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a b s t r a c t

For a given connected graph G of order v, a routing R in G is a set of v(v − 1) elementary
paths specified for every ordered pair of vertices in G. The vertex (resp. edge) forwarding
index of G is the maximum number of paths in R passing through any vertex (resp.
edge) in G. Shahrokhi and Székely [F. Shahrokhi, L.A. Székely, Constructing integral flows
in symmetric networks with application to edge forwarding index problem, Discrete
Applied Mathematics 108 (2001) 175–191] obtained an asymptotic formula for the edge
forwarding index of n-dimensional cube-connected cycle CCCn as 54 n

22n(1 − o(1)). This
paper determines the vertex forwarding index of CCCn as 74 n

22n(1− o(1)) asymptotically.
© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A routing R in a connected graph G of order v is a set of v(v−1) elementary paths R(x, y) specified for every ordered pair
(x, y) of vertices of G. A routing R is said to beminimal if every path R(x, y) in R is a shortest path from x to y in G. Tomeasure
the efficiency of a routing deterministically, Chung et al. [3] introduced the concept of the forwarding index of a routing.
The load ξ(G, R, x) of a vertex x (resp. the load π(G, R, e) of an edge e) with respect to R is defined as the number of paths

specified by R going through x (resp. e). The parameters
ξ(G, R) = max

v∈V (G)
ξ(G, R, v) and π(G, R) = max

e∈E(G)
π(G, R, e)

are defined as the vertex forwarding index and the edge forwarding index of G with respect to R, respectively; and the
parameters

ξ(G) = min
R
ξ(G, R) and π(G) = min

R
π(G, R)

are defined as the vertex forwarding index and the edge forwarding index of G, respectively.
The original study of forwarding indices was motivated by the problem of maximizing network capacity, see [3].

Minimizing the forwarding indices of a routing will result in maximizing the network capacity. Thus, it becomes very
significant to determine the vertex and the edge forwarding indices of a given graph, see [14] for details. However, Saad [12]
found that for an arbitrary graph determining its vertex forwarding index is NP-complete even if the diameter of the graph
is two. Even so, the forwarding indices of manywell-known networks have been determined by several researchers, see, for
example, [1,3,4,6–9,12,16–18].
In this paper, we consider the n-dimensional cube-connected cycle CCCn. Shahrokhi and Székely [13] obtained an

asymptotic formula π(CCCn) = 5
4 n
22n(1 − o(1)). We determine ξ(CCCn) = 7

4 n
22n(1 − o(1)) asymptotically. The proof

of our result is in Section 4. In Section 2, we recall the definition and some properties of CCCn. In Section 3, we show a
minimal routing of CCCn.
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Fig. 1. A cube-connected cycle CCC3 constructed from Q3 .

2. Cube-connected cycles

In this section, we recall the definition and some properties of the cube-connected cycle. We follow the standard
terminology and notation of Xu [15].
The n-dimensional cube, or hypercube, denoted by Qn = (V (Qn), E(Qn)), has vertices

V (Qn) = {x0x1 · · · xn−1 : xi ∈ {0, 1}, 0 ≤ i ≤ n− 1},

and two vertices x = x0x1 · · · xn−1 and y = y0y1 · · · yn−1 are linked by an edge if and only if they differ in exactly one
coordinate, i.e.,

xy ∈ E(Qn)⇔
n−1∑
i=0

|xi − yi| = 1.

The graph shown in Fig. 1(a) is Q3.
We call an edge linking two vertices x0 · · · xi−1xixi+1 · · · xn−1 and x0 · · · xi−1xixi+1 · · · xn−1 an i-dimensional edge in Qn,

where xi = 1− xi.
The n-dimensional cube-connected cycle, denoted by CCCn, is constructed from Qn by replacing each of its vertices with

a cycle Cn = (0, 1, . . . , n− 1) of length n. The i-dimensional edge incident with a vertex of Qn is connected to the ith vertex
of Cn. For example, CCC3 shown in Fig. 1(b) is constructed from Q3.
By modifying the labeling scheme of Qn, we can represent each vertex of CCCn by a pair (x; i), where x ∈ V (Qn) and

i ∈ V (Cn). Precisely, the vertex set of CCCn is

V = {(x; i) : x ∈ V (Qn), 0 ≤ i ≤ n− 1},

where x ∈ V (Qn) is called the cubic coordinate and i (0 ≤ i ≤ n− 1) the cyclic coordinate of the vertex (x; i). Two vertices
(x; i) and (y; j) are linked by an edge in CCCn if and only if either:

(i) x = y and |i− j| ≡ 1 (mod n), or
(ii) i = j and x differs from y in exactly the ith coordinate.

We call edges of the type (i) cyclic edges and edges of the type (ii) cubic edges.
It is quite apparent from its construction that CCCn is a 3-regular and 3-connected graph of order n2n. It is also clear that

CCCn contains Hamilton cycles. In fact, Germa et al. [5] investigated all lengths of cycles contained in CCCn. Krishnamoorthy
and Krishanmirthy [10] proved that CCCn has diameter b 12 (5n − 2)c. Furthermore, Carlsson et al. [2] showed that CCCn is a
Cayley graph and, hence, is vertex-transitive, also see Xu [14] for details.
The cube-connected cycle, first formalized and extensively studied by Preparata and Vuillemin [11], has almost all

desirable features of the hypercube and overcomes the drawbacks of the hypercubes. It can be used not only as an
interconnection pattern of general purpose parallel processing systems, but also in the layout of many specialized large
scale integrated circuits. The cube-connected cycle provides a communication pattern to implement some algorithms
for efficiently solving a large class of problems that include Fast Fourier transform, sorting, permutations, and derived
algorithms, see [11] for details. Thus, the cube-connected cycle is a feasible substitute for the hypercube network.

3. Shortest paths in CCCn

Let o be the vertex 00 · · · 0 in Qn and Cn = (0, 1, . . . , n− 1) be a cycle of length n. For an arbitrary vertex (x; j) in CCCn,
the shortest paths from (o; 0) to (x; j) in CCCn are closely related to (0, j)-walks on Cn. Before exploring such relations, we
will introduce some useful notations.
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Fig. 2. C22 and gaps, where j = 7, `1 = 2, `2 = 4, S = {0, 2, 3, 5, 9, 10, 12, 13, 17, 19}.

Fig. 3. Two forms of (0, j)-walks.

Let S be a subset of {0, 1, . . . , n− 1}. For every vertex j in Cn, we can partition Cn into two paths: P1 = (0, 1, . . . , j) and
P2 = (j, j+ 1, . . . , n− 1, 0). When j = 0, which we call the degenerated case, we define path P1 as a path of length 0, and
path P2 a closed path of length n.
We then define gap of path P1 and P2, respectively. When 1 ≤ j ≤ n− 1, we define the gap `1(j, S) of P1, with respect to j

and S, as the maximum length of sub-paths in P1 divided by vertices in S∩{1, . . . , j−1} (there might bemultiple sub-paths
achieving the maximum length); when S ∩ {1, . . . , j− 1} = ∅, then it is j. For the degenerated case j = 0, we simply define
that the gap is 0. In the same way, for every j(0 ≤ j ≤ n− 1), we can define the gap `2(j, S) of P2 as the maximum length of
sub-paths in P2 divided by vertices in S ∩ {j+ 1, . . . , n− 1}; and when S ∩ {j+ 1, . . . , n− 1} = ∅, then it is n− j. (Note that
here view ‘‘+’’ as ‘‘mod n’’; so when j = n − 1, we have j + 1 = 0.) In the following context without ambiguity, we write
`1 and `2 for `1(j, S) and `2(j, S), respectively. Define m(j, S) as the length of a shortest (0, j)-walk in Cn that traverses all
vertices in S.
For example, the graph shown in Fig. 2 is a cycle C22, j = 7, `1 = 2, `2 = 4, S = {0, 2, 3, 5, 9, 10, 12, 13, 17, 19} depicted

by solid vertices.
The concept of the gap, first introduced by Shahrokhi and Székely [13], can be used to expressm(j, S). By the symmetry

of j and n− j, we can assume 0 ≤ j ≤ bn/2c.

Lemma 1. If 0 ≤ j ≤ bn/2c, then

m(j, S) = min{n+ j− 2`1, 2n− j− 2`2}. (1)

Proof. LetW be a shortest (0, j)-walk in Cn that traverses all vertices in S. It is easy to see thatW must be in either of the
two formsW1 andW2 depicted in Fig. 3, respectively.
It is clear from Fig. 3 thatm(j, S) = n+ j− 2`1 ifW = W1,m(j, S) = 2n− j− 2`2 ifW = W2. The lemma follows. �

The relationship between the shortest ((o; 0), (x; j))-paths in CCCn and the shortest (0, j)-walks in Cn is stated in the
following theorem.

Theorem 2. Let x = x0x1 . . . xn−1 ∈ V (Qn) and Sx = {i|xi = 1, 0 ≤ i ≤ n− 1}. Then the distance between (o; 0) and (x; j) in
CCCn

dCCCn((o; 0), (x; j)) = |Sx| +m(j, Sx). (2)
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Proof. Let P be a shortest path from (o; 0) to (x; j) in CCCn. We first note that P contains at least |Sx| cubic edges. In fact,
following P from (o; 0) to (x; j)when a new vertex is visited by a cyclic edge its cubic coordinate does not change, while by
a cubic edge its cubic coordinate changes one and only one bit. So the number of cubic edges in P is at least |Sx|.
We now prove that P contains at least m(j, Sx) cyclic edges. To see this, let Cn = (0, 1, . . . , n − 1) and P =

(x0, e1, x1, e2, · · · , ep, xp), where x0 = (o; 0), xp = (x; j), p is the length of P , xi is a vertex in P for each i = 0, 1, . . . , p
and ei = (xi−1, xi) is an edge in P for each i = 1, 2, . . . , p. We define a mapping f from E(P) to Cn subject to:

(i) If xi−1 = (x0x1 . . . xn−1; k) and xi = (x0x1 . . . xn−1; k±1mod n), i.e. ei = (xi−1, xi) is a cyclic edge, then f (ei) = (k, k±1);
(ii) If xi−1 = (x0 . . . xk . . . xn−1; k) and xi = (x0 . . . xk . . . xn−1; k), i.e. ei = (xi−1, xi) is a cubic edge, then f (ei) = k.

It is easy to show that the sequence of vertices and edges (f (e1), f (e2), . . . , f (ep)), which may not alternate, is a (0, j)-
walk in Cn, sayW , and that the number of cyclic edges on P is equal to the length ofW . Moreover, observe that P contains
all vertices with cyclic coordinates in Sx and for these vertices the bits of their cubic coordinates in the positions determined
by Sx must be changed. Thus, the walkW contains all vertices in Sx, which implies that the length ofW is at least m(j, Sx).
Thus, we have

dCCCn((o; 0), (x; j)) ≥ |Sx| +m(j, Sx).

On the other hand, to show that the number of cyclic edges in P is at most m(j, Sx), we construct a path from (o; 0) and
(x; j) in CCCn with length |Sx| + m(j, Sx) based on a shortest (0, j)-walkW = (i0 = 0, i1, i2, . . . , im) in Cn that traverses all
vertices in Sx, where 0 ≤ i1, i2, . . . , im ≤ n− 1 andm = m(j, Sx). Such a path P is recursively constructed as follows.

1. k = 0. Let P0 = ((o; 0)),W0 = (i0 = 0).
2. Suppose that Pk = ((o; 0), (x1; p1), . . . , (xk; pk)), Wk = (0, i1, . . . , it), t < m, and pk = it . Construct Pk+1 =
((o; 0), (x1; p1), . . . , (xk; pk), (xk+1; pk+1)) andWk+1 according to the following two cases.
(i) pk ∈ Sx and pr(0 ≤ r ≤ k−1) 6= pk. Assume xk = x0x1 . . . xn−1. Take (xk+1; pk+1) = (x0 . . . xpk−1xpkxpk+1 . . . xn−1; p

k),
andWk+1 = Wk.

(ii) Otherwise, take (xk+1; pk+1) = (xk, it+1) andWk+1 = (0, i1, . . . , it , it+1).
In either case, we have pk+1 = it+1.

One can check that this process is finite and stops when Wk = W . Then let P = Pk, and we can verify that P is a path
from (o; 0) to (x; j) of length |Sx| +m(j, Sx). Thus, we have dCCCn((o; 0), (x; j)) ≤ |Sx| +m(j, Sx). The theorem follows. �

4. Main results

In this section, we will determine the vertex forwarding index of the cube-connected cycle CCCn. The proof of our result
depends strongly on the following lemma, which is due to Heydemann, Meyer and Sotteau [8].

Lemma 3. If G = (V , E) is a connected Cayley graph of order v, then for any x,

ξ(G) =
∑
y∈V

d(x, y)− (v − 1).

Since CCCn is a connected Cayley graph of order n2n, by Lemma 3, we have

ξ(CCCn) =
∑
x∈V (Qn)
0≤j≤n−1

dist((o; 0), (x; j))− (n2n − 1). (3)

Let

R =
∑
x∈V (Qn)
0≤j≤n−1

|Sx| and T =
∑
x∈V (Qn)
0≤j≤n−1

m(j, Sx).

It follows from (3) and Theorem 2 that

ξ(CCCn) = R+ T − (n2n − 1). (4)

In the following lemmas, we derive the exact value of R and the asymptotic expression of T separately.

Lemma 4. R = n22n−1 for any n ≥ 2.

Proof. Since Qn is vertex-transitive, we have

R =
∑
x∈V (Qn)
0≤j≤n−1

|Sx| = n
∑
x∈V (Qn)

|Sx| = n
n∑
k=0

k
(n
k

)
= n22n−1

as required. �
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To establish a lower bound on T , we recall the concept of the number of ordered partitions of a positive integer n.
An ordered partition of an integer n is an ordered collection of positive integers, called parts, whose sum is n. For example,

{1, 1, 1, 1}, {2, 1, 1}, {1, 2, 1}, {1, 1, 2}, {3, 1}, {1, 3}, {2, 2}, {4}

are eight ordered partitions of 4. Denote by p(n) the number of ordered partitions of n and p(n, `) the number of ordered
partitions of n such that the maximum part is not more than `. It is easy to prove that

p(n) = 2n−1. (5)

Lemma 5. p(n, `) ≥ 2n−1 − (n− `)2 2n−`−2 for any integers n ≥ 2 and ` ≤ n.

Proof. For given j and kwith 1 ≤ j ≤ n and 0 ≤ k ≤ n− j, let Aj,k be the set of partitions of n in which there is a part j such
that the sum of all parts before j is equal to k. For example, {1, 1, 2, 3} ∈ A2,2 ∩ A3,4 and {2, 1, 3, 1} ∈ A3,3.
Clearly, if k = 0 or n− j, then j is fixed in the first or the last part of all partitions of n, and so |Aj,0| = |Aj,n−j| = 2n−j−1. If

2 ≤ k ≤ n− j− 1, then |Aj,k| = p(k) · p(n− j− k). It follows from (5) that |Aj,k| = 2k−1 · 2n−j−1−k = 2n−j−2. Thus, we have
that

|Aj,k| =
{
2n−j−1 for k = 0 or n− j;
2n−j−2 otherwise,

from which we have that

|Aj,k| ≤ |Aj,0| = 2n−j−1 for any j and k. (6)

Obviously, each partition of nwhose largest part is larger than ` is in
⋃

`+1≤j≤n
0≤k≤n−j

Aj,k. It follows from (6) that

p(n, `) ≥ 2n−1 −

∣∣∣∣∣∣∣
⋃

`+1≤j≤n
0≤k≤n−j

Aj,k

∣∣∣∣∣∣∣
≥ 2n−1 − (n− `)2 |A`+1,0|

= 2n−1 − (n− `)2 2n−`−2

as required. �

Corollary 6. Let ` = blog22 nc. Then p(n, `) ≥ 2
n−1(1− n2−log2 n).

Proof. By Lemma 5, we immediately have that

p(n, `) ≥ 2n−1 − (n− `)22n−`−2

≥ 2n−1 − n22n−`−2

= 2n−1(1− n22−`−1)
≥ 2n−1(1− n2−log2 n)

as required. �

Lemma 7. T ≥ 5
4n
22n(1− o(1)).

Proof. By symmetry, we have

T =
∑
x∈V (Qn)
0≤j≤n−1

m(j, Sx) ≥ 2
∑
x∈V (Qn)

1≤j≤b(n−1)/2c

m(j, Sx) = 2
∑

S⊆{0,1,...,n−1}
1≤j≤b(n−1)/2c

m(j, S). (7)

Let A = blog22 nc. Recall that `1 and `2 are gaps defined in Section 3, and `1, `2 ≥ 1. For any S ⊆ {0, 1, . . . , n − 1} and
any integer jwith A ≤ j ≤ bn/2c − A, if

`1 ≤ blog22 jc and `2 ≤ blog22(n− j)c, (8)

then

`2 − `1 < `2 ≤ blog22(n− j)c < A ≤ bn/2c − j ≤ n/2− j,

and so

n+ j− 2`1 < 2n− j− 2`2. (9)
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It follows from (1) and (9) thatm(j, S) = n+ j− 2`1 ≥ n+ j− 2A, that is,

m(j, S) ≥ n+ j− 2A. (10)

For a given j, let b(j) be the number of subsets S such that `1 and `2 satisfy the condition (8). Then

b(j) = 4p(j, L1) · p(n− j, L2),

where L1 = blog22 jc and L2 = blog
2
2(n− j)c, and 4 is the four choices of whether 0 and (or) j are (is) in S. By Corollary 6, we

have that

b(j) = 4p(j, L1) · p(n− j, L2)
≥ 4 · 2j−1(1− j2−log2 j) · 2n−j−1(1− (n− j)2−log2(n−j))

= 2n(1− o(1)) (11)

when A ≤ j ≤ bn/2c − A. It follows from (7), (10) and (11) that

T ≥ 2
∑

S⊆{0,1,...,n−1}
1≤j≤b(n−1)/2c

m(j, S)

≥ 2
b
n
2 c−A∑
j=A

(n+ j− 2A) · 2n(1− o(1))

= 2n+1(1− o(1)) ·
((⌊n

2

⌋
− 2A+ 1

)
(n− 2A)+

⌊n
4

⌋ (⌊n
2

⌋
− 2A+ 1

))
≥ 2n+1(1− o(1)) ·

((n
2
− 2A

)(5
4
n− 2A− 1

))
=
5
4
n22n(1− o(1))

as required. �

Lemma 8. T = 5
4n
22n(1− o(1)).

Proof. By Lemma 7, it is sufficient to prove that T ≤ 5
4n
22n(1+ o(1)). In fact, from formula (1), we have m(j, S) ≤ n+ j if

0 ≤ j ≤ dn/2e. Thus,

T =
∑
x∈V (Qn)
0≤j≤n−1

m(j, Sx) =
∑

S⊆{0,1,...,n−1}
0≤j≤n−1

m(j, S)

≤ 2
∑

S⊆{0,1,...,n−1}
0≤j≤dn/2e

m(j, S) ≤ 2
∑

S⊆{0,1,...,n−1}
0≤j≤dn/2e

(n+ j)

= 2n+1
dn/2e∑
j=0

(n+ j) =
5
4
n22n(1+ o(1))

as required. The lemma follows. �

Theorem 9. ξ(CCCn) = 7
4n
22n(1− o(1)) for any integer n ≥ 2.

Proof. From (4), Lemmas 4 and 8, we immediately have that

ξ(CCCn) = R+ T − (n2n − 1)

= n22n−1 +
5
4
n22n(1− o(1))− (n2n − 1)

=
7
4
n22n(1− o(1))

as required and so the theorem follows. �
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