# Restricted Edge-Connectivity of de Bruijn <br> Digraphs* 

Jun-Ming Xu ${ }^{\dagger}$ Min Lü<br>Department of Mathematics<br>University of Science and Technology of China<br>Hefei, Anhui, 230026, China


#### Abstract

The restricted edge-connectivity of a graph is an important parameter to measure fault-tolerance of interconnection networks. This paper determines that the restricted edge-connectivity of the de Bruijn digraph $B(d, n)$ is equal to $2 d-2$ for $d \geq 2$ and $n \geq 2$ except $B(2,2)$. As consequences, the super edge-connectedness of $B(d, n)$ is obtained immediately.


Keywords: Connectivity, Restricted edge-connectivity, Super edgeconnected, de Bruijn digraphs, Kautz digraphs

## AMS Subject Classification: 05C40

## 1 Introduction

It is well-known that when the underlying topology of an interconnection network is modelled by a graph or digraph $G$, the edge-connectivity $\lambda(G)$ of $G$ is an important measurement for fault-tolerance of the network. This paper considers the de Bruijn digraph $B(d, n)$. It has been shown that $\lambda(B(d, n))=d-1$ and $\lambda(K(d, n))=d$ (see, for example, [9]). A connected graph $G$ is said to be super edge-connected if every minimum edge-cut isolates a vertex of $G$ [1]. Soneoka [8] showed that the $B(d, n)$ is super edge-connected for any $d \geq 2$ and $n \geq 1$, and Fàbrega and Fiol [4] proved that $K(d, n)$ is super edge-connected for any $d \geq 3$ and $n \geq 2$.

A quite natural question is how many edges must be removed to disconnect a graph such that every connected component of the resulting graph

[^0]contains no isolated vertex. To measure this type of edge-connectivity, Esfahanian and Hakimi [2, 3] introduced the concept of the restricted edgeconnectivity of a graph. The definition given here is slightly different from the original definition. The restricted edge-connectivity of a graph $G$, denoted by $\lambda^{\prime}(G)$, is the minimum number $\lambda^{\prime}$ for which $G$ has a $\lambda^{\prime}$-edge cut $F$ such that every connected component of $G-F$ has at least two vertices. They solved the existence of $\lambda^{\prime}(G)$ for a given graph by proving that if $G$ is neither $K_{1, n}$ nor $K_{3}$, then $\lambda(G) \leq \lambda^{\prime}(G) \leq \xi(G)$, where $\xi(G)$ is the minimum edge-degree of $G$. Clearly, if $\lambda^{\prime}(G)>\lambda(G)$ then $G$ is super edge-connected. Since then one has paid much attention to the concept and determined the restricted edge-connectivity for many well-known graphs. In particular, $\lambda^{\prime}$ has been completely determined for the Kautz digraph $K(d, n)$, the undirected de Bruijn graph $U B(d, n)$ and Kautz graph $U K(d, n)$ (see, for example, $[5,6,7,10,11]$ ). In this paper, we determine $\lambda^{\prime}$ for de Bruijn digraph $B(d, n)$.

Theorem For any de Bruijn digraph $B(d, n)$ with $n \geq 1$ and $d \geq 2$,

$$
\lambda^{\prime}(B(d, n))= \begin{cases}\text { not exist, } & \text { for } n=1 \text { and } 2 \leq d \leq 3, \text { or } n=d=2 \\ 2 d-4, & \text { for } n=1 \text { and } d \geq 4 \\ 2 d-2, & \text { otherwise }\end{cases}
$$

The proof of the theorem is in Section 3. Our way presented in this paper can prove the result for the Kautz digraph $K(d, n)$ in [5]. However, the methods used in [5] do not work for the de Bruijn digraph $B(d, n)$.

## 2 Some Lemmas

The de Bruijn digraph $B(d, n)$ has the vertex-set

$$
V=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1, \cdots, d-1\}, i=1,2, \cdots, n\right\}
$$

and the edge-set $E$, where for $x, y \in V$, if $x=x_{1} x_{2} \cdots x_{n}$, then

$$
(x, y) \in E \Leftrightarrow y=x_{2} x_{3} \cdots x_{n} \alpha, \quad \alpha \in\{0,1, \cdots, d-1\} .
$$

Clearly, $B(d, 1)$ is a complete digraph of order $d$ plus a self-loop at every vertex. It has been shown that $B(d, n)$ is $d$-regular and $(d-1)$-connected. For more properties of de Bruijn digraphs, the reader is referred to Section 3.2 in [9].

Assume $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{n}$ are two distinct vertices of $B(d, n)$. If the distance from $x$ to $y$ is equal to $l$, then the unique shortest ( $x, y$ )-path

$$
\begin{aligned}
P: \quad x= & x_{1} x_{2} \cdots x_{n} \rightarrow x_{2} x_{3} \cdots x_{n} y_{n-l+1} \rightarrow x_{3} \cdots x_{n} y_{n-l+1} y_{n-l+2} \rightarrow \\
& \cdots \rightarrow x_{l} \cdots x_{n} y_{n-l+1} \cdots y_{n-1} \rightarrow x_{l+1} \cdots x_{n} y_{n-l+1} \cdots y_{n}=y
\end{aligned}
$$

can be expressed as the following sequence:

$$
P=x_{1} x_{2} \cdots x_{l+1} \cdots x_{n} y_{n-l+1} \cdots y_{n},
$$

in which any subsequence of length $n$ is a vertex in $P$.
A pair of directed edges are said to be symmetric if they have the same end-vertices but different orientations. The de Bruijn digraph contains pairs of symmetric edges. If there are a pair of symmetric edges between two vertices $x$ and $y$, then it is not difficult to see that the coordinates of $x$ and $y$ are alternately in two different digits $a$ and $b$, that is, $x=a b a b \cdots a b$ and $y=b a b a \cdots b a$ if $n$ is even, while $x=a b a b \cdots a b a$ and $y=b a b a \cdots b a b$ if $n$ is odd, where $a \neq b$.

We follow [9] for graph-theoretical terminology and notation not defined here. Let $G=(V, E)$ be a strongly connected digraph (loops and parallel edges are here allowed). An edge-set $F$ of $G$ is called a restricted edgecut ( $R$-edge-cut, in short) if $G-F$ is not strongly connected and every strongly connected component has at least two vertices. The restricted edge-connectivity $\lambda^{\prime}(G)$ is the minimum cardinality over all $R$-edge-cuts in $G$. We observe that there are no $R$-edge-cuts in $B(2,1), B(2,2)$ and $B(3,1)$, and call these digraphs trivial, and otherwise nontrivial.

Lemma 1 If $B(d, n)$ is nontrivial, then $\lambda^{\prime}(B(d, n)) \leq 2 d-2$ for any $d \geq 2$ and $n \geq 2$.

Proof Let $G$ be a nontrivial $B(d, n)$, and suppose that $x$ and $y$ are two different vertices in $G$ with a pair of symmetric edges between them. Then the set of edges $E_{G}^{+}(\{x, y\})$ is an edge-cut in $G$ and $\left|E_{G}^{+}(\{x, y\})\right|=2 d-2$. Thus, we only need to show that $E_{G}^{+}(\{x, y\})$ is an $R$-edge-cut. To the end, it is sufficient to show that $G-\{x, y\}$ is strongly connected. Let $u=u_{1} u_{2} \cdots u_{n}$ and $v=v_{1} v_{2} \cdots v_{n}$ be an arbitrary pair of vertices in $G-\{x, y\}$. We can obtain the result by showing that $u$ and $v$ are strongly connected in $G-\{x, y\}$.

Without loss of generality, we assume $n$ is even, $x=a b a b \cdots a b$ and $y=b a b a \cdots b a$, where $a \neq b$ and $a, b \in\{0,1, \cdots, d-1\}$.

We first consider the case of $n>2$. Let $z=a a b \cdots a b a$ and $w=$ $a b \cdots a b a a$. Then $z$ is an in-neighbor of $x$, and $w$ is an out-neighbor of $y$. Moreover, $(z, w) \in E(B(d, n))$. Suppose that the distance from $u$ to $z$ is equal to $l$ and the distance from $w$ to $v$ is equal to $l^{\prime}$. Denote the shortest $(u, z)$-path by $Q=u_{1} u_{2} \cdots u_{l} a a b \cdots a b a$ and the shortest $(w, v)$-path by $Q^{\prime}=a b \cdots a b a a v_{n-l^{\prime}+1} \cdots v_{n}$. When $l \leq n-2$, any subsequence of length $n$ in $Q$ contains $a a$, so $Q$ contains neither $x$ nor $y$. When $l=n-1$ any subsequence of length $n$ in $Q$ contains $a a$ except the first subsequence of length $n$, which is $u$. So $Q$ contains neither $x$ nor $y$ for $l \leq n-1$. For $l=n, Q$ contains $y$ only when $u=u_{1} b a b \cdots a b$ with $u_{1} \neq a$, which is an
in-neighbor of $y$. Similarly, $Q^{\prime}$ contains neither $x$ nor $y$ for $l^{\prime} \leq n-1$, and contains $x$ only when $v=b a b \cdots b v_{n}$ with $v_{n} \neq a$, which is an out-neighbor of $x$. We show that $u$ can reach $v$ in $B(d, n)-\{x, y\}$ by constructing a $(u, v)$-walk according to the following three cases, respectively.

Case 1 If both $Q$ and $Q^{\prime}$ contain neither $x$ nor $y$, then $u$ can reach $v$ in $B(d, n)-\{x, y\}$ via a $(u, v)$-walk $Q+(z, w)+Q^{\prime}$.

Case 2 If $u=u_{1} b a b \cdots a b$ with $u_{1} \neq a$ and $Q^{\prime}$ contains neither $x$ nor $y$, then $y$ is an out-neighbor of $u$. Let $z_{1}=b a b a \cdots a b b$. Then $z_{1}$ is another out-neighbor of $u$. Let $z_{2}=a b a b \cdots b b a$, which is an out-neighbor of $z_{1}$. Then $Q_{1}=a b a b \cdots b b a a b a b \cdots a b a a$ is a $\left(z_{2}, w\right)$-walk of length $n$, and contains neither $x$ nor $y$ since any subsequence of length $n$ in $Q_{1}$ contains $b b$ or $a a$. Thus, $u$ can reach $v$ in $B(d, n)-\{x, y\}$ via a $(u, v)$-walk $\left(u, z_{1}\right)+\left(z_{1}, z_{2}\right)+Q_{1}+Q^{\prime}$.

Case 3 If $u=u_{1} b a b \cdots a b$ with $u_{1} \neq a$ and $v=b a b \cdots a b v_{n}$ with $v_{n} \neq a$, then $(u, v) \in E(B(d, n))$, and $u$ can reach $v$ in $B(d, n)-\{x, y\}$ via the edge.

When $n=2$, we have $d \geq 3$ since $\lambda^{\prime}(B(2,2))$ doesn't exist. Then $x=a b, y=b a$. Without loss of generality, we can assume $u=u_{1} u_{2}, v=$ $v_{1} v_{2}$. Then $P=u_{1} u_{2} v_{1} v_{2}$ is the shortest path from $u$ to $v$. If the vertex $z=u_{2} v_{1} \notin\{x, y\}$, then we are done. If $z=a b$, then $u=u_{1} a, v=b v_{2}$. Since $d \geq 3$, we can construct another $(u, v)$-walk: $u_{1} a c b v_{2}$ where $c \in$ $\{0,1, \cdots, d-1\} \backslash\{a, b\}$. The walk is in $B(d, 2)-\{x, y\}$. If $z=b a$, we can also construct a $(u, v)$-walk in $B(d, 2)-\{x, y\}$ in the same way. So $u$ can reach $v$ via a $(u, v)$-walk in $B(d, 2)-\{x, y\}$.

Similarly, $v$ can reach $u$ via a $(v, u)$-walk in $B(d, n)-\{x, y\}$. Thus, $u$ and $v$ are strongly connected in $B(d, n)-\{x, y\}$. The lemma follows.

Lemma 2 Let $H$ be a subgraph of $B(d, n)$. For $n \geq 2$, if $|V(H)|=t$, then $|E(H)| \leq \frac{1}{2}\left(t^{2}+1\right)$.

Proof From the definition, it is clear that $B(d, n)$ has the following properties for $n \geq 2$ :
(i) any two pairs of symmetric edges are not adjacent;
(ii) any two vertices with a self-loop, if any, are not adjacent;
(iii) the end-vertices of any pair of symmetric edges have no self-loops.

Let $V_{1}$ be the set of the vertices with a self-loop in $H$. Suppose $H_{1}$ is the subgraph of $H$ induced by $V_{1}$ and that $H_{2}$ is the subgraph of $H$ induced by $V_{2}=V(H) \backslash V_{1}$. Use $E_{3}$ to denote the set of the edges between $V_{1}$ and $V_{2}$ in $H$. Then

$$
E(H)=E\left(H_{1}\right) \cup E\left(H_{2}\right) \cup E_{3} .
$$

Assume $\left|V_{1}\right|=p$. By the property (ii), $\left|E\left(H_{1}\right)\right|=\left|V_{1}\right|=p$. Let $E_{21}=$ $\{(x, y):(x, y) \in E(H)$ and $(y, x) \in E(H)\}$. By the properties (i) and (iii), $E_{21}$ is a matching of $H_{2}$ and, hence, $\left|E_{21}\right| \leq\left\lfloor\frac{1}{2}(t-p)\right\rfloor$. Let $E_{22}=$
$E\left(H_{2}\right) \backslash E_{21}$. Since $E_{22}$ contains no symmetric edges, $\left|E_{22}\right| \leq\binom{ t-p}{2}=$ $\frac{1}{2}(t-p)(t-p-1)$. It follows that

$$
\begin{aligned}
E\left(H_{2}\right) & =\left|E_{21}\right|+\left|E_{22}\right| \leq\left\lfloor\frac{1}{2}(t-p)\right\rfloor+\frac{1}{2}(t-p)(t-p-1) \\
& \leq \frac{1}{2}(t-p)+\frac{1}{2}(t-p)(t-p-1) \\
& =\frac{1}{2}(t-p)^{2} .
\end{aligned}
$$

By the property (iii), for any vertex $x \in V_{1}$ and any vertex $y \in V_{2}$ there is at most one edge between them. Therefore, $\left|E_{3}\right| \leq p(t-p)$. It follows that

$$
\begin{aligned}
|E(H)| & =\left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right|+\left|E_{3}\right| \\
& \leq p+\frac{1}{2}(t-p)^{2}+p(t-p) \\
& =\frac{1}{2}\left(t^{2}-p^{2}+2 p\right) \\
& \leq \frac{1}{2}\left(t^{2}+1\right),
\end{aligned}
$$

where the last inequality is true because $-p^{2}+2 p \leq 1$ for any $p$. The lemma follows.

Let $G$ be a nontrivial $B(d, n)$ and $F$ be a minimum $R$-edge-cut of $G$. Then, $V(G)$ can be partitioned into two disjoint nonempty sets $X$ and $Y$ such that $F=E(X, Y)$, where $E(X, Y)$ denotes the set of the edges from $X$ to $Y$ in $G$. Let $X_{0}$ and $Y_{0}$ be the sets of the initial and terminal vertices of the edges of $F$, respectively. Let

$$
\begin{aligned}
d_{G}\left(x, X_{0}\right) & =\min \left\{d_{G}(x, u): u \in X_{0}\right\}, & & m=\max \left\{d_{G}\left(x, X_{0}\right): x \in X\right\} ; \\
d_{G}\left(Y_{0}, y\right) & =\min \left\{d_{G}(v, y): v \in Y_{0}\right\}, & & m^{\prime}=\max \left\{d_{G}\left(Y_{0}, y\right): y \in Y\right\} .
\end{aligned}
$$

For any $x_{0} \in X_{0}$ and $y_{0} \in Y_{0}$, let

$$
\begin{aligned}
& X_{m}^{-}\left(x_{0}\right)=\left\{x \in X: d_{G}\left(x, x_{0}\right) \leq m\right\} \\
& Y_{m^{\prime}}^{+}\left(y_{0}\right)=\left\{y \in Y: d_{G}\left(y_{0}, y\right) \leq m^{\prime}\right\}
\end{aligned}
$$

Since $G$ is $d$-regular, we have

$$
\begin{aligned}
& \left|X_{m}^{-}\left(x_{0}\right)\right| \leq 1+d+d^{2}+\cdots+d^{m} \\
& \left|Y_{m^{\prime}}^{+}\left(y_{0}\right)\right| \leq 1+d+d^{2}+\cdots+d^{m^{\prime}}
\end{aligned}
$$

Noting that $\left|X_{0}\right| \leq|F|$ and $\left|Y_{0}\right| \leq|F|$, we have that

$$
\begin{align*}
&|X| \leq \sum_{x_{0} \in X_{0}}\left|X_{m}^{-}\left(x_{0}\right)\right| \leq|F|\left(1+d+d^{2}+\cdots+d^{m}\right) \\
&|Y| \leq \sum_{y_{0} \in Y_{0}}\left|Y_{m^{\prime}}^{+}\left(y_{0}\right)\right| \leq|F|\left(1+d+d^{2}+\cdots+d^{m^{\prime}}\right) \tag{1}
\end{align*}
$$

We now consider the relationship between $m$ and $m^{\prime}$. Choose $x \in X$ and $y \in Y$ such that $d_{G}\left(x, X_{0}\right)=m$ and $d_{G}\left(Y_{0}, y\right)=m^{\prime}$. Since any $(x, y)-$ path in $G$ must go through $F$, there exists an edge $e=\left(x_{0}, y_{0}\right) \in F$ such that

$$
d_{G}\left(x, x_{0}\right)+1+d_{G}\left(y_{0}, y\right)=d_{G}(x, y) \leq n
$$

Because of the choices of $x$ and $y$, we have $d_{G}\left(x, x_{0}\right) \geq m$ and $d_{G}\left(y_{0}, y\right) \geq$ $m^{\prime}$. Thus,

$$
m^{\prime} \leq d_{G}\left(y_{0}, y\right) \leq n-d_{G}\left(x, x_{0}\right)-1 \leq n-m-1 .
$$

It follows from (1) that

$$
\begin{equation*}
|V(G)| \leq|F| \frac{d^{m+1}+d^{n-m}-2}{d-1} \tag{2}
\end{equation*}
$$

Since $G$ is $d$-regular, $|E(X, Y)|=|E(Y, X)|$. Without loss of generality, we can suppose $m \leq m^{\prime}$ in the following discussion.

Lemma 3 If $F$ is a minimum $R$-edge-cut of $B(d, n)$, then $|F| \geq 2 d-2$ for any $d \geq 2$ and $n \geq 2$.

Proof Let $F$ be a minimum $R$-edge-cut of $B(d, n)$. Suppose to the contrary that $|F| \leq 2 d-3$. We will deduce a contradiction by considering two cases.

Case $1 m=0$. In this case, we have $X=X_{0}$. Let $t=|X|$. Then $t \geq 2$ since $F$ is an $R$-edge-cut. So $2 \leq t \leq|F| \leq 2 d-3$ and $d \geq 3$. Let $H$ be the subgraph of $B(d, n)$ induced by $X$. We consider the number of the edges of $H$. On the one hand, $|E(H)|=d t-|F| \geq d t-(2 d-3)$. On the other hand, by Lemma $2,|E(H)| \leq \frac{1}{2}\left(t^{2}+1\right)$. It follows that

$$
d t-(2 d-3) \leq \frac{1}{2}\left(t^{2}+1\right)
$$

which implies that

$$
t^{2}-2 d t+4 d-5 \geq 0
$$

It, however, is impossible since the convex function $f(t)=t^{2}-2 d t+4 d-5<$ 0 for $2 \leq t \leq 2 d-3$ and $d \geq 3$.

Case $2 m \geq 1$. In this case, we have $m \leq n-2$ and $n \geq 3$ since $1 \leq$ $m \leq m^{\prime}$ and $m+m^{\prime} \leq n-1$. Note that the function $f(m)=d^{m+1}+d^{n-m}$ is convex on the interval $[1, n-2]$ and $f(1)=f(n-2)=d^{n-1}+d^{2}$. It
follows from (2) that, if $|F| \leq 2 d-3$ and $d \geq 2$, then

$$
\begin{align*}
d^{n} & =|V(B(d, n))| \leq|F| \frac{d^{m+1}+d^{n-m}-2}{d-1} \\
& \leq(2 d-3) \frac{d^{n-1}+d^{2}-2}{d-1}  \tag{3}\\
& = \begin{cases}4 d^{2}-2 d-6, & \text { for } n=3 ; \\
2 d^{3}+d^{2}-2 d-6, & \text { for } n=4 ; \\
2 d^{n-1}-d^{n-2}-\cdots-d^{3}+d^{2}-2 d-6, & \text { for } n \geq 5 .\end{cases}
\end{align*}
$$

Note that for $d \geq 2$,

$$
\begin{align*}
& d^{3}-\left(4 d^{2}-2 d-6\right)=(d-2)\left(d^{2}-2 d-2\right)+2>0 \\
& d^{4}-\left(2 d^{3}+d^{2}-2 d-6\right)=d(d-2)\left(d^{2}-1\right)+6>0 \tag{4}
\end{align*}
$$

and, for $n \geq 5$,

$$
\begin{align*}
& d^{n}-\left(2 d^{n-1}-d^{n-2}-\cdots-d^{3}+d^{2}-2 d-6\right) \\
> & d^{n}-2 d^{n-1}+d^{3}-d^{2}+2 d-6 \\
= & (d-2)\left(d^{n-1}+d^{2}+d+4\right)+2  \tag{5}\\
> & 0
\end{align*}
$$

By (3), (4) and (5), we obtain a contradiction $d^{n}<d^{n}$.
Thus, we have $|F| \geq 2 d-2$ if $F$ is a minimum $R$-edge-cut of $B(d, n)$. The lemma follows.

## 3 Proof of Theorem

By the definition, it is clear that $\lambda^{\prime}(B(2,1)), \lambda^{\prime}(B(2,2))$ and $\lambda^{\prime}(B(3,1))$ do not exist. By Lemma 1 and Lemma 3, we only need to show $\lambda^{\prime}(B(d, 1))$ $=2 d-4$ for $d \geq 4$.

Note that $B(d, 1)$ is a complete digraph of order $d$ plus a self-loop at every vertex. Let $F=E(X, Y)$ be an $R$-edge-cut with $|F|=\lambda^{\prime}(B(d, 1))$, and $|X|=t$. Then $t \geq 2$ and $|Y|=d-t \geq 2$. So, $2 \leq t \leq d-2$. For any pair of vertices $x, y$, there are a pair of symmetric edges between them. Thus, $\lambda^{\prime}(B(d, 1))=|F|=t(d-t) \geq 2 d-4$ for $2 \leq t \leq d-2$. On the other hand, choose $F=E_{B}^{+}(\{0,1\})$. Since every vertex of $B(d, 1)$ has a self-loop and every pair of vertices have a pair of symmetric edges between them, $F$ is an $R$-edge-cut for $d \geq 4$. Thus, $|F|=2(d-1)-2=2 d-4$, which implies $\lambda^{\prime}(B(d, 1)) \leq 2 d-4$. so $\lambda^{\prime}(B(d, 1))=2 d-4$.

Corollary 1 (Soneoka [8]) The de Bruijn digraph $B(d, n)$ is super edge-connected for any $d \geq 2$ and $n \geq 1$.

Proof Since $B(d, 1)$ is a complete digraph of order $d$ with a loop at every vertex, it is clear that $B(d, 1)$ is super edge-connected for any $d \geq 2$.

It is easy to see that $B(2,2)$ is super edge-connected. By Theorem 1, for $d \geq 2$ and $n \geq 2$, except $B(2,2), \lambda^{\prime}(B(d, n))=2 d-2>d-1=\lambda(B(d, n))$, which means that $B(d, n)$ is super edge-connected.

## References

[1] Bauer, D., Boesch, F., Suffel, C., and Tindell, R., Connectivity extremal problems and the design of reliable probabilistic networks. The Theory and Application of Graphs, Wiley, New York, 1981, 45-54.
[2] Esfahanian, A. H., Generalized measures of fault tolerance with application to $n$-cube networks. IEEE Trans. Comput. 38 (11) (1989),15861591.
[3] Esfahanian, A. H. and Hakimi, S. L., On computing a conditional edgeconnectivity of a graph. Information Processing Letters, 27 (1988), 195-199.
[4] Fàbrega, J. and Fiol, M. A., Maximally connected digraphs. J. Graph Theory, 13 (1989), 657-668.
[5] Fan, Ying-Mei and Xu, Jun-Ming, Restricted edge-connectivity of Kautz graphs. Applied Mathematics, 17 (3) (2004), 329-332.
[6] Fan, Y.-M., Xu, J.-M. and Lu, M., The restricted edge-connectivity of Kautz undirected graphs, to appear in Ars Combinatoria.
[7] Ou, J.-P., Restricted edge connectivity of binary undirected Kautz graphs. Chinese Quart. J. Math. 19(1) (2004), 47-50.
[8] Soneoka, T., Super edge-connectivity of dense digraphs and graphs. Discrete Applied. Math., 37/38 (1992), 511-523.
[9] Xu, J.-M., Topological Structure and Analysis of Interconnection Networks. Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
[10] Xu Jun-Ming and Fan Ying-Mei, Super edge-connectivity of de Bruijn and Kautz undirected graphs. Applied Math. J. Chinese Univ. 19B (2) (2004), 222-227.
[11] Xu, J.-M., Lu, M. and Fan, Y.-M., The restricted edge-connectivity of de Bruijn undirected graphs, to appear in Ars Combinatoria.


[^0]:    * The work was supported partially by NNSF of China (No.10271114)
    $\dagger$ Corresponding author: xujm@ustc.edu.cn

