Note

Diameter vulnerability of graphs by edge deletion ${ }^{\star}$

He-Xi Ye, Chao Yang, Jun-Ming Xu*
Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 26 December 2006; received in revised form 27 December 2007; accepted 4 January 2008
Available online 14 February 2008

Abstract

Let $f(t, k)$ be the maximum diameter of graphs obtained by deleting t edges from a $(t+1)$-edge-connected graph with diameter k. This paper shows $4 \sqrt{2 t}-6<f(t, 3) \leq \max \{59,5 \sqrt{2 t}+7\}$ for $t \geq 4$, which corrects an improper result in [C. Peyrat, Diameter vulnerability of graphs, Discrete Appl. Math. 9 (3) (1984) 245-250] and also determines $f(2, k)=3 k-1$ and $f(3, k)=4 k-2$ for $k \geq 3$.

(C) 2008 Elsevier B.V. All rights reserved.

Keywords: Diameter; Edge-deletion; Diameter vulnerability; Edge-connected graph

1. Introduction

We follow [9] for graph-theoretical terminology and notation not defined here. Let $G=(V, E)$ be a connected graph, where $V=V(G)$ is the vertex-set of G and $E=E(G)$ is the edge-set of G. For any two distinct vertices x and y in G, the distance $d_{G}(x, y)$ between x and y is the length of a shortest path between x and y in G. The diameter $D(G)$ of G is the maximum value of $d_{G}(x, y)$ over all pairs of vertices x and y in G.

Let $f(t, k)$ denote the maximum possible diameter of a graph obtained by deleting t edges from a ($t+1$)-edgeconnected graph with diameter k, and $g(t, k)$ denote the maximum diameter of any connected graph obtained by deleting t edges from a connected graph with diameter k. By the definitions, it is clear that for given t and k if $f(t, k)$ and $g(t, k)$ are well-defined then

$$
\begin{equation*}
f(t, k) \leq g(t, k) . \tag{1}
\end{equation*}
$$

The problem determining $f(t, k)$ for given t and k, proposed by Chung and Garey [1], is of interest, for example, when studying the potential effects of link failures on the performance of a communication network, especially for networks in which the maximum time-delay or signal degradation is directly related to the diameter of the network. This problem is proved to be NP-complete by Schoone et al. [6] in general. Much work has been done on this topic, see [1-7], and also [8] for a survey of some well-known results.

[^0]

Fig. 1. The constructed graph G for the lower bound of $f(t, 3)$.
Obviously, $f(t, 1)=2$. Chung and Garey [1] determined $f(1, k)=2 k$ and gave the bounds: $(t+1)(k-3) \leq$ $f(t, k) \leq(t+1) k+t$ for $k \geq 4$. Schoone et al. [6] improved this upper bound as $(t+1) k$, determined $g(2, k)=3 k-1$ and $g(3, k)=4 k-2$ for $k \geq 2$. In 1984, Peyrat [5] determined $f(t, 2)=4$ and gave "bounds" of $f(t, 3)$ as follows:

$$
\begin{equation*}
3 \sqrt{2 t}-3 \leq f(t, 3) \leq 3 \sqrt{2 t}+4 \quad \text { if } t \text { is large enough. } \tag{2}
\end{equation*}
$$

In this note, we establish the bounds as follows.

$$
\begin{equation*}
4 \sqrt{2 t}-6<f(t, 3) \leq \max \{59,5 \sqrt{2 t}+7\} \quad \text { for } t \geq 4 \tag{3}
\end{equation*}
$$

It is clear that the lower bound of $f(t, 3)$ in (3) is greater than the upper bound in (2) if $t \geq 50$, which implies that the upper bound of $f(t, 3)$ given in (2) is improper for $t \geq 50$. We also determine $f(2, k)=3 k-1$ and $f(3, k)=4 k-2$.

The proofs of our results are in Sections 2 and 3, respectively.

2. Bounds of $f(t, 3)$

Let \mathbb{N}^{*} be the set of positive integers. We first state the lower bound of $f(t, 3)$.
Theorem 1. $f(t, 3)>4 \sqrt{2 t}-6$ for any $t \geq 4$.
Proof. For a given $t \in \mathbb{N}^{*}$ with $t \geq 4$, there exists some $p \in \mathbb{N}^{*}$ such that $p(p+1) / 2 \leq t<(p+1)(p+2) / 2$. First assume $t=p(p+1) / 2$. We construct a graph G with $(3 t+4) p$ vertices as follows, as illustrated in Fig. 1.

The vertex-set $V(G)$ of G can be partitioned into $\left\{A_{1}, A_{2}, \ldots, A_{4 p}\right\}$ such that

$$
\left|A_{i}\right|= \begin{cases}1 & i \equiv 1(\bmod 4) \\ t+1 & i \not \equiv 1(\bmod 4)\end{cases}
$$

Let $A_{4 k+1}=\left\{x_{k}\right\}$ and arbitrarily choose one vertex $y_{k} \in A_{4 k+3}$ for each $k=0,1, \ldots, p-1$ (where y_{k} 's are shown as black dots in Fig. 1) and let $Y=\left\{y_{k}: 0 \leq k \leq p-1\right\}$. All the induced subgraphs $G\left[A_{i} \cup A_{i+1}\right]$ for $1 \leq i \leq 4 p-1$ and $G[Y]$ are complete (the readers can imagine these edges though they do not show in Fig. 1). Let $E_{1}=E(G[Y])$. Link x_{k} to y_{0} by an edge for each $k=0,1, \ldots, p-1$, and let E_{2} denotes the set of these p edges. It is easy to check that G is $(t+1)$-edge-connected and of diameter 3 .

Note that $\left|E_{1} \cup E_{2}\right|=p(p-1) / 2+p=p(p+1) / 2=t$. If we delete all the edges in $E_{1} \cup E_{2}$ from G, the remaining graph has diameter $4 p-1=2 \sqrt{1+8 t}-3$. Hence $f(t, 3) \geq 2 \sqrt{1+8 t}-3>4 \sqrt{2 t}-3$.

Now, assume $p(p+1) / 2<t<(p+1)(p+2) / 2$. We construct a graph G^{\prime} from G by adding another vertex x_{p} and linking x_{p} to y_{0} and each vertex in $A_{4 p}$. Obviously, G^{\prime} is also $(t+1)$-edge-connected and of diameter 3 . Let $E^{\prime}=E_{1} \cup E_{2} \cup\left\{x_{p} y_{0}\right\}$, then $\left|E^{\prime}\right|=p(p+1) / 2+1 \leq t$. Noting when $t \leq(p+1)(p+2) / 2-1$, we have $p \geq(\sqrt{9+8 t}-3) / 2$. Since $G^{\prime}-E^{\prime}$ has diameter $4 p$, we have

$$
f(t, 3) \geq f(p(p+1) / 2+1,3) \geq 4 p \geq 2(\sqrt{9+8 t}-3)>4 \sqrt{2 t}-6
$$

The proof of the theorem is complete.
It is clear that $4 \sqrt{2 t}-6>3 \sqrt{2 t}+4$ for $t>50$. This fact shows that the upper bound of $f(t, 3)$ given in (2) is not correct for $t>50$. However, the method proposed by Peyrat in [5] to establish the upper bound of $f(t, 3)$ is very useful. Now, by refining this method we prove the following theorem.

Theorem 2. $f(t, 3) \leq \max \{59,5 \sqrt{2 t}+7\}$ for $t \geq 4$.

Proof. Let G be a $(t+1)$-edge-connected graph of diameter 3, and let $E^{\prime} \subset E(G)$ with $\left|E^{\prime}\right|=t$. Let $G^{\prime}=G-E^{\prime}$ and d be diameter of G^{\prime}. Then there are two vertices x and y such that $d_{G^{\prime}}(x, y)=d$ and a shortest $x y$-path ($x=x_{0}, x_{1}, \ldots, x_{d}=y$) of length d in G^{\prime}. Let

$$
N_{i}=\left\{z \in V\left(G^{\prime}\right): d_{G^{\prime}}(z, x)=i\right\}
$$

It is clear that $N_{i} \neq \emptyset$ since $x_{i} \in N_{i}$ for each $i=0,1, \ldots, d$, and $\left\{N_{0}, N_{1}, \ldots, N_{d}\right\}$ is a partition of $V\left(G^{\prime}\right)$. Let

$$
L_{i}=N_{i} \cup\left\{z \in V\left(G^{\prime}\right): d_{G^{\prime}}\left(z, z^{\prime}\right) \leq 1 \text { for some } z^{\prime} \in N_{i}\right\}, \quad 1 \leq i \leq d
$$

For $0 \leq i \leq d$, let e_{i} be the number of edges in E^{\prime} that has an end-vertex x_{i}, that is, $e_{i}=d_{G}\left(x_{i}\right)-d_{G^{\prime}}\left(x_{i}\right)$. Since G is $(t+1)$-edge-connected, $d_{G}\left(x_{i}\right) \geq t+1$. It follows that

$$
\left|L_{i}\right| \geq d_{G^{\prime}}\left(x_{i}\right)+1=d_{G}\left(x_{i}\right)+1-e_{i} \geq t+2-e_{i}
$$

that is,

$$
\begin{equation*}
\left|L_{i}\right| \geq t+2-e_{i} \quad \text { for } i=1,2, \ldots, d \tag{4}
\end{equation*}
$$

Let $p=\lfloor d / 5\rfloor$. Then $d \leq 5 p+4$. Let $[0, d]=\{0,1, \ldots, d\}$ and

$$
I_{k}=\{5 k-2,5 k-1,5 k, 5 k+1,5 k+2\} \cap[0, d], \quad 0 \leq k \leq p
$$

For each $k=0,1, \ldots, p$, choose $j_{k} \in\{5 k-1,5 k, 5 k+1\} \cap[0, d]$ such that $\left|N_{j_{k}}\right|=\max \left\{\left|N_{5 k-1}\right|,\left|N_{5 k}\right|,\left|N_{5 k+1}\right|\right\}$. By (4) and the maximality of $\left|N_{j_{k}}\right|$, we have

$$
\left|N_{j_{k}}\right| \geq \max \left\{\left|N_{5 k-1}\right|,\left|N_{5 k}\right|,\left|N_{5 k+1}\right|\right\} \geq\left\lceil\left(t+2-e_{5 k}\right) / 3\right\rceil
$$

that is,

$$
\begin{equation*}
\left|N_{j_{k}}\right| \geq\left\lceil\left(t+2-e_{5 k}\right) / 3\right\rceil \tag{5}
\end{equation*}
$$

Let $J=\left\{j_{0}, j_{1}, \ldots, j_{p}\right\}$ and $i, j \in J$ such that $|j-i| \geq 4$. Then $L_{i} \cap L_{j}=\emptyset$ and there are no edges in G^{\prime} between L_{i} and L_{j}. Let E_{k} be the set of edges of E^{\prime} having one of their end-vertices in L_{k}. If there are no edges of E^{\prime} between L_{i} and L_{j} then either

$$
\begin{equation*}
\left|E_{i}\right| \geq\lceil(t+1) / 3\rceil \quad \text { or } \quad\left|E_{j}\right| \geq\lceil(t+1) / 3\rceil \tag{6}
\end{equation*}
$$

In fact, if there exist $u \in N_{i}$ and $v \in N_{j}$ such that neither u nor v is the end-vertex of an edge of E^{\prime}, then all the neighbors of u (resp. v) in G are in L_{i} (resp. L_{j}). But there are no edges in G^{\prime} between L_{i} and L_{j}, which implies $d_{G}(u, v)>3$ contradicting the fact that the diameter of G is 3 .

So, without loss of generality, we can assume that each vertex of N_{i} is the end-vertex of an edge of E^{\prime}, whose other end-vertex does not belong to L_{i}. There is j_{k} such that $i=j_{k}$ and, by (5),

$$
\left|N_{i}\right|=\left|N_{j_{k}}\right| \geq\left\lceil\left(t+2-e_{5 k}\right) / 3\right\rceil
$$

If $e_{5 k}=0$, we have

$$
\left|E_{i}\right| \geq\left|N_{i}\right| \geq\lceil(t+2) / 3\rceil
$$

If $e_{5 k} \neq 0$, then

$$
\left|E_{i}\right| \geq\left|N_{i}\right|-1+e_{5 k} \geq\left\lceil\left(t+2-e_{5 k}\right) / 3\right\rceil-1+e_{5 k} \geq\lceil(t+1) / 3\rceil
$$

This completes the proof of (6).
We now prove $f(t, 3) \leq \max \{59,5 \sqrt{2 t}+7\}$.
Let $K=\left\{j \in J:\left|E_{j}\right| \geq\lceil(t+1) / 3\rceil\right\}$. So if $j_{k}, j_{k^{\prime}} \in J-K$ and $\left|k-k^{\prime}\right| \geq 2$ (which implies $\left|j_{k}-j_{k^{\prime}}\right| \geq 4$), then there is an edge of E^{\prime} from $L_{j_{k}}$ to $L_{j_{k^{\prime}}}$ by (6). Let $s=|K|$. We have

$$
t=\left|E^{\prime}\right| \geq \frac{s}{2}\left\lceil\frac{t+1}{3}\right\rceil+\frac{(|J|-s-1)(|J|-s-2)}{2}
$$

(The flaw in the proof in [5] is here!) Since $|J|=p+1$, we have

$$
6 t \geq s(t+1)+3(p-s)(p-s-1)
$$

Fig. 2. Example for the lower bound for the relaxed version.
This implies $s \leq 5$. Therefore,

$$
t \geq \frac{3 p^{2}-3(2 s+1) p+3 s^{2}+4 s}{6-s} \geq \frac{p(p-1)}{2} \quad \text { if } p \geq 12
$$

The reason that the last inequality holds is because that $6 s^{2}+\left(p^{2}-13 p+8\right) s \geq 0$ if $p \geq 12$. By solving the inequality $t \geq p(p-1) / 2$, we have

$$
12 \leq p \leq(\sqrt{1+8 t}+1) / 2<\sqrt{2 t}+3 / 5 .
$$

Finally, by the definition of p, we have

$$
f(t, 3)=d \leq 5 p+4 \leq \max \{59,5 \sqrt{2 t}+7\} .
$$

The proof of the theorem is complete.
Remark 1. The proof of the above theorem is independent of $(t+1)$-edge-connectivity of G and only dependent on $\delta(G) \geq t+1$ and $G-E^{\prime}$ being connected. If we relax the condition of G, namely, if $f(t, 3)$ is the largest possible diameter of connected graphs obtained by deleting t edges from a graph G with minimum degree at least $(t+1)$ and diameter 3, then the upper bound in the above theorem is almost best possible in the point of view of preserving the main part " $5 \sqrt{2 t}$ ". This can be seen by the following example. Let G be a graph constructed as follows, and illustrated in Fig. 2. Let $\left\{A_{1}, A_{2}, \ldots, A_{5 p}\right\}$ be a partition of $V(G)$ with

$$
\left|A_{i}\right|= \begin{cases}1 & i \equiv 1,0(\bmod 5) \\ t+1 & \text { otherwise }\end{cases}
$$

Then G has $(3 t+5) p$ vertices. For $0 \leq k \leq p-1$, let $A_{5 k+1}=\left\{x_{k}\right\}$ and $A_{5 k+5}=\left\{z_{k}\right\}$, and $Y=\left\{y_{k} \in\right.$ $\left.A_{5 k+3}: 0 \leq k \leq p-1\right\}$. Add edges between each pair of vertices in $A_{i} \cup A_{i+1}$ and each pair of vertices in Y such that all induced graphs $G\left[A_{i} \cup A_{i+1}\right]$ for $1 \leq i \leq 5 p-1$ and $G[Y]$ are complete. Let $E_{1}=E(G[Y])$. Then $\left|E_{1}\right|=\frac{1}{2} p(p-1)$. Link each x_{k} and $z_{k}(0 \leq k \leq p-1)$ to y_{0} by an edge, and let E_{2} denote the set of these $2 p$ edges. Then $\left|E_{1} \cup E_{2}\right|=\frac{1}{2} p(p-1)+2 p=\frac{1}{2} p(p+3)$. Obviously, the graph G constructed as above has diameter 3 and minimum degree at least $t+1$. Let $t=\frac{1}{2} p(p+3)$. Then, by deleting all the edges of $E_{1} \cup E_{2}$, the resulting graph has diameter $5 p-1=5\left\lfloor\frac{\sqrt{9+8 t}-3}{2}\right\rfloor-1>5 \sqrt{2 t}-8$, that is, $f(t, 3)>5 \sqrt{2 t}-8$. Note that the set E^{\prime} of edges incident with vertices in $A_{5 p-4} \cup A_{5 p-3} \cup \cdots \cup A_{5 p}$ is an edge-cut of G and $\left|E^{\prime}\right|=p+2<t+1$. This fact implies that G is not $(t+1)$-edge-connected. So we need to develop a new technique in order to improve the upper bound for $f(t, 3)$.

3. Values of $f(2, k)$ and $f(3, k)$

Let $P(t, d)$ be the minimum diameter of a graph obtained by adding t edges to a path of length d. The problem determining $P(t, d)$ is closely related to $g(t, k)$ since Chung and Garey [1] showed that for a connected graph G, $F \subset E(G)$ and $|F|=t$, if $D=D(G-F)$ is well defined then $D(G) \geq P(t, d)$. This fact shows that in order to establish an upper bound for $g(t, k)$, it is sufficient to consider a graph with diameter k obtained from a single path plus t extra edges, then the length of the path gives an upper bound for $g(t, k)$. Clearly, $P(1, d)=\left\lfloor\frac{d+1}{2}\right\rfloor$ for $d \geq 2$. Schoone et al. [6] determined that

$$
\begin{equation*}
P(2, d)=\left\lceil\frac{d+1}{3}\right\rceil \quad \text { for } d \geq 3 \quad \text { and } \quad P(3, d)=\left\lceil\frac{d+2}{4}\right\rceil \quad \text { for } d \geq 4 . \tag{7}
\end{equation*}
$$

Fig. 3. Construction of $G_{2, k}$ for $k=3$.

Fig. 4. Construction of $G_{3, k}$ for $k=3$.
At the same time, using these results, they determined

$$
\begin{equation*}
g(1, k)=2 k, \quad g(2, k)=3 k-1, \quad g(3, k)=4 k-2 \quad \text { for } k \geq 2 \tag{8}
\end{equation*}
$$

(see [8] or [1] and [6] for more details). Motivated by these facts, we propose the following conjecture.
Conjecture 1. For a fixed t, there exists a minimum $k_{0}(t) \in \mathbb{N}$ such that for each $k \geq k_{0}(t)$

$$
f(t, k)=g(t, k)=\max _{P(t, d)=k} d
$$

Since $P(1, d)=\left\lfloor\frac{d+1}{2}\right\rfloor$ for $d \geq 2$, we have

$$
f(1, k)=g(1, k)=2 k=\max _{P(1, d)=k} d
$$

for all $k \geq 1$, namely $k_{0}(1)=1$. So the conjecture is true for $t=1$. We now show that the conjecture is also true for $t=2$ and $t=3$ by proving $f(2, k)=3 k-1$ and $f(3, k)=4 k-2$ for $k \geq 3$. Combining these results with $g(2, k)=3 k-1, g(3, k)=4 k-2$ for $k \geq 2$ and $f(t, 2)=4$ for any $t \geq 1$, we have $k_{0}(2)=k_{0}(3)=3$.

Theorem 3. $f(2, k)=3 k-1$ and $f(3, k)=4 k-2$ for $k \geq 3$.
Proof. We first prove $f(2, k)=3 k-1$. By (1) and (8), we only need to prove $f(2, k) \geq 3 k-1$. To this end, we only need to construct a 3 -edge-connected graph with diameter k such that its diameter increases to at least $3 k-1$ when its two edges are deleted.

Let $H_{2, k}$ be a graph obtaining from a path $P_{3 k-1}=\left(x_{0}, x_{1}, \ldots, x_{3 k-1}\right)$ plus two extra edges $x_{0} x_{2 k}$ and $x_{k-1} x_{3 k-1}$ (see Fig. 3 for $k=3$). Note that Schoone et al. use $H_{2, k}$ to show $g(2, k) \geq 3 k-1$ in [6] (in which, however, there is a typographical error, that is, the adding edge $x_{D} x_{2 D}$ should be $x_{0} x_{2 D}$).

Since $H_{2, k}$ is not 3-edge-connected, we need to make some modification. Call a vertex of $P_{3 k-1}$ that is incident with an extra edge a fixed vertex. For each non-fixed vertex x_{i}, add an additional vertex y_{i} (the black dots in Fig. 3). For $0 \leq i \leq 3 k-1$, let $A_{i}=\left\{x_{i}\right\}$ if x_{i} is fixed, and $A_{i}=\left\{x_{i}, y_{i}\right\}$ otherwise. Add edges so that the induced graph by $A_{i} \cup A_{i+1}$ is complete for $0 \leq i \leq 3 k-2$ (the dashed lines in Fig. 3). The resulting graph is denoted by $G_{2, k}$. It is easy to check $G_{2, k}$ is 3-edge-connected and of diameter k. By deleting the two extra edges $x_{0} x_{2 k}$ and $x_{k-1} x_{3 k-1}$, the remaining graph is of diameter $3 k-1$. This implies $f(2, k) \geq 3 k-1$ and completes our proof of the first equality.

Similarly, we prove $f(3, k) \geq 4 k-2$ by constructing a 4-edge-connected graph $G_{3, k}$ with diameter k. Let $H_{3, k}$ be a graph obtaining from a path $P_{4 k-2}$ plus three extra edges $x_{0} x_{2 k-1}, x_{2 k-1} x_{4 k-2}$ and $x_{k-1} x_{3 k-1}$ (see Fig. 4). We construct a graph $G_{3, k}$ from $H_{3, k}$ by expanding each non-fixed vertex x_{i} to $A_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}$ and adding edges such that the induced graph by $A_{i} \cup A_{i+1}$ is complete for $0 \leq i \leq 4 k-3$. Then $G_{3, k}$ is a 4-edge-connected graph with diameter k. By deleting the three extra edges, the remaining graph is of diameter $4 k-2$. This implies $f(3, k) \geq 4 k-2$.

The proof of the theorem is complete.
Remark 2. The method used in the proof of the above special case of Conjecture 1 can be applied to the general case provided the following fact is true: all fixed vertices of $H_{t, k}$ are not adjacent to each other in P, where the
graph $H_{t, k}$ is constructed from a path P of length $\max _{P(t, d)=k} d$ by adding t extra edges such that $H_{t, k}$ is of diameter k. The requirement that the fixed vertices are non-adjacent in P is necessary since otherwise we cannot insure the edge-connectivity of $G_{t, k}$ which is obtained from $H_{t, k}$.

References

[1] F.R.K. Chung, M.R. Garey, Diameter bounds for altered graphs, J. Graph Theory 8 (4) (1984) 511-534.
[2] Z.-G. Deng, J.-M. Xu, On diameters of altered graphs, J. Math. Study 37 (1) (2004) 35-41.
[3] A.A. Najim, J.-M. Xu, Edge addition and edge deletion of graphs, J. Univ. Sci. Technol. China 36 (3) (2006) 254-257.
[4] A.A. Najim, J.-M. Xu, On addition and deletion of edges of graphs, J. Univ. Sci. Technol. China 36 (9) (2006) 951-955.
[5] C. Peyrat, Diameter vulnerability of graphs, Discrete Appl. Math. 9 (3) (1984) 245-250.
[6] A.A. Schoone, H.L. Bodlaeder, J. van Leeuwen, Diameter increase caused by edge deletion, J. Graph Theory 11 (3) (1987) $409-427$.
[7] Y.-Z. Wu, J.-M. Xu, On diameters of altered graphs, J. Math. Res. Exposition 26 (3) (2006) 502-508.
[8] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[9] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[^0]: The work was supported by NNSF of China (No. 10671191).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

