{u} of G_{u}. Then $D_{u} \cap\left(X_{h+3} \cup X_{h+4}\right)=\emptyset$; otherwise, D_{u} also could 2-dominate u. Assume that $\left|D_{u} \cap U_{h+2}\right| \geq 1+m$ and take a vertex $w \in V\left(X_{h+3}\right)$; then D_{u}^{w} could 2-dominate G, and $\left|D_{u}^{w} \cap U_{h+3}\right| \geq 2+m=1+\frac{h+3}{3}$, contradicting the maximality of h. Thus we have $\left|D_{u} \cap U_{h+2}\right| \leq m$. Noticing that $D_{u} \cap\left(X_{h+3} \cup X_{h+4}\right)=\emptyset$, then $\left|D_{u} \cap U_{h+4}\right| \leq m$.

Let $D^{\prime}=\left(D-U_{h+2}\right) \cup\left(D_{u} \cap U_{h+4}\right)$. We claim that D^{\prime} is a 2-dominating set of G, since $G-U_{h+2}$ must be able to be 2-dominated by $D-U_{h+2}$, and the vertices in U_{h+2} must be able to be 2-dominated by $D_{u} \cap U_{h+4}$.

But $\left|D^{\prime}\right| \leq\left(\gamma_{2}(G)-1-m\right)+m \leq \gamma_{2}(G)-1$, a contradiction to the minimality of $\gamma_{2}(G)$. So $\left|D \cap X_{h+4}\right| \neq 1$.
Case 2. $\left|D \cap X_{h+4}\right|=0$; then we have $d>h+4$.
Since D is a 2-dominating set of G, then $D \cap X_{h+5} \neq \emptyset$. But if $\left|D \cap X_{h+5}\right| \geq 2$, then $\left|D \cap U_{h+5}\right| \geq 2+(1+m)$ $=3+m>1+\frac{h+5}{3}$, a contradiction to the maximality of h. Then $\left|D \cap X_{h+5}\right|=1$, that is there is exactly one vertex u in X_{h+5} and u could 2-dominate the vertices in X_{h+3}. But if u could not 2-dominate all the vertices in X_{h+4}, then $D \cap X_{h+6} \neq \emptyset$. If $D \cap X_{h+6} \geq 1$, then $\left|D \cap U_{h+6}\right| \geq 1+(2+m)=3+m=1+\frac{h+6}{3}$, a contradiction to the maximality of h. Then $\left|D \cap X_{h+6}\right|=\emptyset$, and u also 2-dominates $X_{h+3} \cup X_{h+4}$.

Now consider G_{u} and the minimum 2-dominating set D_{u} of G_{u}. Then $D_{u} \cap\left(X_{h+3} \cup X_{h+4}\right)=\emptyset$; otherwise, D_{u} also could 2-dominate u. Assume that $\left|D_{u} \cap U_{h+2}\right| \geq 1+m$. Take a vertex $w \in V\left(X_{h+3}\right)$; then D_{u}^{w} could 2-dominate G, and $\left|D_{u}^{w} \cap U_{h+3}\right| \geq 2+m=1+\frac{h+3}{3}$, contradicting the maximality of h. Thus we have $\left|D_{u} \cap U_{h+2}\right| \leq m$. Noticing that $D_{u} \cap\left(X_{h+3} \cup X_{h+4}\right)=\emptyset$, then $\left|D_{u} \cap U_{h+4}\right| \leq m$.

Let $D^{\prime}=\left(D-U_{h+2}\right) \cup\left(D_{u} \cap U_{h+4}\right)$. We claim that D^{\prime} is a 2-dominating set of G, since $G-U_{h+2}$ must be able to be 2-dominated by $D-U_{h+2}$, and the vertices in U_{h+2} must be able to be 2-dominated by $D_{u} \cap U_{h+4}$.

But $\left|D^{\prime}\right| \leq\left(\gamma_{2}(G)-1-m\right)+m \leq \gamma_{2}(G)-1$, a contradiction to the minimality of $\gamma_{2}(G)$. Then $\left|D \cap X_{h+4}\right| \neq 0$.
Now we have that $h<d \leq h+2$, that is, $d=3 m+1$ or $d=3 m+2$; otherwise $d \leq 3\left(\gamma_{2}-1\right)$. This implies that the theorem is true for any graph whose diameter is a multiple of 3 .

Now assume that $d=3 m+1$ or $d=3 m+2$. Let G_{1}, G_{2} and G_{3} be three vertex disjoint copies of G. And let x_{1} be an end-vertex of the diameter of the graph G_{1}, let x_{2} and x_{2}^{\prime} be two end-vertices of the diameter of the graph G_{2} such that $d_{G_{2}}\left(x_{2}, x_{2}^{\prime}\right)=d$, and x_{3} be an end-vertex of the diameter of the graph G_{3}. And let $\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}\right\},\left\{c_{1}, c_{2}\right\}$ and $\left\{d_{1}, d_{2}\right\}$ be four edges. Let H be the graph constructed from the disjoint union $G_{1} \cup G_{2} \cup G_{3} \cup\left\{a_{1}, a_{2}\right\} \cup\left\{b_{1}, b_{2}\right\} \cup\left\{c_{1}, c_{2}\right\} \cup\left\{d_{1}, d_{2}\right\}$ by adding the edges $x_{1} a_{1}, x_{1} b_{1}, x_{2} a_{2}, x_{2} b_{2}, x_{2}^{\prime} c_{1}, x_{2}^{\prime} d_{1}$, $x_{3} c_{2}$ and $x_{3} d_{2}$. Then the diameter of H is $3 d+6$, which is a multiple of 3 .

We claim that H is $3 \gamma_{2}$-critical. First we show that $\gamma_{2}(H)=3 \gamma_{2}(G)$. Because $D_{x_{1}}^{x_{1}} \cup D_{x_{2}}^{x_{2}} \cup D_{x_{3}}^{x_{3}}$ is a 2-dominating set of H, then $\gamma_{2}(H) \leq 3 \gamma_{2}(G)$. Suppose that $\gamma_{2}(H)<3 \gamma_{2}(G)$ and assume that D_{H} is a minimum 2-dominating set of H.
(a) If $D_{H} \cap\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}\right\}=\emptyset$, then some G_{i}, where $i \in\{1,2,3\}$, could be 2 -dominated by some vertex set with cardinality less than $\gamma_{2}(G)$ vertices. This is a contradiction to the minimality of $\gamma_{2}(G)$.
(b) If $D_{H} \cap\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}\right\} \neq \emptyset$, and since $\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ and $\left\{c_{1}, c_{2}, d_{1}, d_{2}\right\}$ are all to be 2 -dominated by D_{H}, then we must have $\left|D_{H} \cap\left\{x_{1}, x_{2}, a_{1}, a_{2}, b_{1}, b_{2}\right\}\right| \geq 2$ and $\left|D_{H} \cap\left\{x_{2}^{\prime}, x_{3}, c_{1}, c_{2}, d_{1}, d_{2}\right\}\right| \geq 2$. And by the minimality of D_{H}, we have $\left|D_{H} \cap\left\{x_{1}, x_{2}, a_{1}, a_{2}, b_{1}, b_{2}\right\}\right|=2$ and $\left|D_{H} \cap\left\{x_{2}^{\prime}, x_{3}, c_{1}, c_{2}, d_{1}, d_{2}\right\}\right|=2$. Then we construct a new set $D_{H}^{\prime}=\left(D_{H}-\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}\right\}\right) \cup\left\{x_{1}, x_{2}, x_{2}^{\prime}, x_{3}\right\}$, and D_{H}^{\prime} is also a 2-dominating set of H such that $D_{H}^{\prime} \cap\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}\right\}=\emptyset$. By (a), we also get a contradiction.

It follows from (a) and (b) that we have $\gamma_{2}(H)=3 \gamma_{2}(G)$.
In what follows, we show that H is $3 \gamma_{2}$-critical.
(a^{\prime}) If a vertex is removed from a copy of G in H, say a vertex y in G_{1}, then $D_{y} \cup D_{x_{2}}^{x_{2}} \cup D_{x_{3}}^{x_{3}}$ is a 2-dominating set of $H-\{y\}$ with cardinality $3 \gamma_{2}(G)-1$.
$\left(\mathrm{b}^{\prime}\right)$ If a vertex in $\left\{a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}\right\}$ is removed from H, say a_{1}, then $D_{x_{1}} \cup D_{x_{2}} \cup D_{x_{3}}^{x_{3}} \cup\left\{b_{2}\right\}$ is a 2-dominating set of $H-\left\{a_{1}\right\}$ with cardinality $3 \gamma_{2}(G)-1$.

It follows from (a^{\prime}) and $\left(\mathrm{b}^{\prime}\right)$ that we have that H is $3 \gamma_{2}$-critical. And $d(H)=3 d+6$.
Since the theorem is true for all graphs whose diameter is a multiple of 3 , then $3 d+6 \leq 3\left(3 \gamma_{2}-1\right)$, which implies that $d \leq 3\left(\gamma_{2}-1\right)$ as desired.

In order to complete the proof of the theorem, we show that this bound is best possible.

Let G be a path on n vertices, denoted by $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Replacing each edge by two internally disjoint paths of length 3 , then for the resulting graph H it is easily verified that H is an n-critical graph with diameter $d(H)=3(n-1)$. Then the proof of the theorem is completed.

Acknowledgements

The authors would like to thank Professor G. MacGillvray for raising the concept of the graph G^{k} and some results (Lemmas 2.2 and 2.3) and kindly providing the proof of Lemma 2.3, which led to some results on G^{k} (Lemma 2.4 and Theorem 3.3) and an improvement of the form of presentation.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, 1976.
[2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs (Advanced Topics), Marcel Dekker, New York, 1998.
[4] R.C. Brigham, P.Z. Chinn, R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179.
[5] G.J. Chang, k-domination and graph covering problems, Ph.D. Thesis, School of OR and IE, Cornell University, Ithaca, NY, 1982.
[6] G.J. Chang, G.L. Nemhauser, The k-domination and k-stability problems on sun-free chordal graphs, SIAM J. Algebraic Discrete Methods 5 (1984) 332-345.
[7] O. Favaron, D. Sumner, E. Wojcicka, The diameter of domination critical graphs, J. Graph Theory 18 (1994) 723-734.
[8] J. Fulman, D. Hanson, G. MacGillivray, Vertex domination-critical graphs, Networks 25 (2) (1995) 41-43.
[9] D. Sumner, P. Blitch, Domination critical graphs, J. Combin. Theory, Ser. B 34 (1983) 65-76.
[10] M.A. Henning, O.R. Oellermann, H.C. Swart, Distance domination critical graphs, J. Combin. Math. Combin. Comput. 44 (2003) $33-45$.
[11] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[^0]: this work was supported by NNSF of China (No. 10671191).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

