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a b s t r a c t

The crossed cube CQn is an important variant of the hypercube Qn and possesses many
desirable properties for interconnection networks. This paper shows that in CQn with fv
faulty vertices and fe faulty edges there exists a fault-free path of length ` between any two
distinct fault-free vertices for each ` satisfying 2n−1 − 1 ≤ ` ≤ 2n − fv − 1 provided that
fv + fe ≤ n − 3, where the lower bound of ` and the upper bound of fv + fe are tight for
some n. Moreover, this result improves the known result that CQn is (n − 3)-Hamiltonian
connected.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well-known that the underlying topology of an interconnection network can be represented by a connected graph
G = (V , E), where V is the set of processors and E is the set of communication links in the network. In this paper, we use
graphs and interconnection networks interchangeably.
The embedding problem, which maps a guest graph into a host graph, is an important topic in recent years. Many graph

embeddings take paths, cycles, trees, and meshes as guest graphs [6,8–12,15,18,19,21], because they are the architectures
widely used in parallel computing systems. In particular, paths are probably themost common structure of graph embedding
in parallel computing since paths are often used to model linear arrays [3].
It is well known that the hypercube networkQn is one of themost popular interconnection networks since it has a simple

structure and is easy to implement. As an important variant ofQn, the crossed cube CQn, proposed first by Efe [4,5], hasmany
properties superior toQn. For example, CQn has a diameter d(n+1)/2e about half of the diameter ofQn, and a (2n−1)-vertex
complete binary tree can be embedded into CQn but not into Qn [15]. The variously desirable properties of CQn have been
extensively investigated in the literature (see, for example, [1,6,7,13–17,19,21,22]).
Failures are inevitable when a network is put in use. Therefore, it is practically meaningful to consider faulty networks.

In this paper, we study embedding of paths of different lengths between any two vertices in faulty crossed cubes. Use fv and
fe to denote the numbers of faulty vertices and faulty edges, respectively, in CQn. We prove that there exists a fault-free path
of length ` between any two distinct fault-free vertices in CQn, for each ` satisfying 2n−1 − 1 ≤ ` ≤ 2n − fv − 1, provided
that fv + fe ≤ n− 3. The lower bound of ` and the upper bound of fv + fe for a successful embedding are tight for some n. In
other words, the result does not hold if ` ≤ 2n−1 − 2 or fv + fe ≥ n− 2. Moreover, our result improves the result that CQn
is (n− 3)-Hamiltonian connected obtained by Huang et al. [13] and Chen et al. [2].
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The rest of the paper is organized as follows. Section 2 gives some definitions and notations. Section 3 discusses path
embedding in faulty crossed cubes. Finally, we conclude the paper in Section 4.

2. Preliminaries

Let G = (V , E) be a connected graph, where V = V (G) and E = E(G) denote the vertex set and the edge set of G,
respectively. Two vertices u and v of G are adjacent if (u, v) ∈ E. A path is a sequence of adjacent vertices, written as
P = 〈u, u1, . . . , uk, v〉, in which all vertices are distinct. We use uv-path to denote a path between vertices u and v. For a
uv-path P , P + (u, v) is called a cycle. The length of a path (or a cycle) is the number of edges contained in it. A cycle which
contains each vertex in G exactly once is called a Hamiltonian cycle. A graph G is Hamiltonian if there is a Hamiltonian cycle
in G. A path P can also be denoted by P = 〈u, P1, ui, ui+1 . . . , uj, P2, ut , ut+1, . . . , uk, v〉, where P1 is the path 〈u, u1, . . . , ui〉
and P2 is the path 〈uj, uj+1, . . . , ut〉. If (x, u) is an edge not on a path P = 〈u, u1, . . . , v〉, then the path between x and v
obtained by adding edge (x, u) to P is denoted by P + (x, u).
Let F ⊂ V (G)∪ E(G) denote a faulty set in G. The graph G− F is the subgraph obtained from G by deleting all elements in

F . A subgraph of G is fault-free if it contains no faulty elements in F . A graph G is k-Hamiltonian if G−F remains Hamiltonian
for any F ⊂ E(G) ∪ V (G)with |F | ≤ k.
Wenow recall the definition of the crossed cubeproposed by Efe in [5]. Ann-bit string x iswritten as x = xn−1xn−2 . . . x1x0,

where xi ∈ {0, 1} for i = 0, 1, . . . , n− 1. The complement of xi is denoted by x̄i (i.e., 0̄ = 1 and 1̄ = 0). Two binary strings
x = x1x0 and y = y1y0 are pair-related, denoted as x ∼ y, if and only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}. The
n-dimensional crossed cube CQn has 2n vertices labelled by n-bit strings and can be recursively defined as follows.
CQ1 is a complete graph with two vertices labelled by 0 and 1. For n ≥ 2, CQn is obtained by taking two copies of CQn−1,

denoted by CQ 0n−1 with vertex-set

V (CQ 0n−1) = {0xn−2 . . . x1x0 : xi = 0 or 1, i = 0, 1, . . . , n− 2}

and CQ 1n−1 with vertex-set

V (CQ 1n−1) = {1yn−2 . . . y1y0 : yi = 0 or 1, i = 0, 1, . . . , n− 2},

respectively, and adding an edge joining 0xn−2 . . . x1x0 ∈ V (CQ 0n−1) and 1yn−2 . . . y1y0 ∈ V (CQ 1n−1) if and only if
(1) xn−2 = yn−2 if n is even, and
(2) x2i+1x2i ∼ y2i+1y2i for 0 ≤ i < b n−12 c.
According to the definition, we can denote CQn = L⊕ R, where L = CQ 0n−1 and R = CQ

1
n−1. A subgraph of CQn, which is

also a crossed cube of smaller dimension, is called a subcube of CQn. Thus L and R are two (n− 1)-dimensional subcubes of
CQn.
We recall some structural properties of CQn presented in [5], which are to be used in our construction of paths of different

lengths. For ` < n, the `-prefix of x = xn−1xn−2 . . . x1x0, denoted by p`(x), is the substring xn−1xn−2 . . . xn−`. For an `-bit
string x with ` ≤ n, denote by Px(CQn) the subgraph of CQn induced by the set of all vertices with the `-prefix x. For two
distinct `-bit strings x and y with ` < n, Px(CQn) and Py(CQn) are adjacent subgraphs if Px(CQn) and Py(CQn) can be linked
by an edge in CQn. Let Px,y(CQn) denote the subgraph of CQn induced by Px(CQn) ∪ Py(CQn). Then Px(CQn) is isomorphic to
CQn−` and Px,y(CQn) is isomorphic to CQn−`+1 if Px(CQn) and Py(CQn) are adjacent. In particular, if x and y are both 2-bit
strings and (x, y) is an edge of CQ2, then Px(CQ2k) and Py(CQ2k) are adjacent subgraphs isomorphic to CQ2k−2, and Px,y(CQ2k)
is isomorphic to CQ2k−1.
For even n, we can contract those vertices in CQn having the same prefix of length two into one vertex and obtain a graph

with four vertices. It is shown in Fig. 1(a) that this four-vertex graph is isomorphic to CQ2.
Similarly, if n is odd, we can contract those vertices in CQn with the same prefix of length three into one vertex and obtain

a graph with eight vertices, as shown in Fig. 1(b), which is isomorphic to CQ3.

3. Fault-tolerant embedding of paths in crossed cubes

In this section, we prove our main result. For all the terminology and notation not defined here, we follow [20]. The
following two lemmas will be used in the proof of our theorem.

Lemma 1 (Fan et al. [6]). If n ≥ 3, then for any two different vertices u and v in CQn, there exists a uv-path of every length from
d(n+ 1)/2e + 1 to 2n − 1.

Lemma 2 (Huang et al. [13], Chen et al. [2]). CQn is (n− 2)-Hamiltonian for n ≥ 3.

Theorem 3. For n ≥ 3 and any F ⊂ V (CQn)∪ E(CQn)with |F | ≤ n− 3, there exists a path of length ` between any two distinct
vertices in CQn − F for each ` satisfying 2n−1 − 1 ≤ ` ≤ 2n − fv − 1, where fv is the number of vertices in F .



112 M. Ma et al. / Theoretical Computer Science 407 (2008) 110–116

Fig. 1. Subgraphs of CQ2k and CQ2k+1 .

Fig. 2. Illustration for the proof of Case 1. (A straight line represents an edge, a curved line represents a path between two vertices and a dashed line
represents a removed edge.)

Proof. We prove the theorem by induction on n ≥ 3. By Lemma 1, the conclusion is true for CQ3. Assume that the theorem
is true for CQn−1 with n ≥ 4. We now consider CQn. Let F ⊂ V (CQn)∪ E(CQn) be a set of faulty elements in CQn = L⊕Rwith
|F | ≤ n− 3. We denote F L = F ∩ L, FR = F ∩ R, Fv = F ∩ V (CQn), fv = |Fv|, f Lv = |Fv ∩ V (L)|, f Rv = |Fv ∩ V (R)|. Without loss
of generality, we may assume |F L| ≥ |FR|. Let u and v be any two fault-free vertices in CQn. From the structure of CQn (See
Fig. 1), there are many choices of L and R such that CQn = L⊕ R (L and R are two (n− 1)-dimensional subcubes of CQn). We
choose L and R such that L contains as few as possible elements in F . We will construct the desired paths according to the
following two cases.

Case 1. |F L| ≤ n− 4.
Case 1.1. Both u and v are in L or R. Without loss of generality, we may assume that both u and v are in L.
For 2n−1 − 1 ≤ ` ≤ 2n − fv − 1, we can write ` = `0 + `1 + 1 where 2n−2 − 1 ≤ `0 ≤ 2n−1 − f Lv − 1 and

2n−2 − 1 ≤ `1 ≤ 2n−1 − f Rv − 1. By the induction hypothesis, there exists a fault-free uv-path PL of length `0 in L. Since
`0 ≥ 2n−2 − 1, there must exist an edge (xL, yL) on the path PL = 〈u, P ′L, x

L, yL, P ′′L , v〉 such that the two crossed edges
(xL, xR) and (yL, yR) are fault-free. Suppose, to the contrary, that there does not exist such an edge, then there are at least
d(2n−2 − 1)/2e = 2n−3 faults outside L. However, n − 4 ≥ |F L| ≥ 2n−3 > n − 3 for n ≥ 4, a contradiction. Since
|FR| ≤ |F L| ≤ n− 4 and 2n−2 − 1 ≤ `1 ≤ 2n−1 − f Rv − 1, by the induction hypothesis, there exists a fault-free x

RyR-path PR
of length `1 in R. Then 〈u, P ′L, x

L, xR, PR, yR, yL, P ′′L , v〉 is a uv-path of length ` in CQn − F (See Fig. 2(a)).
Case 1.2. u ∈ L and v ∈ R.
Since |F | ≤ n− 3 and there are 2n−1 crossed edges between L and R, there exists a fault-free crossed edge (xL, xR) in CQn

where xL 6= u and xR 6= v. For 2n−1−1 ≤ ` ≤ 2n− fv−1, we canwrite ` = `0+`1+1where 2n−2−1 ≤ `0 ≤ 2n−1− f Lv −1
and 2n−2 − 1 ≤ `1 ≤ 2n−1 − f Rv − 1. By the induction hypothesis, there exists a fault-free ux

L-path PL of length `0 in L
and there exists a fault-free xRv-path PR of length `1 in R. Then 〈u, PL, xL, xR, PR, v〉 is a uv-path of length ` in CQn − F (See
Fig. 2(b)).
Case 2. |F L| = n− 3 for any choice of L and R.
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Fig. 3. Illustration for the proof of Case 2. (A straight line represents an edge, a curved line represents a path between two vertices.)

Case 2.1. Both u and v are in L. By Lemma 2, there is a Hamiltonian cycle 〈u, u1, . . . , um, v, v1, . . . , vn, u〉 in L− F where
m+ n = 2n−1 − f Lv − 2. (Notice thatm or nmay be equal to 0.)
For 2n−1 − 1 ≤ ` ≤ 2n − fv − 1, we can write ` = `0 + `1 + `2 + 2 where 0 ≤ `0 ≤ m, 0 ≤ `1 ≤ n and

2n−2 − 1 ≤ `2 ≤ 2n−1 − 1. We use uRi and vRj to denote the neighbors of ui and vj in R, respectively. For any two vertices uRi
and vRj in R and any integer `2 with 2

n−2
− 1 ≤ `2 ≤ 2n−1 − 1, by the induction hypothesis, there exists a uRi v

R
j -path PR of

length `2 in R. Then 〈u, u1, . . . , u`0 , u
R
`0

, PR, vR`1 , v`1 , . . . , v1, v〉 is a uv-path of length ` in CQn − F (See Fig. 3(a)).
Case2.2.u ∈ L and v ∈ R. By Lemma2, there is aHamiltonian cycleC = 〈u, u1, . . . , um, u〉 in L−F wherem = 2n−1−f Lv−1.
For 2n−1 − 1 ≤ ` ≤ 2n − fv − 1, we can write ` = `0 + `1 + 1 where 1 ≤ `0 ≤ m and `0 6= (m + 1)/2 if m is an odd

integer, 2n−2 ≤ `1 ≤ 2n−1 − 1. There are two different paths P1 = 〈u, u1, . . . , u`0〉, P2 = 〈u, um, . . . , um−`0+1〉 of length `0
on the cycle C and u`0 6= um−`0+1 since `0 6= (m+1)/2. We use uR`0 and u

R
m−`0+1

to denote the neighbors of u`0 and um−`0+1

in R, respectively. Then at least one of uR`0 and u
R
m−`0+1

is different from v. Without loss of generality, assume uR`0 6= v. By
the induction hypothesis, there exists a uR`0v-path PR of length `1 in R. Then 〈u, u1, . . . , u`0 , u

R
`0

, PR, v〉 is a uv-path of length
` in CQn − F (See Fig. 3(b)).
Case 2.3. Both u and v are in R for any choice of L and R.
Case 2.3.1. n is an even integer. We can split CQn into four (n − 2)-dimensional subcubes P00(CQn), P01(CQn), P10(CQn),

P11(CQn) (See Fig. 1(a)). Without loss of generality, we may assume L = P00,01(CQn) and R = P10,11(CQn).
If F ∩ P00(CQn) 6= ∅ and F ∩ P01(CQn) 6= ∅, then we can express CQn = L′ ⊕ R′, where L′ = P00,10(CQn) ∼= CQn−1

and R′ = P01,11(CQn) ∼= CQn−1. Clearly, |F L
′

| ≤ n − 4 and |FR
′

| ≤ n − 4, which contradicts the choices of L and R. Thus,
F ∩ P00(CQn) = ∅ or F ∩ P01(CQn) = ∅. Without loss of generality, assume F ∩ P01(CQn) = ∅. In other words, the faulty
elements are all in P00(CQn).
If both u and v are in P10(CQn), thenwe can express CQn = L′⊕R′, where L′ = P00,10(CQn) ∼= CQn−1 and R′ = P01,11(CQn) ∼=

CQn−1. Then |F L
′

| ≤ n− 3 and |FR
′

| = 0, u and v are in L′, which contradicts the choices of u and v.
If u ∈ P10(CQn) and v ∈ P11(CQn), we can express CQn = L′⊕R′, where L′ = P00,10(CQn) ∼= CQn−1 and R′ = P01,11(CQn) ∼=

CQn−1. Then |F L
′

| ≤ n− 3 and |FR
′

| = 0, u ∈ L′ and v ∈ R′, which contradicts the choices of u and v.
Thus, both u and v are in P11(CQn). Note that the faulty elements are all in P00(CQn). Then P01(CQn), P10(CQn) and P11(CQn)

are all fault-free. P00(CQn) is an (n − 2)-dimensional subcube of CQn, by Lemma 2, it is (n − 4)-Hamiltonian for n ≥ 5.
For n = 4, we leave this particular case to the Appendix. Since |F | = n − 3 and F ⊂ P00(CQn), there is a fault-free
Hamiltonian path P0 = 〈x0, x1, . . . , xk〉 of length 2n−2 − fv − 1 in the faulty P00(CQn). By Lemma 1, there exists a uv-
path P3 = 〈u, u1, . . . , um, v〉 of length 2n−2 − 1 in P11(CQn). We use u′i and u

′′

i to denote the neighbors of ui in P01(CQn) and
P10(CQn), respectively; x′i and x

′′

i to denote the neighbors of xi in P01(CQn) and P10(CQn), respectively.
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For 2n−1 − 1 ≤ ` ≤ 2n − fv − 1 and n > 4, we can write ` = `0 + `1 + `2 + `3 + 4 where 0 ≤ `0 ≤ 2n−2 − f Lv − 1,
d(n−1)/2e+1 ≤ `1 ≤ 2n−2−1, d(n−1)/2e+1 ≤ `2 ≤ 2n−2−1 and 4 ≤ `3 ≤ 2n−2−2. For 0 ≤ `0 ≤ 2n−2− f Lv −1, there
is a subpath P ′0 = 〈x0, x1, . . . , x`0〉 of length `0 on the path P0. For `3 ≥ 4, we can write `3 = `′ + `′′ where 1 ≤ `′ ≤ `3 − 1
and 1 ≤ `′′ ≤ `3 − 1. We can select two subpaths P ′ = 〈u, u1, . . . , ui〉 and P ′′ = 〈uj, . . . , um, v〉 on the path P3 such that
u′i(the neighbor of ui in P01(CQn)) is different from x

′

0 and u
′′

j (the neighbor of uj in P10(CQn)) is different from x
′′

`0
and the

lengths of P ′ and P ′′ are `′ and `′′, respectively. By Lemma 1, there is an x′0u
′

i-path P1 of length `1 in P01(CQn) and there is an
x′′`0u

′′

j -path P2 of length `2 in P10(CQn). Then 〈u, P ′, ui, u′i, P1, x
′

0, x0, P
′

0, x`0 , x
′′

`0
, P2, u′′j , uj, P

′′, v〉 is a uv-path of length ` in
CQn − F (see Fig. 3(c)).
Case 2.3.2. n is an odd integer. We can also split CQn into four (n− 2)-dimensional subcubes P000,010(CQn), P001,011(CQn),

P101,111(CQn), P100,110(CQn) (See Fig. 1(b)). Without loss of generality, we may assume L = P000,010(CQn) ∪ P001,011(CQn) and
R = P101,111(CQn) ∪ P100,110(CQn).
If F ∩ P000,010(CQn) 6= ∅ and F ∩ P001,011(CQn) 6= ∅, then we can express CQn = L′ ⊕ R′, where L′ = P000,010(CQn) ∪

P100,110(CQn) ∼= CQn−1 and R′ = P001,011(CQn) ∪ P101,111(CQn) ∼= CQn−1. Clearly, |F L
′

| ≤ n − 4 and |FR
′

| ≤ n − 4, which
contradicts the choices of L and R.
Thus, F ∩ P000,010(CQn) = ∅ or F ∩ P001,011(CQn) = ∅. Without loss of generality, assume F ∩ P001,011(CQn) = ∅, that is,

the faulty elements are all in P000,010(CQn).
If both u and v are in P100,110(CQn), then we can express CQn = L′⊕ R′, where L′ = P000,010(CQn)∪ P100,110(CQn) ∼= CQn−1

and R′ = P001,011(CQn) ∪ P101,111(CQn) ∼= CQn−1. Then |F L
′

| ≤ n − 3 and |FR
′

| = 0, u and v are in L′, which contradicts the
choices of u and v.
If u ∈ P100,110(CQn) and v ∈ P101,111(CQn), we can express CQn = L′⊕R′, where L′ = P000,010(CQn)∪P100,110(CQn) ∼= CQn−1

and R′ = P001,011(CQn) ∪ P101,111(CQn) ∼= CQn−1. Then |F L
′

| ≤ n− 3 and |FR
′

| = 0, u ∈ L′ and v ∈ R′, which contradicts the
choices of u and v.
Thus, both u and v are in P101,111(CQn). Note that the faulty elements are all in P000,010(CQn). Then the three n − 2-

dimensional subcubes P001,011(CQn), P101,111(CQn) and P100,110(CQn) are all fault-free.
In this subcase, the faulty elements are all in (n−2)-dimensional subcube P000,010(CQn), both u and v are in P101,111(CQn).

Then the desired uv-path can be constructed using the method similar with that in Case 2.3.1, the details are omitted.

Remarks. The lower bound onpath length ` and the upper bound on |F | for a successful embedding are tight in the following
sense:
(1) For n ≥ 3, if ` ≤ 2n−1 − 2, then the theorem does not hold. For example, there is no path of length 2 between any

two adjacent vertices in CQ3.
(2) For n ≥ 3, if |F | ≥ n− 2, then the theorem does not hold. For example, let F = {001}, then there is no path of length

6 between the two vertices 010 and 100 in CQ3 − F .

4. Conclusion

In this paper, we prove that there exists a fault-free path of length ` between any two distinct fault-free vertices in CQn
with |F | ≤ n− 3 for each ` satisfying 2n−1 − 1 ≤ ` ≤ 2n − fv − 1. The lower bound on path length ` and the upper bound
on |F | for a successful embedding are tight for some n.
Since every component in the network may have different reliability, it is important to consider properties of a network

with some conditional faults. An interesting question is whether we can do better in some conditional faulty crossed cubes.
That is, even when the number of faulty elements is larger than n− 3, the conclusion is also true in some conditional faulty
cases.
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Appendix

In the following, we will construct uv-paths of lengths from 7 to 2n − fv − 1 in CQ4 where the only faulty element is in
P00(CQ4) and both u and v are in P11(CQ4) (see Fig. 4). Since P10,11(CQ4) ∼= CQ3 is fault-free, by Lemma 1, there is a fault-free
uv-path of length 7 in P10,11(CQ4), also in the faulty CQ4.
If the faulty element is a vertex, since CQ4 is vertex-transitive [14], without loss of generality, we may assume it is 0000.

The fault-free paths of lengths from 6 to 14 between 1101 and 1110 are listed as follows:

P6 = 〈1101, 1011, 0001, 0011, 0010, 0110, 1110〉
P7 = 〈1101, 1011, 0001, 0011, 0101, 0100, 0110, 1110〉
P8 = 〈1101, 1011, 1010, 0010, 0011, 0101, 0100, 0110, 1110〉
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Fig. 4. The crossed cube CQ4 .

P9 = 〈1101, 1011, 1001, 0011, 0001, 0111, 0101, 0100, 0110, 1110〉
P10 = 〈1101, 1011, 1001, 1000, 1010, 0010, 0011, 0101, 0100, 0110, 1110〉
P11 = 〈1101, 1011, 1010, 1000, 1001, 0011, 0001, 0111, 0101, 0100, 0110, 1110〉
P12 = 〈1101, 1011, 1001, 1000, 1010, 0010, 0011, 0001, 0111, 0101, 0100, 0110, 1110〉
P13 = 〈1101, 1100, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0111, 0101, 0100, 0110, 1110〉
P14 = 〈1101, 1111, 1001, 1000, 1010, 1011, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1110〉.

It is clear that the above paths of lengths from 6 to 12 between 1101 and 1110 do not contain any edges in P11(CQ4).
Then (1111, 1101) + Pi + (1110, 1100) (i = 6, 7, . . . , 12) are fault-free paths of lengths from 8 to 14 between

1111 and 1100. (1111, 1101) + Pi (i = 7, 8, . . . , 13) are fault-free paths of lengths from 8 to 14 between 1111 and
1110. Pi + (1110, 1111) (i = 7, 8, . . . , 13) are fault-free paths of lengths from 8 to 14 between 1101 and 1111.
Pi + (1110, 1100) (i = 7, 8, . . . , 12) are fault-free paths of lengths from 8 to 13 between 1101 and 1100. P =
〈1101, 1111, 1110, 1010, 1000, 1001, 1011, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100〉 is a fault-free path of length
14 between 1101 and 1100. (1100, 1101)+ Pi (i = 7, 8, . . . , 12) are fault-free paths of lengths from 8 to 13 between 1100
and 1110. P = 〈1110, 1111, 1001, 1000, 1010, 1011, 0001, 0011, 0010, 0110, 0100, 0101, 0111, 1101, 1100〉 is a fault-
free path of length 14 between 1100 and 1110. Hence, the conclusion is true if the faulty element is the vertex 0000.
If the faulty element is an edge, without loss of generality, we may assume it is incident with 0000, then the above

fault-free uv-paths of lengths from 8 to 14 is also fault-free. The fault-free uv-paths of length 15 are listed as follows.

The faulty edge is (0000, 0010).
〈1101, 1100, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0000, 0100, 0101, 0111, 0101, 1111, 1110〉
〈1101, 1100, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0000, 0100, 0101, 0111, 0110, 1110, 1111〉
〈1101, 1111, 1110, 1010, 1011, 1001, 1000, 0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100〉
〈1111, 1101, 1100, 1000, 1001, 1011, 1010, 0010, 0011, 0001, 0000, 0100, 0101, 0111, 0110, 1110〉
〈1111, 1101, 1011, 1001, 1000, 1010, 0010, 0011, 0001, 0000, 0111, 0101, 0100, 0110, 1110, 1100〉
〈1110, 1010, 1011, 1001, 1000, 0000, 0001, 0011, 0010, 0110, 0111, 1101, 1111, 0101, 0100, 1100〉.
The faulty edge is (0000, 0001).
〈1101, 1111, 1001, 1000, 1010, 1011, 0001, 0011, 0010, 0000, 0100, 0101, 0111, 0110, 1110, 1100〉
〈1101, 1100, 1110, 1010, 1011, 1001, 1000, 0000, 0010, 0011, 0001, 0111, 0110, 0100, 0101, 1111〉
〈1101, 1111, 1001, 1011, 1010, 1000, 0000, 0010, 0110, 0111, 0001, 0011, 0101, 0100, 1100, 1110〉
〈1110, 1010, 1011, 1001, 1000, 0000, 0010, 0011, 0001, 0111, 0110, 0100, 0101, 1111, 1101, 1100〉
〈1111, 1101, 1100, 1000, 1001, 1011, 1010, 0010, 0000, 0100, 0101, 0011, 0001, 0111, 0110, 1110〉
〈1111, 1101, 1011, 1010, 1000, 1001, 0011, 0001, 0111, 0101, 0100, 0000, 0010, 0110, 1110, 1100〉.
Hence, the conclusion is true.
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