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Abstract: It was shown that for a faulty Q, with f, faulty vertices and f, faulty edges, there exists
a fault-free cycle of length at least 2" —2f, provided f,+ f.<2n—4, f.<2n—5,n=>3 and each

vertex of the faulty Q, is incident with at least two non-faulty edges, which improves some known

results.
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0 Introduction

To find a cycle of given length in a graph is a
cycle embedding problem. Linear arrays and
cycles, which are two of the most fundamental
networks for parallel and distributed computation,
are suitable for developing simple algorithms with
Many  efficient

low communication  costs.

algorithms designed on linear arrays and cycles for
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solving a variety of algebraic problems and graph
problems can be found in Refs. [1,2].

In this paper we consider the problem of
embedding a cycle in a hypercube network with
vertex and/or edge faults. This problem has
received many researchers’ attention in recent
yearst 1. Let f, and f, be the number of faulty
vertices and edges, respectively. Fu'* showed that

a fault-free cycle of length at least 2* —2f, can be
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embedded in Q, when f,< 2n—4. Latifi et al'*
showed that a fault-free Hamiltonian cycle can be
embedded in Q, when f, <<n — 2.
considering both faulty

In case of
vertices and edges,
Hsieh'™ showed that a fault-free cycle of length at
least 2" —2f, can be embedded in Q, for n—=3 when
fot fo<2n—4 and f,.<n—2.

Every component in a network may have
different reliability, so it can be safely assumed

all the

components will not fail simultaneously. These

that in some subsets of components,

reasons have motivated research on Hamiltonian
properties of conditional faulty hypercubes. If each
vertex is incident with at least two non-faulty
edges and f,<2n—75, Chan and Lee™ showed that
Q, still contains a fault-free Hamiltonian cycle.
Based on this requirement, in this paper, we
improve the above-mentioned results of Refs. [ 3,4,
5,8] by proving the following theorem.

Theorem 0.1 For a faulty Q,(n=3) with f,
faulty vertices and f, faulty edges, there exists a
fault-free cycle of length at least 2" —2f, provided
that f,+ f.<2n—4, f,<\2n—5 and each vertex of

Q, is incident with at least two non-faulty edges.

1 Some notations and lemmas

We follow Ref. [14] for the graph-theoretical
terminologies and notations not defined here. A
graph G = (V, E) always means a simple and
connected graph, where V=V((G) is the vertex-set
and E=FE(G) is the edge-set of G. A uv-path is a
sequence of adjacent vertices, written as {vy, v; »
Uy sty U, s in which u=wvy, v=1v, and all the
vertices Uy s U1 s Uss ***» U, are different from each
other. The length of a path P is the number of
edges in P. Let d; (u, v) be the length of a
shortest uv-path in graph G. A cycle is a path with
at least three vertices such that the first vertex is
the same as the last one. A cycle is called a
Hamiltonian cycle if it contains all vertices of G
and a wuv-path is called a Hamiltonian path if it
contains all vertices of G.

An n-dimensional binary hypercube Q, is a

graph with 2" vertices, each vertex denoted by an
n-bit binary string u=uwu,u,—*** usu,. Two vertices
are adjacent if and only if their strings differ in
exactly one bit position. It has been proven that Q,
is a vertex and edge transitive bipartite graph (see,
for example, Ref. [15]).

By definition, for any k€ {1,2,:-*,n}, Q, can
be expressed as Q,=L; ®R,, where L, and R, are
the two (n — 1)-subcubes of Q, induced by the
vertices with the k£ bit position is 0 and 1,
respectively. We call edges between L, and R, to
be k-dimensional, which form a perfect matching
of Q,. Clearly, for any edge e of Q,, there is some
k& {1,2,--,n} such that e is k-dimensional. Use
u; and ur to denote two vertices in L, and R,,
respectively, linked by the k-dimensional edge
urug in Q,.

For a faulty set F=F,UF,, let f,=|F,| and
f.=1|F.|, where F,CV(Q,) and F,CE(Q,). For
any k€ {1,2,++,n}, we always express Q, as Q,=
L,®R,, and let F;, =F L, and Fx=F[\R,. Let
ff-=1|F. (N F,| and we denote f%, fL, f®
Use F, of k-
dimensional faulty edges and f*=|F,|.

Lemma 1. 1" Let u and v be two arbitrary
distinct fault-free vertices in Q, with f,+ f,.<n—2

similarly. to denote the set

and n—=3. Then there is a fault-free uv-path whose
length is at least 2" —2f,—1 if dg (u,v) is odd.

Lemma 1., 21"
of length at least 2" —2f, in
n==3.

Lemma 1, 3"
of length at least 2"—2f, in Q, if f,.<n—2, f,+[f.<<
2n—4 and n=3.

Lemma 1. 4"

cycle in Q, with at most 2n—5 faulty edges if each

There exists a fault-free cycle
, if £,.<<2n—4 and

There exists a fault-free cycle

There exists a Hamiltonian

vertex of Q, is incident with at least two non-faulty

edges and n=3.

2 Proof of Theorem 0. 1

In this section, we give the proof of Theorem
0. 1 stated in Introduction.

If f. = 0, then the theorem follows from
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Lemma 1. 2, and so assume f, =1 below. We
proceed by induction on n=3.

It is not difficult to verify that Q; with one
faulty vertex and one faulty edge contains a fault-
free cycle of length 6. Thus, the theorem holds for
n=23. Assume the induction hypothesis for n —1
with n=>4.

Since f,<<2n — 5 and each vertex of Q, is
incident with at least two fault-free edges, there
are at most two vertices incident with n—2 faulty
edges. It is easy to see that if there are two
vertices in Q, incident with n—2 faulty edges, then
these two vertices are linked by a faulty edge. We
choose a faulty edge ¢ &€ F, according to the
following rules (mentioned in Ref. [10]):

(1) I there are two vertices incident with
n—2 faulty edges, then we choose a faulty edge ¢
that links these two vertices.

(Il ) If there exists only one vertex u incident
with n — 2 faulty edges, then we choose a faulty
edge e that is incident with u.

() If every vertex is incident with at most
n—3 faulty edges, then we choose any faulty edge
e from F,.

Let the chosen faulty edge e be k-dimensional
, = L, OR, = L OR.

Based on the choice of e€ F,, each vertex in L (or

edge. We express Q, as

R) is incident with at least two fault-free edges of
L (Cor R). Without loss of generality, we may
assume that f%+ /&> R4 /%,

We first assume f*>>2. Then
oo+ <on—6, fi +fA<2n—7.
By the induction hypothesis, there exists a fault-
free cycle Cy in L, —F of length at least 2" ' —2f%.

If 270 —2/% > 2/* 4+ 2/%, there is an edge
u;v, on C; such that {u ugsvivrsugs vg} (N F=0.
Since fL+4 I =R+ /R, we get

. 2n—6
f§—|—ff<n7

By Lemma 1. 1, there is a fault-free ugvg-path Pg
in R, — F of length at least 2" ' —2/%—1. Then
C.—wvr, Turugto,og+Pr is a cycle of length at
least 2" —2f, in Q,—F (see Fig. 1(a)).

=n—3.
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Fig. 1 Cycles of length at least 2" —2f, in Q,—F

Note that 2" ' —2 /5> 2 f*+2/% holds if and
only if n==5 or fX+ f8>0. And so, in order to
prove the theorem, we only consider the case of
n=4 and ff+ fX=0.

For n=4, the result holds if f,<{2 by Lemma
1.3 orif f,=0 by LLemma 1. 4. Assume f,=3 and
f.=1 below. We need to find a fault-free cycle of
length at least 14 in Q. Since f* -+ f8=0, we have
ft=3. Without loss of generality, assume f5=1.
For L — F shown in Fig. 2, if three faulty edges
adjacent to black vertices, we choose {u;, v }
satisfied that {w ug,vivrs ugsvr) (VF=0. There
is a fault-free u;v;-path P; of length 6 in L—F and
a ugvg-path Py of length 6 in R. Then P, +ujug+
vvgr T Pr is a cycle of length 14 in Q, —F. If some
faulty edges are not adjacent to black vertices, we
can find an edge w; v, in L —F such that {u ug,
vog) [V F=@. There is a fault-free cycle C; of
length 6 in L —F containing u; v, and a ugvg-path
Py of length 7 in R. Then C, —w v, tujug +vvg+
Py is a cycle of length 14 in Q, —F.

We now suppose f*=1. Then
So+ oA+ A<2n—5, fi + fE<2n—86.
If f,<<n— 2, the result holds by Lemma 1. 3.
Assume f,>n—1 below. Since fL+ fL>= R+ %,
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Fig. 2 O, with three faulty edges and one faulty vertex

we get fX 4 fK <L2n2_ SJ =n—3. We consider

three cases.

Case 1 ff=2n—6. For the chosen edge ¢€
F,={e}, let E*={uv€ Ft| none of u and v is
incident with e}. Since each vertex of L is incident
with at least two fault-free edges in L by the choice
of the edge e € F, = {e}, there are at most n— 3
faulty edges adjacent to the faulty edge e in L.
Hence |E*|=2n—6—(n—3)=n—3>=1. Let ¢; €
E¢. We may remark the edge e; as a temporarily
fault-free edge. Then fL+ fF —1<{2n—6, fr<C
2n—7. By the induction hypothesis, there is a
fault-free cycle C; of length at least 2°' —2/% in
L. e eC., let uyv,=e,. Otherwise, we choose
u v, € Cp. such that {uug,vvg,ug.vr} N F=0.
There is a ugvg-path Pg of length at least 27! —
2f8—1in R. Then C, —u v, tuwur+ovg+Px is
a cycle of length at least 2" —2f, in Q, — F (see
Fig. 1(a)).

Case2 [r<2n—7 and f5+ fF=2n—"5. Let
wée F, (VL. We may remark the vertex w as
temporarily fault-free. Then f%+ fF—1<2n—6,

L<2n—7. By the induction hypothesis, there is a
fault-free cycle G of length at least 2"7' —2(f5—1)
in L.

If wé C., we choose an edge u; v, € C. such
that {u ug,vogs-ug-vr} (VF=0. There is a ugvg-
path P of length at least 2" ' —2f%—1in R—F by
Lemma 1. 1. Then C, —wuiv. turug +vvg + Pk is
a cycle of length at least 2" —2(f,—1) in Q,—F
(see Fig. 1(a)).

If weCy, let uy, vy €C, be adjacent to w and
uy» v, € C. be adjacent to u;, v, respectively,

where wé {u,, v }. Since f*=1, we may choose

{ur» vr)={w» v} Cor {uy» v }) such that
{urug svivrs ugsvg) VF=@. Since f8+ R<n—3
and the distance between up and vg is 1 or 3, by
Lemma 1.1, there is a ugvg-path Py of length at
least 2"—2f%—1 in R. Let P; be the u;v,-path in
C; of length 3. Then C, —P;+ujug + v vg+ Pk is
a cycle of length at least 2" —2f, in Q, —F (see
Fig. 1(b)).

Case3 fi<2n—7, fi+ fi<<2n—6. By the
induction hypothesis, there exists a fault-free cycle
C. in L —F of length at least 2" ' — 2%, Since
ot R=f— =n—2=2, n==4, then 2" ' —2 />
2/t +2f%. There is an edge u, v, on C. such that
{urur svivr sursvr ) (NF=0. Since fX+ f*<n—3,
by Lemma 1.1, there is a fault-free ugvg-path Py
of length at least 2 '—2f%—1 in R. Then C, —
wrvr Tuug +ovg+Pr is a cycle of length at least
2"—2f,in Q,—F (see Fig. 1(a)).

Theorem 0. 1 is proved. L]
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as [=3, for j=1,2,
3

m=1= mi
su) —s(v) >m(2(—3) « 2271 =3+ 2271 =0,
L]
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