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Abstract: A routing R of a connected graph G of order n is a collection of n(n— 1) paths
connecting every ordered pair of vertices of G. The vertex-forwarding index £(G,R) (resp. the
edge-forwarding index 7(G,R)) of G with respect to R is defined to be the maximum number of
paths of R passing through any vertex (resp. any edge) of G. The vertex-forwarding index £(()
(resp. the edge-forwarding index 7 (G)) of G is defined to be the minimum £(G, R) (resp.
7(G,R)) over all routings R of G. For a k-regular k-connected graph G, it was shown by
Fernandez de la Vega and Manoussakis [ Discrete Applied Mathematics, 1989, 23(2): 103-123]
that 6 GH<(n—1D)| (n—k—1)/k | and x(G)<n| (n—k—1)/F |, and conjectured that £(G) <
[ (n—k)(n—k—1)/k |. The upper bounds as E(G)<<(n—1) (n—k—1)/k |—(n—k—1) and x(G)
<n| (n—k—1)/k |—(n—Fk) were improved, and the conjecture for #=3 was proved.
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0 Introduction

We follow Refs. [ 1, 2] for the graph-
theoretical and combinatory network terminologies
and notations not defined here. Throughout this
paper, a graph G = (V, E) always means a
connected simple graph with order n (without
loops and multiple edges), where V=V (G) is the
vertex set and E = E (G) is the edge set. The
diameter of G, d(G), is the maximum length over
all shortest paths between any two vertices in G.
The connectivity of G, x (G), is the minimum
cardinality over all vertex-separating sets in G if G
is not a complete graph K, , otherwise x(K,)=n—1.
A graph G is said to be k-connected if x(G)=k. A
routing R in G is a set of n(n—1) fixed paths for
all ordered pairs (x,y) of vertices of G. The path
R(x,y) specified by R carries the data transmitted
from the source x to the destination y. It is
possible that the fixed paths specified by a given
routing R passing through some verteices or edges
are too many, which means that the routing R
loads the verteices or the edges too much. The
load of any vertex or edge is limited by the capacity
of the vertex or edge, for otherwise it would affect
the efficiency of transmission, even result in
malfunction of the network. In order to measure
the load of a vertex or an edge, Refs. [ 3, 4]
proposed the notion of the forwarding index.

Let G be a graph with a given routing R, x a
vertex of G and e an edge of G. The load of x with
respect to R, denoted by &(G,R,x) [resp. the load
of e with respect to R, denoted by n(G,R,e) ], is
defined as the number of paths specified by R
[ resp. e . The vertex-
forwarding index and the edge-forwarding index of

passing through =«

G with respect to R are, respectively, defined as
&(G,R) = max{&(G.,R,x): x € V(B }
and
7(G,R) = max{x(G,R.e): e € E(G)}.
The vertex-forwarding index and the edge-
forwarding index of G are, respectively, defined as

&(G) = min{&(G,R): R is a routing of G}

and
7(G) = min{x(G,R): R is a routing of G}.
The original study of forwarding indices is
motivated by the problem of maximizing network
capacity, see Ref. [2]. Minimizing the forwarding
indices of a routing will result in maximizing the
Thus, it

significant to determine the vertex and edge-

network capacity. becomes very
forwarding indices of a given graph.

Many authors are interested in the forwarding
indices of a graph (see, for example, Refs. [3~
12]). Moreover, Ref. [13] showed that for any
graph determining the forwarding index problem is
NP-complete even if the diameter of the graph is
two. It is still of interest to determine the exact
value of the forwarding indices with some graph-
theoretical parameters. For example, the upper
bound of forwarding indices of graphs concerning
with given connectivity. There are some results
about connectivity constraints,

Theorem 0. 1°°)  If G is a connected graph of
order n, then E(G)<<(n—2) (n—2) and n(G) <<
| n*/2 |. The two bounds are the best possible in
view of the star K,,—; and the complete bipartite
graph K, 2.2 » respectively.

Theorem 0. 2% If G is a 2-connected graph
of order n, then £(G)<<(n—2)(n—3)/2 and
(G| n’/4 |. The two bounds are the best
possible in view of K,,, and a cycle C,,
respectively.

Theorem 0. 3" If G is a k-connected graph of
order n with =1, then &G)<(n—1)|] (n—k—1)/k |
and 7(G)<n| (n—k—1) /k |.

Conjecture 0. 4! If G is a k-connected graph
of order n with n==2k_>2, then

EG) <[ =k —k—D/k |
and 7(G)<| n*/2k |.
Theorem 0. 1 and Theorem 0. 2 show that this

conjecture is true for £#=1 and 2.
1 Main results

In this paper, we improve the result of

Theorem 0. 3 and show that Conjecture 0. 4 is true
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for k=3 by proving the following two theorems.
Theorem 1.1 If G is a k-connected graph of
order n with the maximum degree A, then
O <—D—k—D/k]——2—1
and
(G <nlm—k—D/k |—(n—2A).
Corollary 1. 2 If G is a k-regular and k-
connected graph, then
< —D[—k—D/k]——k—1
and
(G <nlm—k—D/k|— Gi—Fk).
Theorem 1. 3
connected graph of order n—=4. then

G <[ mn—3(n—41)/31.

If G is a 3-regular and 3-

2 Proofs of our results

In this section, we give the proofs of our
results. We first show some lemmas used in the
proofs.

Lemma 2. 1 If G is a 3-regular and 3-
connected graph of order n at least 6, then V(G)
can be partitioned into 7/2 independent sets of
order two.

Proof
of order n==6. First note that |E(G) | =3n/2 and

so n is even. The conclusion is true for n=6 since

Let G be a 3-regular 3-connected graph

a graph of order 6 that is 3-regular 3-connected is
either G=K;; or K, X K;. Assume n—=8 below.
Since G is 3-regular 3-connected and n =8, for
arbitrary four vertices, there is an independent set
of order two. So we can partition V(G) into n/2—1
independent sets Vi, = {vsv,}, Vo ={v550, } 5+,
Vo1={v,3sv,—2} and the last two vertices v,
and v,. If v, 10, FE(G), then let Vs ={v, 150, )
and so the result is true. So assume v, v, € E(G)
below. Since n==8, there exists an independent set
in{V,,Vy,,V,s_1}, say Vi, such that there
exists at most one edge between { v, v, } and
{v,—1» v, ). If such an edge does not exist, or
assume without loss of generality v, v, € E(G). We
redefine Vi, ={visv, 1} s Vo={wss0s } s
(Vs> Upo }» V, =

partition, and so the lemma follows. (]

s Viz—1—

{vy5 v,} which is a desired

Lemma 2. 2 If G is a 3-regular and 3-
connected graph of order n at least 12, then for
each vertex x € V(G) there exists a vertex yEV
() such that the distance between them, d(x,y),
is equal to three,

Proof Since G is 3-regular and 3-connected,
for each vertex x € V (), there are at most nine
vertices, each of which has distance at most two
with x. Since n—=>12, there exists at least one
vertex that has distance three with x, and so the
lemma follows. L]

Lemma 2. 3 (Menger’s theorem)!!: Theorem 4.5
If G is a k-connected graph, then there are £k
vertex-disjoint (resp. edge-disjoint) paths between
any two vertices x and y in G.

Proof of Theorem 1. 1
graph of order n. We first show that

EO<—D[—k—D/k]——2a—1.
To this end, let m=[ (n—1)/k | We define a
routing R in G as follows. For any vertex x of G,
partition V(G)\ {x} into m subsets A;,A;,*, A,
such that |A, | = A, | == |A,1 | =k and
|A,|=n—1—k(m—1), where Ay "N, (x). Since

G is k-connected, by LLemma 2.3 we can choose k

Let G be a k-connected

vertex-disjoint paths (as short as possible) from x
to each vertex of the subset A;,j=1,2,++, m—1
and n—1—k(Gn—1) paths from x to each vertex of
A,.. Let R, be the set as defined above paths from
x to each vertex of others in G. Do this
construction for each vertex of G and obtain a
routing R in G, that is, R=U .cvp R..

We now estimate the load of any vertex z with
respect to R, If € A, then at most one of the
paths from x to A;(j7%1) in R, passes through z,
and so at most m—1 paths in R, pass through z. If
z€A;(i5~41), then all of paths from x to A, in R,
do not pass through z since A~ N;(x), at most
one of paths from x to A; (j741, i) in R, passes
through z, and so at most m—2 paths in R, pass
through z. Thus, summing up all x yields the load
of each vertex z with respect to R,

EG.R,2)) < Alm— D+ m—1—A(n—2) =
n—D[—k—D/k[—n—A—1D.
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Similarly, we can prove that
(G <nl—k—D/k]|—m—2)
by replacing ¢ vertex-disjoint paths with £ edge-
disjoint paths, and omitted here for details. []

Proof of Theorem 1.3 Let G be a 3-regular
and 3-connected graph of order n. Then n is even
at least 4. Clearly, G=K, for n=4 and G=K;; or
G=K, XK, for n=6. &(K,)=0 and £(K; ;)=
&(K; XK;)=2. Thus we can assume n—=8 below.
We prove the theorem by considering the following
three cases, respectively.

Case 1 n=3m—2. In this case, | (n—4)/3 |=
(n—4)/3. By Corollary 1. 2 for /=3, we have

EGH <n—1Dn—4/3—(n—4) =
n—4Hn—4)/3<<
(n—3)(n—4)/3.

Case 2 n=3m—1. In this case m=| (n—1)/3 |
is odd and m=3. By Lemma 2. 1, we can partition
V(G) into n/2 independent sets of order two. For
s Lo} be
such a partition of V(G), where I, ={x,y}. We

a given vertex x in G, let 4, ={I,,1,,+

define the set of paths R, to obtain a routing R in G
as the proof of Theorem 1.1 for =3, where A, =
Ng(x) and A,,={y} such that {x,y}=1 & J.
Moreover, the path R(x,y) from x to y and the
path R (y, x) from y to x in R are internally
disjoint. Such two paths exist since G is 3-
connected.

We now estimate the load of any vertex z with
respect to R. We first do not consider paths
between x and y in R. If € A,, then at most one
of the paths from x to A; (2<{j<{m— 1) in R,
passes through z, and so at most m—2 paths in R,
pass through z. If 2€ A, (2<i<{m), then all paths
from x to A, in R, do not pass through z since
A, =Ng;(x), and at most one of the paths from x
to A; (2<j<im—1,j71) in R, passes through =z.
Thus, when =€ A, (2<i<m—1), at most m— 3
paths in R, pass through z; when z€ A, ={y}, at
most m—2 paths in R, pass through z. We now
consider paths between x and y in R. Since R(x,y)
and R(y,x) are internally disjoint, at most one of

them passes through z wherever z is. There are

exactly n/2 independent sets of order two in G,

which offer the load of the vertex z at most n/2.

Thus, summing up all x yields the load of any

vertex z with respect to R,

&(G,R,2») <
3m—2)+n—55m—3)+m—2) +n/2 =
Am—2)+Bm—6)(m—3)+@Bm—1)/2 =

3m* —9m+7 =
[((n—3(n—4)/3 ]
Case3 n=23m. In this case m=| (n—1)/3 |is
even and m—=>3, which implies n—=>10. If n=10,
then GG is Petersen graph and &£ (G) = 6. Now

assume n—=>12, that is, m—=4. For a vertex x in G,

<

3m

we define the set of paths R, to obtain a routing R
in G as the proof of Theorem 1.1 for #=3, where
A1 =N;(x) and A,,={x1 22 }.

If z€A,, then at most m—1 paths in R, pass
through = stated as the proof of Theorem 1.1. If
d(x,2)=3 (2 may be such a vertex by Lemma
2.2), then =€ A, for some i(#1), and any path
from x to z must pass through A; and A; for some
j(#1,1), which implies that at most m— 3 paths
in R, pass through z. Otherwise at most m — 2
paths in R, pass through 2. Thus, summing up all
x and noting that there is at least one vertex x in G
such that d (x,2) =3, we have the load of any
vertex 2 with respect to R,

&G,R,2) <
m—D+m—3)+CBm—5(m—2) =

3m P —Tm—+4 =
[(n—3)(n—4)/3 |,
We complete the proof. L]
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