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Abstract

Let f (¢, k) be the maximum diameter of graphs obtained by deleting ¢ edges from a (¢ 4+ 1)-edge-connected graph with diameter
k. This paper shows 42t —6 < f(t,3) < max{59, 542t + 7} for t > 4, which corrects an improper result in [C. Peyrat, Diameter
vulnerability of graphs, Discrete Appl. Math. 9 (3) (1984) 245-250] and also determines f(2,k) = 3k — 1 and f(3,k) =4k —2
for k > 3.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

We follow [9] for graph-theoretical terminology and notation not defined here. Let G = (V, E) be a connected
graph, where V = V(G) is the vertex-set of G and E = E(G) is the edge-set of G. For any two distinct vertices x
and y in G, the distance dg (x, y) between x and y is the length of a shortest path between x and y in G. The diameter
D(G) of G is the maximum value of dg (x, y) over all pairs of vertices x and y in G.

Let f(t, k) denote the maximum possible diameter of a graph obtained by deleting ¢ edges from a (¢ 4+ 1)-edge-
connected graph with diameter k, and g(z, k) denote the maximum diameter of any connected graph obtained by
deleting ¢ edges from a connected graph with diameter k. By the definitions, it is clear that for given ¢ and k if f(z, k)
and g(¢, k) are well-defined then

f@t k) < g, k). (D

The problem determining f (¢, k) for given ¢ and k, proposed by Chung and Garey [1], is of interest, for example,
when studying the potential effects of link failures on the performance of a communication network, especially for
networks in which the maximum time-delay or signal degradation is directly related to the diameter of the network.
This problem is proved to be NP-complete by Schoone et al. [6] in general. Much work has been done on this topic,
see [1-7], and also [8] for a survey of some well-known results.
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Fig. 1. The constructed graph G for the lower bound of f (¢, 3).

Obviously, f(¢, 1) = 2. Chung and Garey [1] determined f (1, k) = 2k and gave the bounds: (r + 1)(k — 3) <
f(t, k) < (t+1)k+tfork > 4. Schoone et al. [6] improved this upper bound as (t + 1)k, determined g(2, k) = 3k—1
and g(3, k) = 4k — 2 for k > 2. In 1984, Peyrat [5] determined f (¢, 2) = 4 and gave “bounds” of f (¢, 3) as follows:

3v2t —3 < f(t,3) <332t +4 ift is large enough. 2)

In this note, we establish the bounds as follows.

42t — 6 < f(t,3) < max{59,5v2t + 7} fort > 4. (3)

It is clear that the lower bound of f (¢, 3) in (3) is greater than the upper bound in (2) if £ > 50, which implies that the
upper bound of f (¢, 3) given in (2) is improper for ¢ > 50. We also determine f (2, k) = 3k—1and f(3, k) = 4k —2.
The proofs of our results are in Sections 2 and 3, respectively.

2. Bounds of f (¢, 3)
Let N* be the set of positive integers. We first state the lower bound of f(z, 3).

Theorem 1. f(z,3) > 42t — 6 forany t > 4.

Proof. For a given t € N* with ¢ > 4, there exists some p € N* such that p(p +1)/2 <t < (p+ 1)(p + 2)/2. First
assume t = p(p + 1)/2. We construct a graph G with (37 + 4) p vertices as follows, as illustrated in Fig. 1.
The vertex-set V(G) of G can be partitioned into {A1, Az, ..., A4p} such that

4] = 1 i =1 (mod 4);
T lt+1 i #1(mod 4).

Let Asx+1 = {xx} and arbitrarily choose one vertex y; € Aar43 foreachk =0,1,..., p — 1 (where y;’s are shown
as black dots in Fig. 1) and let Y = {y; : 0 < k < p —1}. All the induced subgraphs G[A; UA; ;] forl <i <4p—1
and G[Y] are complete (the readers can imagine these edges though they do not show in Fig. 1). Let E1 = E(G[Y]).
Link x; to yg by an edge foreachk =0, 1, ..., p — 1, and let E; denotes the set of these p edges. It is easy to check
that G is (¢ + 1)-edge-connected and of diameter 3.

Note that |E; U Ez| = p(p — 1)/2+ p = p(p + 1)/2 = t. If we delete all the edges in E; U E» from G, the
remaining graph has diameter 4p — 1 = 24/1 4 8¢ — 3. Hence f(r,3) > 2+/14 8 — 3 > 4/21 — 3.

Now, assume p(p + 1)/2 <t < (p + 1)(p + 2)/2. We construct a graph G’ from G by adding another vertex
xp and linking x, to yo and each vertex in A4,. Obviously, G’ is also (r + 1)-edge-connected and of diameter 3.
Let E' = E1 U E> U {x,yo}, then |E’| = p(p +1)/2+ 1 < t. Noting when t < (p + 1)(p +2)/2 — 1, we have
p > (/9 + 8t — 3)/2. Since G’ — E’ has diameter 4 p, we have

F(t,3)> fF(p(p+1)/24+1,3)>4p > 2(v/9+ 8 —3) > 421 — 6.
The proof of the theorem is complete.  [J

It is clear that 44/2f — 6 > 3+/2¢ + 4 for t > 50. This fact shows that the upper bound of f (¢, 3) given in (2) is
not correct for ¢ > 50. However, the method proposed by Peyrat in [5] to establish the upper bound of f (¢, 3) is very
useful. Now, by refining this method we prove the following theorem.

Theorem 2. f(z,3) < max{59, 52t + 7} fort > 4.



H.-X. Ye et al. / Discrete Mathematics 309 (2009) 1001-1006 1003

Proof. Let G be a (¢t + 1)-edge-connected graph of diameter 3, and let E’ C E(G) with |[E'| =¢t.Let G' = G — E’
and d be diameter of G’. Then there are two vertices x and y such that dg/(x,y) = d and a shortest xy-path
(x = x0, X1, ...,xq = y) of length d in G’. Let

N; ={z e V(G :dg/(z,x) =i}.
It is clear that N; # ) since x; € N; foreachi =0, 1,...,d, and {Ng, Ny, ..., Ny} is a partition of V (G’). Let
Li=N;jU{zeV(G):dg(z,7) <1forsomez e N;}, 1<i<d.

For 0 < i < d, let ¢; be the number of edges in E’ that has an end-vertex x;, that is, ¢; = dg(x;) — dg/(x;). Since G
is (¢t + 1)-edge-connected, dg (x;) > t + 1. It follows that

ILil > de(xi) +1=dg(xi) + 1 —e; =1 +2—e¢,
that is,
|ILi|>t+2—¢ fori=12,...,d. “4)
Let p = |d/5]. Thend <5p +4.Let[0,d] ={0,1,...,d}and
Iy = {5k —2,5% —1,5,5k+1,5k+2}N[0,d], 0<k<p.

Foreachk =0,1, ..., p, choose ji € {5k — 1, 5k, 5k + 1} N[0, d] such that |N, | = max{|Nsk_1[, |Nsk|, |Nsky1l}.
By (4) and the maximality of [N, |, we have

INj. | = max{|Nsi_1l, |Nsk|, |[Nsg1l} = [(t + 2 — esx) /3],
that is,
INj | = [(t +2—esx)/3]. &)

Let J = {jo, ji,...,jp}and i, j € J such that |j —i| > 4. Then L; N L; = ¥ and there are no edges in G’
between L; and L. Let Ej be the set of edges of £’ having one of their end-vertices in L. If there are no edges of
E' between L; and L ; then either

|Eil = [(t +1)/31 or [|E;[=[(+1)/3]. (6)

In fact, if there exist u € N; and v € N; such that neither u nor v is the end-vertex of an edge of E ' then all the
neighbors of u (resp. v) in G are in L; (resp. L ;). But there are no edges in G’ between L; and L, which implies
dg(u, v) > 3 contradicting the fact that the diameter of G is 3.

So, without loss of generality, we can assume that each vertex of N; is the end-vertex of an edge of E’, whose other
end-vertex does not belong to L;. There is ji such thati = j; and, by (5),

INil = [Nj| = [(t +2 —esx)/3].
If es; = 0, we have
|Eil = [Ni| = [(t +2)/37.
If e5r #£ 0, then
|Eil = INil =1+ esk > [(1 +2 —es5)/31 — 1 +esi > [(£ + 1)/3].

This completes the proof of (6).

We now prove f (¢, 3) < max{59, 542t + 7}.

LetK ={j e J:|Ej| > [(t+1)/31}). Soif ji, v € J — K and |k — k’| > 2 (which implies | jx — ji’| > 4), then
there is an edge of E’ from L, to Lj, by (6). Lets = |K|. We have

t:|E/|2£ t+1 +(|J|—s—1)(|J|—s—2)'
2 3 2

(The flaw in the proof in [5] is here!) Since |J| = p + 1, we have
6r>st+1)+3(p—s)(p—s—1).
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Fig. 2. Example for the lower bound for the relaxed version.

This implies s < 5. Therefore,
2 _ 2 _
t>3p 32s + 1)p +3s° +4s - p(p—1)
- 6—s - 2
The reason that the last inequality holds is because that 6s%+ (p> — 13p+8)s > 0if p > 12. By solving the inequality
t > p(p —1)/2, we have

12<p<1+8+1)/2 <2t +3/5.
Finally, by the definition of p, we have
f(t,3)=d < 5p+4 < max{59, 52 + 7).

The proof of the theorem is complete.  [J

if p > 12.

Remark 1. The proof of the above theorem is independent of (¢ + 1)-edge-connectivity of G and only dependent on
3(G) >t + 1 and G — E’ being connected. If we relax the condition of G, namely, if f(z, 3) is the largest possible
diameter of connected graphs obtained by deleting ¢ edges from a graph G with minimum degree at least (¢ + 1) and
diameter 3, then the upper bound in the above theorem is almost best possible in the point of view of preserving the
main part “5+/2¢”. This can be seen by the following example. Let G be a graph constructed as follows, and illustrated
in Fig. 2. Let {A1, Az, ..., Asp} be a partition of V (G) with

|A<|—{1 i =1,0(mod 5);

"7 lt+1 otherwise.

Then G has (3t + 5)p vertices. For 0 < k < p — 1, let Asgr; = {xx} and Aspqs = {zx}, and Y = {y €
Asiy3 0 0 < k < p — 1}. Add edges between each pair of vertices in A; U A;41 and each pair of vertices in ¥
such that all induced graphs G[A; U A;y1]for 1 <i < 5p — 1 and G[Y] are complete. Let E1 = E(G[Y]). Then
|E{| = %p(p —1). Link each x; and z; (0 < k < p —1) to yg by an edge, and let E, denote the set of these 2p edges.
Then |E1 U E>| = % pp—1)+2p = % p(p + 3). Obviously, the graph G constructed as above has diameter 3 and
minimum degree at leastz + 1. Let t = % p(p + 3). Then, by deleting all the edges of E; U E», the resulting graph has
diameter 5p — 1 = SL@J — 1> 542t — 8, thatis, f(z,3) > 5v/2¢ — 8. Note that the set E of edges incident
with vertices in As,_4 U As,_3U---U As, is an edge-cut of G and |E’| = p +2 < t + 1. This fact implies that G is
not (¢ + 1)-edge-connected. So we need to develop a new technique in order to improve the upper bound for f(z, 3).

3. Values of f(2, k) and f(3, k)

Let P(t, d) be the minimum diameter of a graph obtained by adding ¢ edges to a path of length d. The problem
determining P (z, d) is closely related to g(z, k) since Chung and Garey [1] showed that for a connected graph G,
F C E(G) and |F| =t,if D = D(G — F) is well defined then D(G) > P(t, d). This fact shows that in order to
establish an upper bound for g(z, k), it is sufficient to consider a graph with diameter k£ obtained from a single path
plus ¢ extra edges, then the length of the path gives an upper bound for g(¢, k). Clearly, P(1,d) = L%J ford > 2.
Schoone et al. [6] determined that

d+1 d+2
PQ2,d) = a+1 ford >3 and P@3,d) = a+2 ford > 4. (7)
3 4
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Fig. 4. Construction of G3 j for k = 3.

At the same time, using these results, they determined
g(1, k) =2k, g2, k) =3k —1, g3, k) =4k -2 fork > 2. (8)

(see [8] or [1] and [6] for more details). Motivated by these facts, we propose the following conjecture.

Conjecture 1. For a fixed t, there exists a minimum ko(t) € N such that for each k > ko(t)

tk)=g(t k)= d.
[t k) =gt k) pf}?ﬁfik

Since P(1,d) = L%J for d > 2, we have

1,k)y=g(,k) =2k = d,

f, k) = g(1, k) pinax

for all K > 1, namely ko(1) = 1. So the conjecture is true for r = 1. We now show that the conjecture is also true
fort = 2 and t = 3 by proving f(2,k) = 3k — 1 and f(3, k) = 4k — 2 for k > 3. Combining these results with
g2, k)=3k—1,g(3,k) =4k —2fork > 2 and f(¢,2) = 4 forany t > 1, we have ko(2) = ko(3) = 3.

Theorem 3. f(2,k) =3k — land f(3,k) =4k —2 fork > 3.

Proof. We first prove f(2, k) = 3k — 1. By (1) and (8), we only need to prove f(2, k) > 3k — 1. To this end, we only
need to construct a 3-edge-connected graph with diameter k such that its diameter increases to at least 3k — 1 when
its two edges are deleted.

Let H;  be a graph obtaining from a path P3;_1 = (xg, X1, ..., X3k—1) plus two extra edges xox2x and xg_1x35—1
(see Fig. 3 for k = 3). Note that Schoone et al. use Hy x to show g(2, k) > 3k — 1 in [6] (in which, however, there is
a typographical error, that is, the adding edge xpx,p should be xpx2p).

Since Hj j is not 3-edge-connected, we need to make some modification. Call a vertex of P3;_; that is incident
with an extra edge a fixed vertex. For each non-fixed vertex x;, add an additional vertex y; (the black dots in Fig. 3).
For0 <i <3k —1,let A; = {x;} if x; is fixed, and A; = {x;, y;} otherwise. Add edges so that the induced graph by
A; U A,y is complete for 0 < i < 3k — 2 (the dashed lines in Fig. 3). The resulting graph is denoted by G2 . It is
easy to check G is 3-edge-connected and of diameter k. By deleting the two extra edges xoxox and xgx—jx3k—1, the
remaining graph is of diameter 3k — 1. This implies f(2, k) > 3k — 1 and completes our proof of the first equality.

Similarly, we prove f(3, k) > 4k — 2 by constructing a 4-edge-connected graph G3 ; with diameter k. Let H3 x
be a graph obtaining from a path Ps;_j plus three extra edges xoxor—1, X2k—1X4k—2 and xx—1x3;x—1 (see Fig. 4). We
construct a graph G3  from Hj3 i by expanding each non-fixed vertex x; to A; = {x;, y;, z;} and adding edges such
that the induced graph by A; U A;1 is complete for 0 < i < 4k — 3. Then G3 is a 4-edge-connected graph with
diameter k. By deleting the three extra edges, the remaining graph is of diameter 4k —2. This implies f (3, k) > 4k —2.

The proof of the theorem is complete. [

Remark 2. The method used in the proof of the above special case of Conjecture 1 can be applied to the general
case provided the following fact is true: all fixed vertices of H, ; are not adjacent to each other in P, where the
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graph H; i is constructed from a path P of length max p(; 4)—« d by adding 7 extra edges such that H; j is of diameter
k. The requirement that the fixed vertices are non-adjacent in P is necessary since otherwise we cannot insure the
edge-connectivity of G, ; which is obtained from H; j.
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