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Abstract

The restricted edge-connectivity of a graph is an important param-
eter to measure fault-tolerance of interconnection networks. This paper
determines that the restricted edge-connectivity of the de Bruijn digraph
B(d,n) is equal to 2d — 2 for d > 2 and n > 2 except B(2,2). As conse-
quences, the super edge-connectedness of B(d,n) is obtained immediately.
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1 Introduction

It is well-known that when the underlying topology of an interconnec-
tion network is modelled by a graph or digraph G, the edge-connectivity
A(G) of G is an important measurement for fault-tolerance of the network.
This paper considers the de Bruijn digraph B(d,n). It has been shown
that A(B(d,n)) = d — 1 and A(K(d,n)) = d (see, for example, [9]). A
connected graph G is said to be super edge-connected if every minimum
edge-cut isolates a vertex of G [1]. Soneoka [8] showed that the B(d,n) is
super edge-connected for any d > 2 and n > 1, and Fabrega and Fiol [4]
proved that K(d,n) is super edge-connected for any d > 3 and n > 2.

A quite natural question is how many edges must be removed to discon-
nect a graph such that every connected component of the resulting graph
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contains no isolated vertex. To measure this type of edge-connectivity, Es-
fahanian and Hakimi [2, 3] introduced the concept of the restricted edge-
connectivity of a graph. The definition given here is slightly different from
the original definition. The restricted edge-connectivity of a graph G, de-
noted by N (G), is the minimum number X for which G has a \-edge cut
F such that every connected component of G — F' has at least two ver-
tices. They solved the existence of M (G) for a given graph by proving
that if G is neither K, nor K3, then A\(G) < X(G) < £(G), where {(G)
is the minimum edge-degree of G. Clearly, if '(G) > A(G) then G is
super edge-connected. Since then one has paid much attention to the con-
cept and determined the restricted edge-connectivity for many well-known
graphs. In particular, A’ has been completely determined for the Kautz di-
graph K (d,n), the undirected de Bruijn graph UB(d,n) and Kautz graph
UK (d,n) (see, for example, [5, 6, 7, 10, 11]). In this paper, we determine
M for de Bruijn digraph B(d,n).

Theorem For any de Bruijn digraph B(d,n) with n > 1 and d > 2,
not exist, forn=1and 2<d<3,orn=d=2;

N(B(d,n)) =< 2d—4, forn =1and d > 4;
2d — 2, otherwise.

The proof of the theorem is in Section 3. Our way presented in this
paper can prove the result for the Kautz digraph K(d,n) in [5]. However,
the methods used in [5] do not work for the de Bruijn digraph B(d,n).

2 Some Lemmas

The de Bruijn digraph B(d, n) has the vertex-set
V=A{xyz92zp: 2, €{0,1,---,d=1}, i=1,2,---,n},
and the edge-set E, where for z,y € V, if t = z129 - - - x,,, then
(z,y) e ES y=uxoxg-- zpa, a€{0,1,---,d—1}.

Clearly, B(d, 1) is a complete digraph of order d plus a self-loop at every
vertex. It has been shown that B(d, n) is d-regular and (d — 1)-connected.
For more properties of de Bruijn digraphs, the reader is referred to Section
3.2'in [9].

Assume z = x1x9 - xp, and y = y1y2 - - - Y, are two distinct vertices of
B(d,n). If the distance from z to y is equal to [, then the unique shortest

(x,y)-path

P: z=x1T0 Ty — T2T3 - Tp¥Yn—i+1 — T3 TnYn—i+1Yn—1+2 —
c = X TpYn—I41 " Yn—1 = Ti41 " TnYn—i4+1 " Yn = Y.



can be expressed as the following sequence:

P=ux123 T141 - TulYn—i+1" " Yn,

in which any subsequence of length n is a vertex in P.

A pair of directed edges are said to be symmetric if they have the same
end-vertices but different orientations. The de Bruijn digraph contains
pairs of symmetric edges. If there are a pair of symmetric edges between
two vertices x and y, then it is not difficult to see that the coordinates of x
and y are alternately in two different digits a and b, that is, z = abab- - - ab
and y = baba - - - ba if n is even, while x = abab- - - aba and y = baba - - - bab
if n is odd, where a # b.

We follow [9] for graph-theoretical terminology and notation not defined
here. Let G = (V, E) be a strongly connected digraph (loops and parallel
edges are here allowed). An edge-set F' of G is called a restricted edge-
cut (R-edge-cut, in short) if G — F is not strongly connected and every
strongly connected component has at least two vertices. The restricted
edge-connectivity X' (G) is the minimum cardinality over all R-edge-cuts in
G. We observe that there are no R-edge-cuts in B(2, 1), B(2,2) and B(3,1),
and call these digraphs trivial, and otherwise nontrivial.

Lemma 1 If B(d,n) is nontrivial, then X' (B(d,n)) < 2d — 2 for any
d>2andn > 2.

Proof Let G be a nontrivial B(d, n), and suppose that z and y are two
different vertices in G with a pair of symmetric edges between them. Then
the set of edges EZ ({z,y}) is an edge-cut in G and |E} ({z,y})| = 2d — 2.
Thus, we only need to show that Eg({z,y}) is an R-edge-cut. To the
end, it is sufficient to show that G — {z,y} is strongly connected. Let
U = Uil U, and v = wvive---v, be an arbitrary pair of vertices in
G — {x,y}. We can obtain the result by showing that v and v are strongly
connected in G — {z, y}.

Without loss of generality, we assume n is even, z = abab---ab and
y = baba - - - ba, where a # b and a,b € {0,1,---,d —1}.

We first consider the case of n > 2. Let z = aab---aba and w =
ab---abaa. Then z is an in-neighbor of z, and w is an out-neighbor of y.
Moreover, (z,w) € E(B(d,n)). Suppose that the distance from v to z is
equal to [ and the distance from w to v is equal to I’. Denote the shortest
(u, z)-path by @ = ujug---waab---aba and the shortest (w,v)-path by
Q' =ab---abaavy,_y 11 - v,. When I < n — 2, any subsequence of length
n in @ contains aa, so @ contains neither x nor y. When [ = n — 1 any
subsequence of length n in @) contains aa except the first subsequence of
length n, which is u. So @ contains neither  nor y for [ < n — 1. For
[l = n, @ contains y only when v = u1bab---ab with u; # a, which is an



in-neighbor of y. Similarly, )’ contains neither z nor y for I’ < n — 1, and
contains x only when v = bab - - - bu,, with v,, # a, which is an out-neighbor
of x. We show that u can reach v in B(d,n) — {x,y} by constructing a
(u,v)-walk according to the following three cases, respectively.

Case 1 If both @ and @’ contain neither x nor y, then u can reach v
in B(d,n) — {z,y} via a (u,v)-walk Q + (z,w) + Q.

Case 2 If u = wuibab---ab with u; # a and Q' contains neither x
nor y, then y is an out-neighbor of w. Let z; = baba - --abb. Then z; is
another out-neighbor of u. Let z5 = abab- - - bba, which is an out-neighbor
of z;. Then Q1 = abab---bbaabab- - - abaa is a (z9,w)-walk of length n,
and contains neither x nor y since any subsequence of length n in Q1
contains bb or aa. Thus, u can reach v in B(d,n) — {z,y} via a (u,v)-walk
(u,21) + (21,22) + Q1 + Q.

Case 3 If u = uibab---ab with u; # a and v = bab---abv, with
vn, # a, then (u,v) € E(B(d,n)), and u can reach v in B(d,n) — {z,y} via
the edge.

When n = 2, we have d > 3 since N (B(2,2)) doesn’t exist. Then
x = ab,y = ba. Without loss of generality, we can assume u = ujus,v =
v1v3. Then P = ujugvive is the shortest path from u to v. If the vertex
z = ugvy ¢ {z,y}, then we are done. If z = ab, then u = uja,v = bus.
Since d > 3, we can construct another (u,v)-walk: ujacbvy where ¢ €
{0,1,---,d =1} \ {a,b}. The walk is in B(d,2) — {z,y}. If 2 = ba, we can
also construct a (u,v)-walk in B(d,2) — {z,y} in the same way. So u can
reach v via a (u,v)-walk in B(d,2) — {z,y}.

Similarly, v can reach u via a (v,u)-walk in B(d,n) — {x,y}. Thus, u
and v are strongly connected in B(d,n) — {z,y}. The lemma follows. 1

Lemma 2 Let H be a subgraph of B(d,n). For n > 2, if |V(H)| =t,
then |E(H)| < § (2 +1).

Proof From the definition, it is clear that B(d,n) has the following
properties for n > 2:

(i) any two pairs of symmetric edges are not adjacent;

(ii) any two vertices with a self-loop, if any, are not adjacent;

(iil) the end-vertices of any pair of symmetric edges have no self-loops.

Let Vi be the set of the vertices with a self-loop in H. Suppose H; is
the subgraph of H induced by V; and that Hs is the subgraph of H induced
by Vo = V(H)\ V1. Use E5 to denote the set of the edges between Vi and
V5 in H. Then

E(H)=E(H,)U E(H2) U Ej.

Assume |V;| = p. By the property (ii), |E(Hy)| = |[Vi]| = p. Let Ey =
{(z,y) : (z,y) € E(H)and (y,z) € E(H)}. By the properties (i) and
(iii), B2 is a matching of Hy and, hence, |Ea;| < |1 (t —p)]. Let Eg =



E(H3) \ E2;. Since Fs contains no symmetric edges, |Faa| < (tgp) =
3 (t=p)(t —p—1). It follows that

Bt = 1Ea|+|Bnl < |5 (=) +5¢-n-p-1
< SG-p+5E-pE-p-1)
= %(t*p)?

By the property (iii), for any vertex x € V; and any vertex y € V5 there is
at most one edge between them. Therefore, |E3| < p(t —p). It follows that

|E(H)| [E(Hy)| + |[E(Hy)| + | Es]

p+%(t—p)2+p(t—p)

1

B (t* —p* + 2p)
1
5(1t2+1),

Il IA

IN

where the last inequality is true because —p? + 2p < 1 for any p. The
lemma follows. 1

Let G be a nontrivial B(d,n) and F be a minimum R-edge-cut of G.
Then, V(G) can be partitioned into two disjoint nonempty sets X and Y
such that F' = E(X,Y), where E(X,Y) denotes the set of the edges from
X toY in G. Let X and Y] be the sets of the initial and terminal vertices
of the edges of F', respectively. Let

de(z, Xo) = min{dg(z,u) : v e Xo}, m=max{dg(z,Xo): z€ X}
de(Yo,y) = min{dg(v,y): ve€ Yy}, m =max{de(Yo,y): ye€Y}.
For any xy € Xy and yo € Yo, let
X, (xg) ={x € X : dg(z,z9) <m},
Yh(yo) ={yeY: dalyo,y) <m'}.
Since G is d-regular, we have
| Xm(zo)| S 14+d+d*+ - +d™
Y5 (o) <1+d+d*>+---4+d™.
Noting that | Xo| < |F| and |Yo| < |F|, we have that

XIS 5 Xl < IFI0+d+dteo+dm)

zo€Xo , (1)
Y| < X Vi)l < |[FI(L+d+d®+---+d™).

Yo €Yo



We now consider the relationship between m and m’. Choose x € X
and y € Y such that dg(z, Xo) = m and dg (Yo, y) = m’. Since any (z,y)-
path in G must go through F, there exists an edge e = (z¢,y0) € F such
that

dG(xa xO) +1+ dG(y07y) = dG(xa y) <n.

Because of the choices of x and y, we have dg(x,x0) > m and dg(yo,y) >
m/. Thus,

m' <da(yo,y) <n—dg(z,z0) —1<n—-m—1.
It follows from (1) that

dm+1 + qr—m _9

<
V()| < I

(2)

Since G is d-regular, |E(X,Y)| = |E(Y, X)|. Without loss of generality,
we can suppose m < m’ in the following discussion.

Lemma 3 If F is a minimum R-edge-cut of B(d,n), then |F| > 2d—2
for any d > 2 and n > 2.

Proof Let F be a minimum R-edge-cut of B(d,n). Suppose to the
contrary that |F| < 2d — 3. We will deduce a contradiction by considering
two cases.

Case 1 m = 0. In this case, we have X = Xj. Let ¢ = |X|. Then
t > 2 since F' is an R-edge-cut. So 2 <t < |F|<2d—3 and d > 3. Let H
be the subgraph of B(d,n) induced by X. We consider the number of the
edges of H. On the one hand, |E(H)| = dt — |F| > dt — (2d — 3). On the
other hand, by Lemma 2, |E(H)| < 3 (t* + 1). It follows that

dt —(2d —3) < = (t* + 1),

| —

which implies that
t2 —2dt +4d — 5 > 0.

It, however, is impossible since the convex function f(t) = t>—2dt+4d—5 <
Ofor2<t<2d—3andd>3.

Case 2 m > 1. In this case, we have m <n — 2 and n > 3 since 1 <
m < m’ and m+m’ <n— 1. Note that the function f(m) = d™™ +d»™
is convex on the interval [1,n — 2] and f(1) = f(n —2) = d" ' +d> It



follows from (2) that, if |F| < 2d — 3 and d > 2, then
dm+l + qn—m_9

d" = |V(B(d,n))| < |F]| —
d"t+d? -2
< 3y =
< (2d-3) — 3)
4d? — 2d — 6, for n = 3;
= 2d3 4+ d? — 2d — 6, for n = 4;
24"t —dn 2 — ... —d34+d?> -2d -6, forn >5.

Note that for d > 2,
d® — (4d* — 2d — 6) = (d — 2)(d* —2d — 2) +2 > 0,

d* — (2d® +d?> —2d —6) = d(d — 2)(d* — 1) +6 > 0, )
and, for n > 5,
d" — (2d" "t —d" 2 — .. —d® + d? — 2d — 6)
> d"—2d" '+ d3—d*+2d—-6 5)
= (d—2)d"'+d+d+4)+2
> 0.

By (3), (4) and (5), we obtain a contradiction d" < d".
Thus, we have |F| > 2d — 2 if F is a minimum R-edge-cut of B(d,n).
The lemma follows. 1

3 Proof of Theorem

By the definition, it is clear that A'(B(2,1)), A'(B(2,2)) and X' (B(3,1))
do not exist. By Lemma 1 and Lemma 3, we only need to show A (B(d, 1))
=2d — 4 for d > 4.

Note that B(d,1) is a complete digraph of order d plus a self-loop at
every vertex. Let ' = E(X,Y) be an R-edge-cut with |F| = N (B(d, 1)),
and |X| =¢ Thent¢>2and |Y|=d—t>2. So,2<t<d-2. For
any pair of vertices x, y, there are a pair of symmetric edges between them.
Thus, N (B(d,1)) = |F| =t(d—t) > 2d —4 for 2 <t < d—2. On the other
hand, choose F' = E({0,1}). Since every vertex of B(d, 1) has a self-loop
and every pair of vertices have a pair of symmetric edges between them,
F is an R-edge-cut for d > 4. Thus, |F| = 2(d — 1) — 2 = 2d — 4, which
implies M (B(d, 1)) < 2d — 4. so N(B(d,1)) = 2d — 4. 1

Corollary 1 (Soneoka [8]) The de Bruijn digraph B(d,n) is super
edge-connected for any d > 2 and n > 1.

Proof Since B(d,1) is a complete digraph of order d with a loop at
every vertex, it is clear that B(d, 1) is super edge-connected for any d > 2.



It is easy to see that B(2,2) is super edge-connected. By Theorem 1, for
d>2and n > 2, except B(2,2), N (B(d,n)) =2d—2>d—1= \DB(d,n)),

which means that B(d, n) is super edge-connected. 1
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