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Abstract: The strong product graph G, X|G;, of two graphs G, and G, was considered, and it was
proved that A(G, KXIG,) = min{A; (ny +2my) s Ao () +2my), 00 + 8 + 818} if G and G, were
connected, and & (G, X G;) = min{diny 81, & T8, 1+86:0.) if G and G, were maximally
connected, where n;, m;, A, and §; were the order, the number of edges, the edge-connectivity
and the minimum degree of G;(i=1,2), respectively.
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. graphs is an important operation on graphs and
0 Introduction . -

also an important method for designing a large-
The connectivity

The concept of several kinds of product graphs scale interconnection network®.

including the Cartesian product and the strong
product was firstly introduced by Sabidussi'"’, who
also gave a lower bound for the connectivity of the

Cartesian product of two graphs™. The product of
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and the edge-connectivity of product graphs have
been studied by several authors recently (see Refs.
[4,5D.

We follow Ref. [ 6] for graph-theoretical
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terminology and notation not defined here. Let
G=(V,E) be a connected graph. A subset BCE(G)
is said to be an edge-cut if there is a subset SC
V(G) such that B=[S,S], which denotes the set
of edges with one end in S and the other in S. The
edge-connectivity A(G) of G is the minimum
cardinality among all edge-cuts in G. A subset SC
V (G) is said to be a vertex-cut if G — S is
disconnected. The connectivity x(G) of G is the
minimum cardinality among all vertex-cuts if G is
not a complete graph and n—1 if G is a complete
graph K,. A graph G is said to be maximal if its
connectivity is equal to its minimum degree 5(G).

The strong product of two graphs G, =(V,,E})
and G; = (V,, E;), denoted by G=G, X G;, is a
graph with the vertex-set V|, X V,. Two vertices
(x1,x2) and (y,, y;) are adjacent, denoted by
(x1x5,y1y:) € E(G), if and only if x; =y, and
x2v: €Ey, or 2y =7y, and &1y, €EE,, or 21y € E;
and x;y, € Es.

By the definition above, the Cartesian product
Gy XG, is a subgraph of Gi[XIG,. In Ref. [5], we
proved A(G; XGy)= min {8 + &, Ainzys Aomy ).
Motivated by the technique in Ref. [ 7], in this
paper, we will completely determine the edge-
connectivity of the strong product of two graphs G,
and G, as follows.
A(G1XG:) =min{d (ny +2m,)

Ae(ny +2mi) s 81 482+ 61821,
where n;, m;, A; and §; are the order, the number
of edges, the edge-connectivity and the minimum
degree of G;(i=1,2), respectively. We also give a
lower bound of x(G,XG) ,

k(G XGy) = min{x 1z skc2my sk + 11 (82 + 1) ).
The equality holds if both G, and G; are maximally
connected.

The proofs of these results are in Section 1

and Section 2, respectively.

1 Edge-connectivity

By the definition, the following lemma holds
clearly.

Lemma 1.1 §(Gi[XG,) =68, 16> 16:0>.

For a graph G, let m, (G) = | E(G) | —
max{|E(G)|: G' is a spanning bipartite of G}.
Clearly, if G is a bipartite, then m,(G)=0.

If G if a graph of order n=>2,
then there exist two vertices y; and y, such that
do(y)) +ds (y)<n+2m,.

Proof The conclusion holds for n=2 clearly.

Lemma 1.2

We assume n =3 below. Let G be a spanning
bipartite subgraph of G such that m, = |E(G) | —
|[E(G")| and {X,Y} be a partition of V(G’) such
that | X|<<|Y|. Thus |Y|>=2. For any vertex y&
Y, we have dg (y)<| X | +dov ()< | X | +my.
Therefore, for any two distinct vertices y; and 1y,
inY, we have d¢(y1) +ds(y:)<n+2my. ]
In order to determine the edge-connectivity of
strong product graphs, we first investigate a
spanning subgraph, denoted by K, ®H, induced
from K;[X H for a graph H and a complete graph
K, with the vertex set {a,b}, defined as K,®O H=
K. XH—E(aH) —E(bH), where aH={a}[XH
and bH = {b} X H. Tt is clear that K, ®H is
bipartite and, moreover, connected if and only if
H is connected.
Lemma 1.3 Let H be a nontrivial connected
graph with edge-connectivity A and B an edge-cut
of K;®H that separates aH and bH. Then
| B |=2a.
Proof Since B is an edge-cut of K, ®H, there is
a subset SCV (K, ®H) such that B=[S,S].
Partition the vertex set V(H) into four parts;
P={z€V(H):ar €S, bx €8S},
Q={xeV(H):ar € S, bx € S},
R={xeVH):ar €S, bx € S}
and
T={x€VH):ar €S, bx €S}

(see Fig. 1, vertices in S are marked in gray).

P 0 R T

Fig.1 K,®H

Casel RUT=@. Then [P,Q] is an edge-
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cut of H. By the definition of K, ®H, |[[aP,bQ]|=
[[6P.aQ]|=|[P,Q]|. Thus,
| B |=] [aP.0Q] [+| [bP,aQ] | =
2 | [P.Q] =24
Case 2 |RUTI| =1
generality, we assume R={x,} and T=0). By the
hypothesis that B separates both « H and 6H, both
P and Q are non-empty. Assume that |[x,,P]|<<
|[x0,Q]]. Note that [P,QUx, ] is an edge-cut of
H. Tt is easy to see that B=[aP,6Q]U[aQ,6P]U
[6P.aR|U[aQ,bR]U[aR,bR ], thus
| B|=1[aP.0Q] |+] [aQ.6P ] |+| [bP.aR ] |+
| [aQ.bR] [+ [aR .0R ] | =
| [P,Q] |+] [P,Q] [+
| [Pyxo] 4] [Qoao ] |41 >
2(| [P’Q] H—‘ [P"To] |) -
2 [P.QU {x}] =22
Case3 |RUT|=2. Let H=H[RUT]. By
Lemma 1.2, there are y, and y, in H  such that
\VH) | +2m, (H) =dy (y1) +diy (y2). We
partition B into two parts B, and B,, where B, is
the set of the edges with both ends in K, ®H’, and
B,=B\B,. So
| By | =1 [aR.6R] [+] [aT.0T ] | =
(|R|+2| ECH[RD D+
(| TI[+2|EHLTD =
| V(H") [+2(] ECH[RD |+
| ECHLTD ) =
| V(H) H—Zmo(H/) =
du’(yl) —|—du’(y2)-
For each edge yiz € [y, PU Q] in H, either
(ay;»b2x)€E B, or (by;saz) € B, for i=1,2. So
we have
| B, [=] [M»P UQ] |+ [yz»P UQ] | =
(dy () —d (3)) +du(yy) —d ().
Hence, we have
| Bl=[DB [+ B, [=
(d (y) +dw (y:)) +
du(y) —duw () +du(y) —dw(y)) =
dH(y1)+dH(yz) =
20 = 2A.
The lemma follows. L]

Without loss of

Lemma 1.4 Let H be a nontrivial connected
graph with edge-connectivity A and let B be an
edge-cut of K, ® H such that the vertices ax and bx
in distinct component of H \ B for some x €
V(H). Then

| B|=0+1.

Proof Let B=[S.,S], and assume ax€ S and
bxr € S. Similar to the proof of Lemma 1.3, we
partition Ny () into four parts; P,Q,R and T
(see Fig. 2, black dots denote vertices in S). It is
easy to see that for each vertex y in Ny (x), y
contributes at least one edge to B: (ax,by) € B if
yEP; (bx,ay) €Bif y&€Q; both (ax,by) € B and
(bx,ay)€Bil yER; (ay,by)€Bif y&T. Noting
that Cax, bx) is also an edge in B, we have

|B| =[Ny (o) [ +1=0+1. ]

Fig. 2 x and its four type neighbors

Lemma 1.5 Let G be a connected graph, and
DFACV(G). Then |Al+|[A,A]|=6+1, and
the equality holds if and only if A={a} and d;(a) =6.

Proof Let a€ A, then a has at most |A|—1
neighbors inside A, and at most | [A, A] |
neighbors outside A. So d;(@)<|A|—1+]|[A,A]|,
namely [A[+[[A,AJ[=d; (@) +1=6+1. 1f the
equality holds, then a must be a vertex of the
minimum degree, and all the edges in [A,A] are
incident with a. Suppose to the contrary that
|A|=>=2. Let b be another vertex in A rather than
a. Then b has at most |A|—1 neighbors inside A
and no neighbors outside A, hence dg;(b)<d;(a),
a contradiction. On the other hand, if A={a} and
d;(a) =38, the equality holds obviously. L]

Theorem 1. 6
graph with n; vertices, m; edges and the minimum
degree ¢, for i=1,2. Then

MG XGy) =min{)s (n, +2my)
AoGny +2my) 6 + 6 +6162 ).

Proof DBy Lemma 1.1,

Let G; be a nontrivial connected
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MG XGy) <0G XGy) = 6 + 62 + 510:.

Let [ X,X ] be a minimum edge-cut G,. Then
[XXV(Gy), XXV(G,)] is an edge-cut of G;XG,
with A, (n,+2m,) edges, hence

AGIXG:) <A (i + 2my).
By symmetry, we have
AGIXGy) < X Gy =+ 2my).
So it remains to prove
MG XGy) =min{A; (n, + 2m,) ,
Ao Gy +2my), 8 462 + 68162 ).

Let B=[S,S] be an edge-cut of G=G, XG,.
Without loss of generality, assume & <§,. For
each x € V,, let GG = {x} X Gy, which is a
subgraph of G isomorphic to G,. We say that G3 is
separated by B if it has vertices in both S and S.
Let r be the number of vertices x &V, such that G}
is separated by B. Let Vi, = {x/,22,+*, 2, } and
B;=BNE(G;). For an edge e€ E(G,), let B,=
BN e} ©G).

Casel r=0

Let X={x€V,. V(Gi)CS}. Then B* =
[ X,VI\X] is an edge-cut of G,. Therefore,

‘B ‘:2 ‘B« ‘:| B | (ny +2my) =
c€B”
A (np + Zmy).

Case2 r=m

Then |B;|>=X.. And by Lemma 1.3, |B,|>=
2A; for every edge e=xy & E(G,) since B, is an
edge-cut of {e} ®G, that separates both G} and G3.

ny

| B|=>)I|B |+ >) |B. |=
=1

€ EG
mA, +my e 20 = X (g + 2my).

Case 3 0<lr<lm

Let x; and x;, be two adjacent vertices of G,
such that Gj' is separated by B and Gyt is not.
Assume V(G ) S, and let Y={y €&V (G,y):
r1yES).  Let
subgraph of G
{(yEV(Gy): 2;,yES)=Y for each x; EV(H). Let
E*=E; (V(H),V(ED)\ {x;2;} (See Fig. 3,
vertices in S are marked in gray). Let a=|V(H) |,
b=|E(H)|, c=|E" | +1, p=1Y | and ¢=

H be a maximally connected

containing x; and the set

\E(;2 (Y,Y)|. For each edge e =ab € E*, it is
obvious that B, is an edge-cut of {e¢} ®G,. And by
the maximality of H, there exists some x, €V (H)
such that axy, and bx, in distinct component of
{e}®G,—B,, thus |B,| =8, +1 by Lemma 1. 4.
And it is easy to see that

| B, |= > (dy()+1) = p(s + 1.
€Y
Therefore,
|Bl= > |B |+ > |B |+
2; €V(H) e€ E(H)
‘ B~1'1~l'k ‘_’_ Z | Be ‘2
€E"
ag +2bg+ p(8: + 1)+ (c—1D(S + 1.
(D
| |
| [
) |
/
/
He
iy
X A —

Fig. 3 Illustration for Case 3

If p=1, then ¢==6,. And b==a—1 because H
is connected; a+c=8, +1 by Lemma 1. 5. Hence
by Eq. (1),
| Bl=aq +2bq+p6:+ 1D+ =D+ 1) =

ad, +2(a—1)8 +c¢6,+1D =
(a+) @@+ +2(a— 1 —a=
G +D@+D+@—1)—a=
01 + 82 + 616
In the rest of the proof, assume p—=2. Then by
Lemma 1.5, p+q¢g=06,+2. If a=6,+1, by Eq.
(1), we have
| B |=aq +20q+p8:+ 1D +(c—D@+1 =
g0 + 1) +0+p06:+ 1+
(c—DG@+D =
(pt+qgt+c—D+1) >

(%)

S+ +1) =
1+ +1) > 8 + 8 +6806.
Here, the inequality ( %) holds since 8, <8, by our

assumption. The only case remaining is a<<8, +1.
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In this case,
|B|=aqg+2bqg+p@+1D+ =D+ 1D =
ag+20q+ (p—D@&+ 1D+ +1) >
ag+0+(p—Da+c+1) =
alpt+q— 1 +c6+ 1 =
a(®+D +ce+1D =
@G +D@:+1D >
01 +8: + 616,
Thus, in all cases, we have
| B | —min{A; (n; + 2m;) ,
A +2m) s 61+ 8 + 610270
this completes the proof. L]
Corollary 1.7 Let H be a nontrivial
connected graph with edge-connectivity A and the
minimum degree §. Then
AK,XH) = min{n(6+1) —1,n°2}.
Specially, A(K,XK,,)=nm—1.
The corollary follows directly from Theorem
1.6 by simple calculation and comparison. Note
that K,X K, =K, » so its edge-connectivity can be

seen easily without using Theorem 1. 6.

2 Connectivity

First, we consider the case that at least one of
the factor graphs is complete.

Proposition 2. 1 «(K,XK,)=nm—1.

Proof Note that K, XK, =K,,. L]

Proposition 2.2 let H be a non-complete
connected graph with connectivity . Then

k(K,XIH) = nk.

Proof The conclusion holds clearly for n=1.
Assume n—=>2 below. It is sufficient to prove that
k(K,IXIH) = nx because the reversed inequality
holds clearly. Let {a;, 22, ***s x,} be the vertex
set of K,,, S any cut set (not necessary minimum)
of K,IXXH and S;=S() ({x;} XV(H)). We claim
that | S; | = «.
example, that | S, | <<«k. Then {z )X H—S, is
connected. For each vertex x, (k541 in {x, }IKITH—S, ,
the number of neighbors of u in {x, }[XH is at least
0(H) +1>=k+1, therefore at least one of them
remains after the removal of S;. This implies that

K,IXXH — S is connected, which contradicts our

Suppose to the contrary, for

hypothesis that S is a cut set. Thus, | S |=

DUIS = ]
i=1

In the rest of this section, we assume that
both G, and G, are non-complete graphs. In this
case, it is easy to see that

(G XG,) < min{w 1z sk271, 501 + 02 162 ).

2

Unlike the case of edge-connectivity, the reversed

inequality in Eq. (2) does not always hold. The

simplest counter example may be the strong

product of the path P, and the graph H, where H

is shown in Fig. 4. The strong product graph

P,XIH is shown in Fig. 5, and the four black

vertices form a vertex separating set of P, X(H. It

is easy to check

k(P,IXXH) =4 <5 =
min{x(P,) | V(H) |,
«(H) | V(P | ,6(P,XH)}.

Fig. 4 A graph H
C ’ ; )

o

Fig. 5 P,XH

Theorem 2.3

connected graph with

Let G; be a nontrivial non-
complete order ;.
connectivity «;» and the minimum degree §;, for

i=1,2. Then
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k(G EGZ) 2 min{lﬂ Ny s koM sk T2 T K102 }

Proof I.et S be a minimum vertex separating
set, For each x&V(G,), Gj is said to be separated
by S if it contains vertex of at least two
components of G, [XIG,—S. Let S,=S(V(G5) and
r the number of vertices 2’s in G; for which G} is
separated by S. Note that | S, | =&, if G} is
separated by S.

Case 1
vertices of at most one component of G, XG, —S.
If there is no edge e=xy& E(G,) such that G} and
(3 contain vertices in distinct components of
G, XG,—S, then let

T={x e V(G):V(Gs) C S}.
Then | T | =4 since T is a separating set of

G,. Thus

r=0. Then for each x, G} contains

| S ‘2 Z | S, |>l€1772-

zeT

Now, let x; and i‘z be two adjacent vertices of
V(Gy) such that V(G — S, ) and V(G —S,,)
belong to distinct components C and C  of
G,[XIG;—S. Thus there are k; internally disjoint
x1x5-paths Py, Py, e+, P, in Gy, where Py = 2,2,
and all other paths have lengths at least 2. For
each xz,-path P =z, - x,, *** x,-, of length at
least 2, namely £ =3, we will find an internal

vertex y(P) with | Syp, | as large as possible. Let

T . . . ~
x,. be such a vertex that G, contains vertices in C

and nearest to z, along the path P. Obviously, z,
Zx,. 1 T, X0 let y(P) =, then |SJz | =6, +

1, since Gy' — S, has at least ¢, +1 neighbors in
G2, U &, 71, consider G I V(G )CS
(which implies &,  #22), let y(P)=x, | then

\ SJ-,M = V(G | =08, +2;

if G;’f“ has some vertices not in S, say u, then u
lies in a component other than C by our choice of
x, » and u has at least ¢, 1 neighbors in G;’f , let
y(P)=uz, , thus \SJ,] | >=6,+1. So, in all cases,
we have found an internal vertex of the path P,
denoted by y(P), such that |S,p |=86.+1. Note
that also [S,, |=6,+1 and [S,, [=8,+1. So

1
| BI=2] | Syey |+ S, IS, [=
j=2

ey — D +1D +208+ 1) =
ey + D+ 1D >
K 1 (0 + D).
Case 2 r>0. Let
X = {x € V(G)): G} is separated by S}
and let Y=Ng (X). It is easy to see that [S,[=
0,1 for each y€Y. Suppose to the contrary that
|S,[<0,. Let 2 € X be a neighbor of y. Then
each vertex in G5 — S, has a neighbor in Gy —S,.
But Gy — S, is connected since y & X. Therefore
G;—S,
contradiction.

If XUY=V(G,), then
IBI=>] 1S, |4+>) 1S, I=

€X yEY
X+ Y] @&+ =
(| X ‘+| Y ‘)Kz — NMiK2.
Now assume that X JY is a proper subset of
V(G,). Then |Y | =k since Y separates X and
V(G,)— X—Y. Therefore,

[ BI=D>11S, 42 1S, =k +r @+,

xeX yey
The proof of the theorem is complete. []

Ref. [4] showed that
k(G XGy) = min{k (5 + 1)y (61 + 1) ).
Theorem 2. 3 improves this result, since
min{ 72 sk211 sis 11 (0 + 1)) =
min{e; (5, + D swz (1 + D} + 1.
The graph shown in Fig. 5 shows that the lower

must lie in one component, a

bound in Theorem 2. 3 is the best possible.

As we have already pointed out, the reversed
inequality in Eq. (2) does not hold generally, but it
holds if both of the factor graphs are maximally
connected, which is a direct corollary of
Theorem 2. 3.

Corollary 2.4

complete maximally connected graph with order #; ,

Let G; be a nontrivial non-

connectivity k;,» and the minimum degree §;, for
i=1,2. Then
k(G Gz) = mil’l{lclnz w21 s 01 102 + 0102 }

The condition that G; is non-complete for each
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:=1,2 in Corollary 2. 4 can not be omitted in view
of K, XIW,,+1, where W,,., is constructed by a
complete graph K,,—; and two extra vertices each
of which is joined by an edge to all vertices in
K,,—,. Obviously, ¥ (Wy1,) = 2n — 1. By
Proposition 2. 2,

(KXW, =nme (W) =

n(2n—1) =2n* —n,
but
min{x(K,) ‘ VW) | sk(Woi1) | V(K,) | ’
SK,.IW,p1) ) = n—DCn+1) =
2n* —n—1.

We conclude this paper with a conjecture
about the connectivity of strong product graphs.
Let G be a graph with connectivity « and the
minimum degree §. For each j (x#<;<9), let

¢ =min{| C |:C is a component of G— S,
S is a separating set with | S |= j}.
It follows immediately that ¢®=1 and ¢/"'<{¢/.
Conjecture 2.5 Let G; be a nontrivial non-

complete connected graph with order =#;,
connectivity ;» and the minimum degree §;, for
i=1,2. And ¢! are defined as the above for x; <<,

i=1,2. Then

K(Gl X‘Gz) :min{m Mo s K277 »
Qiir/la {jije T j1c¥ +jacit ).

K;==<];==0;

If both G, and G, are maximally connected,
namely x;, =8, (i =1, 2), Conjecture 2.5 can be

referred to Corollary 2. 4.
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