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a b s t r a c t

Let k be a positive integer and G be a simple connected graph with order n. The average
distanceµ(G) of G is defined to be the average value of distances over all pairs of vertices of
G. A subset D of vertices in G is said to be a k-dominating set of G if every vertex of V(G)−D is
within distance k from some vertex of D. The minimum cardinality among all k-dominating
sets of G is called the k-domination number γk(G) of G. In this paper tight upper bounds
are established forµ(G), as functions of n, k and γk(G), which generalizes the earlier results
of Dankelmann [P. Dankelmann, Average distance and domination number, Discrete Appl.
Math. 80 (1997) 21–35] for k = 1.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to [18]. Let G = (V, E) be a finite
simple connected graph with vertex set V = V(G) and edge set E = E(G). The distance dG(x, y) between two vertices x and
y is the length of a shortest xy-path in G. For S ⊆ V(G), G[S] denotes the subgraph of G induced by S and for v ∈ V(G),
dG(v, S) = min{dG(v, u) : u ∈ V(S)}. The eccentricity eG(v) of v is max{dG(v, x) : x ∈ V(G)}. The radius rad(G) and the diameter
diam(G) of G are the smallest and the largest eccentricities of the vertices in G, respectively. A vertex with eG(v) = diam(G)
is called a diametral vertex. A vertex v is a central vertex if eG(v) = rad(G) and the center of G is the set of all central vertices.
The degree of a vertex x ∈ V(G), denoted by degG(x), is the number of edges incident to the vertex x. A vertex of degree one
is called an end-vertex. Let Pn denote a path of order n and Pxy a path with end-vertices x and y. If the length of a path Pxy is
equal to diam(G), then we call Pxy a diametral path in G.

The average (or mean) distance of G is defined to be the average over all pairs of vertices of G, i.e.,

µ(G) =
1

n(n− 1)

∑
x,y∈V

dG(x, y).

Like diameter, Wiener index [13,17] or other parameters, apart from their own graph-theoretic interests, the average
distance has numerous applications in analyzing problems in communication networks, geometry and physical chemistry.
It is the reason why this concept has received considerable attention in the literature. There are several excellent surveys
of earlier results on average distance of graphs, one of which is due to Plesnik [15]. Thus, many efforts have been made by
several authors to establish the relationships between average distance and other graph parameters (see, for example, [1,2,
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6–8,15,16]). For convenience, let

σ(x) = σ(x,G) =
∑
y∈V

dG(x, y), σ(G) =
∑
x∈V

σ(x) =
∑

(x,y)∈V×V

dG(x, y),

be the transmission of a vertex x ∈ V , and the transmission of the graph G, respectively. In order to avoid large fractions,
we will often deal with σ(G) rather than µ(G). Apart from average distance, σ(G) also occurs in the computation of other
graph-theoretical parameters, such as the forwarding index of a routing [5,12], and physical chemistry [9].

A subset I of vertices in G is said to be k-independent if every vertex in I is at distance at least k + 1 from every other
vertex of I in G. The k-independence number of G, denoted by αk(G), is defined to be the maximum cardinality among all
k-independent sets of G. If k = 1, α1(G) is α(G), the independence number of G. Dankelmann, Oellermann and Swart [7] gave
the bounds on the average distance with order n and independence number α(G). Firby and Haviland [8] established sharp
lower bounds for the average distance of G, in terms of the k-independence number αk(G), and described the associated
extremal graphs, thereby extending the aforementioned work of Dankelmann et al. for k = 1.

A subset D of vertices in G is said to be a k-dominating set of G if every vertex of V(G) − D is within distance k from
some vertex of D. The minimum cardinality among all k-dominating sets of G is called the k-domination number of G and is
denoted by γk(G). For the special case of k = 1, γ1(G) is the classic domination number of G. The concept of k-dominating set
was introduced by Chang and Nemhauser [3,4] and finds applications in many situations and structures which give rise to
graphs, see the books by Haynes, Hedetniemi and Slater [10,11].

Dankelmann [6] gave the sharp upper bounds on the average distance of a graph of given order n and domination number
γ(G), and determined the extremal graphs. In this paper, by generalizing Dankelmann’s technique, we establish the sharp
upper bounds on the average distance of G, in terms of k-domination number γk(G), and describe the extremal graphs,
extending the results of Dankelmann for k = 1 in [6].

The proofs of our main results are in Section 3 and some lemmas are given in Section 2.

2. Lemmas

Lemma 2.1. Let G be a nontrivial connected graph, and k be a positive integer. Then γk(G) = min γk(T), where the minimum is
taken over all spanning trees T of G.

Proof. Let G be a nontrivial connected graph and T be a spanning tree of G. Then any k-dominating set of T is also a k-
dominating set of G. Therefore, γk(G) ≤ γk(T). Thus we have that γk(G) ≤ min γk(T), where the minimum is taken over all
spanning trees T of G.

Now we show the reverse inequality. IfG is a tree, then the theorem holds trivially. So we may assume thatG is a connected
graph containing cycles. Let D be a minimum k-dominating set of G and C be a cycle in G. If we can prove that D is also a k-
dominating set of G− e for some cycle edge e ∈ E(C), then γk(G− e) ≤ |D| = γk(G). By iterating the above operation finitely,
we get γk(T) ≤ γk(G) for some spanning tree T of G. Thus, we have that min γk(T) ≤ γk(G), where the minimum is taken over
all spanning trees T of G.

If V(C) ⊆ V(D), then obviously the vertices in V(G)− D are also all within distance k to G[D] − e for any edge e ∈ E(C).
If V(C) 6⊆ V(D), then we select two adjacent vertices x and y in V(C) such that dG(x,D) + dG(y,D) = max{dG(u,D) +

dG(v,D) : uv ∈ E(C)}. Now we will show that D is also a k-dominating set of G− {xy}.
First for any two adjacent vertices u and v in G, we have |dG(u,D) − dG(v,D)| ≤ 1. Then if w is a vertex in V(C) such

that dG(w,D) = max{dG(v,D) : v ∈ V(C)}, we have that w = x or w = y. Without loss of generality, suppose that
dG(x,D) = max{dG(v,D) : v ∈ V(C)}.

Let z be another neighbor of x different from y in V(C). So we immediately have that dG(z,D) ≤ dG(y,D). Thus, we get the
distance between a vertex in V(G)− D and D is not influenced by deleting the edge {xy}. That is to say, dG−xy(v,D) = dG(v,D)
for all vertices v in V(G). Hence, D is also a k-dominating set of G− e for some cycle edge e. �

From Lemma 2.1, we get that every connected graph G contains a spanning tree T with the same k-domination number.
That is to say, every extremal graph G with given order, k-domination number and maximum average distance is a tree. So
we have to consider only trees below.

Let S(k) denote a k-generalized star which is a tree containing one vertex whose eccentricity is at most k.

Lemma 2.2. Let H be a graph. Then γk(H−e) > γk(H) for each edge e ∈ E(H) if and only if H is the union of several vertex disjoint
k-generalized stars S(k).

Proof. Let H be a graph such that γk(H − e) > γk(H) for each edge e ∈ E(H), and D be a minimum k-dominating set of H.
If γk(H) = 1, by Lemma 2.1 and the property γk(H − e) > γk(H) for each edge e ∈ E(H), then H must be a tree and

we can easily see that H must be a k-generalized star S(k). If γk(H) ≥ 2, then for any two vertices x and y in D, we have
dH(x, y) ≥ 2k+ 1. Otherwise, if dH(x, y) ≤ 2k, then there must exist an edge e on the shortest path between x and y in H such
that γk(H − e) = γk(H).

We partition the graph H into balls of radius k, denoted H1,H2, . . . ,Hγk , whose centers are the vertices in D.
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Then the balls are all disjoint. Furthermore, there are no edges joining any two balls. Otherwise, if there exist an edge e
joining two balls, say Hi and Hj, then γk(H − e) = γk(H), a contradiction to the hypothesis on H. And since Hi is an induced
subgraph of H with γk(Hi) = 1, by the aforementioned, Hi is a k-generalized star S(k).

The converse is easily verified. �

Corollary 2.3. If G is a tree with γk(G) ≥ 2, then there exists an edge e in a diametral path in G such that γk(G− e) = γk(G).

Proof. Let D be a minimum k-dominating set of G. We partition the graph G into balls of radius k, denoted G1,G2, . . . ,Gγk ,
whose centers are the vertices in D. Since G is connected, there must exist an edge e joining two such balls.

Then e must be in a diametral path in G, and its deletion does not change γk(G). �

Lemma 2.4 (Meir and Moon [14]). γk(G) ≤
⌊

n
k+1

⌋
for any connected graph G of order n with n ≥ k+ 1.

Definition 2.5. Suppose that
⌈

n
2k+1

⌉
< γk ≤

⌊
n

k+1

⌋
, and let s and t be, respectively, the quotient and the reminder of the

division of (2k+ 1)γk − n by k, namely (2k+ 1)γk − n = sk+ t, where s ≥ 0 and 0 ≤ t ≤ k− 1. In particular, for k = 1 we get
t = 0, and consequently s = 3γ − n. Then we define the following numbers:

A = n− s(k+ 1)− t,

B = s(k+ 1),

C = 3n− s(k+ 1),

D = 2n− s(k+ 1)− 2t.

As functions of γk, we have

A =
(2k+ 1)n− (k+ 1)(2k+ 1)γk + t

k
,

B =
(2k+ 1)(k+ 1)γk − (k+ 1)n− (k+ 1)t

k
,

C =
(4k+ 1)n− (k+ 1)(2k+ 1)γk + (k+ 1)t

k
,

D =
(3k+ 1)n− (2k+ 1)(k+ 1)γk − (k− 1)t

k
.

Note that, for k = 1, A, B, C and D take the following values, which appear in the results by Dankelmann [6]:

A = 3n− 6γ,
B = 6γ − 2n = 2(3γ − n),

C = 5n− 6γ,
D = 4n− 6γ = 2(2n− 3γ).

Definition 2.6. For given positive integers n and γk, a class of graphs Hn,γk is defined as follows.
(i) If γk ≤ n

2k+1 , Hn,γk consists of a single path P(2k+1)γk−1 = (v1, v2, . . . , v(2k+1)γk−1) and independent vertices
w1,w2, . . . ,wn+1−(2k+1)γk that are joined with v(2k+1)γk−1 (see Fig. 1).

(ii) If γk =
⌈

n
2k+1

⌉
, Hn,γk is a single path Pn = (v1, v2, . . . , vn).

(iii) If
⌈

n
2k+1

⌉
< γk ≤

⌊
n

k+1

⌋
, Hn,γk is obtained from a single path P2n−(2k+1)γk+k =

(
v1, v2, . . . , v2n−(2k+1)γk+k

)
by attaching

exactly one Pk to the vertex vi for A+ k+ 2 ≤ i ≤ 2n− (2k+ 1)γk + k; and attaching exactly one Pt to the vertex vA+t+1 (see
Fig. 2).

The reason for the different shapes of the extremal graphs for γk ≤ n
2k+1 and γk >

⌈
n

2k+1

⌉
is the fact that the path Pn is the

unique graph of order n with the maximum transmission of a vertex, which has the k-domination number γk =
⌈

n
2k+1

⌉
.

Lemma 2.7. Let G be a tree with order n and k-domination number γk ≤
⌈

n
2k+1

⌉
. Then, for each vertex v ∈ V(G),

σ(v,G) ≤


[(2k+ 1)γk − 1]

(
n−

2k+ 1
2

γk

)
, γk ≤

n

2k+ 1
;

n(n− 1)

2
, γk =

⌈
n

2k+ 1

⌉
.

The equality holds if and only if G = Hn,γk and v = v1.
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Fig. 1. The extremal graph Hn,γk with 1 ≤ γk ≤ n
2k+1 .

Fig. 2. The extremal graph Hn,γk with
⌈

n
2k+1

⌉
< γk ≤

⌊
n

k+1

⌋
.

Proof. It is well known that in a tree, each vertex having maximum transmission is an end-vertex, i.e., a vertex with
degree one (see [19] by Zelinka). Thus, we only prove this result for a diametral vertex. Let P be a diametral path, and
let D be a minimum k-dominating set of G. Since every vertex of D can k-dominate at most (2k + 1) vertices of P, we have
diam(G) ≤ (2k+ 1)γk − 1, and thus we have

σ(v,G) ≤ 1+ 2+ · · · + (2k+ 1)γk − 2+ [(2k+ 1)γk − 1] (n− (2k+ 1)γk + 1)

= [(2k+ 1)γk − 1]
(
n−

2k+ 1
2

γk

)
.

The uniqueness of the extremal graph is obvious. �

For γk =
⌈

n
2k+1

⌉
, the result follows immediately.

Lemma 2.8. Let G be a tree of order n and k-domination number γk > n
2k+1 , then

diam(G) ≤ 2n− (2k+ 1)γk + 2k− 1.

Proof. The proof proceeds by induction on n. For n ≤ 3k+3, by n
2k+1 < γk ≤ b

n
k+1 c, the value of γk is small. Thus, it is easy to

verify that the statement holds for all graphs with maximum diameter and k-domination number at least γk. For γk =
⌈

n
2k+1

⌉
,

we see that the path Pn also satisfies this statement. So, we consider this statement as 3k+ 4 ≤ n ≤ (2k+ 1)(γk − 1).
Suppose that the statements hold for all trees of order less than n. Let G be a tree with maximum diameter among all

trees of order n and k-domination number at least γk. Let x and y be two vertices in G such that dG(x, y) = diam(G), and let
Pxy be a diametral path, Pxxk = (x, x1, . . . , xk) be a subpath of Pxy.

First we have deg(xi) = 2 for i = 1, . . . , k. Otherwise, if deg(xj) ≥ 3 for some 1 ≤ j ≤ k, then xj must be adjacent to a
vertex x′j not on Pxy. Let

G′ = G− xj−1xj + xj−1x
′

j.

Thus diam(G′) = diam(G)+ 1 and γk(G′) ≥ γk(G), a contradiction to the choice of G.
Let P = (c1, c2, . . . , ck) be a subpath of Pxy − {x, x1, . . . , xk} such that c1 is adjacent to the vertex xk on Pxy.
Case 1. deg(ci) = 2 for i = 1, 2, . . . , k. Then G−{x, x1, . . . , xk, c1, . . . , ck} is connected, has k-domination number γk(G)−1

and has diameter at least diam(G)− (2k+ 1). Since γk(G)− 1 > n−(2k+1)
2k+1 , by the induction hypothesis, we have

diam(G) ≤ diam (G− {x, x1, . . . , xk, c1, . . . , ck})+ (2k+ 1)

≤ 2 (n− (2k+ 1))− (2k+ 1)(γk − 1)+ 2k− 1+ 2k+ 1
= 2n− (2k+ 1)γk + 2k− 1.

Case 2. deg(ci) ≥ 3 for some i = 1, 2, . . . , k. Let ci be the nearest vertex to xk on Pxy such that deg(ci) ≥ 3. Let d denote
one vertex farthest from ci not on Pxy and c′i be the vertex adjacent to ci on Pcid, then we have k− i < dG(ci, d) ≤ k.

In fact, if dG(ci, d) ≤ k− i, then dG(xk, d) ≤ k. Let

G′ = G− cici+1 + ci+1c
′

i,

then diam(G′) = diam(G)+ 1 and γk(G′) = γk(G), a contradiction to the choice of G.
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But if dG(ci, d) > k, let

G′ = G− ci−1ci + ci−1c
′

i,

then diam(G′) = diam(G)+ 1, γk(G′) = γk(G), a contradiction to the choice of G.
Thus γk (G− {x, x1, . . . , xk, c1, . . . , ci−1}) = γk(G) − 1, and γk(G) − 1 > n−(k+i)

2k+1 . The diameter of G −
{x, x1, . . . , xk, c1, . . . , ci−1) is the path Pdy, thus, by k − i < dG(ci, d) ≤ k, diam(G) − diam(G − {x, x1, . . . , xk, c1, c2,
. . . , ci−1}) ≤ (2i− 1). By the induction hypothesis, we have

diam(G) ≤ diam (G− {x, x1, . . . , xk, c1, c2, . . . , ci−1})+ (2i− 1)

= 2 (n− (k+ i))− (2k+ 1)(γk − 1)+ 2k− 1+ 2i− 1
= 2n− (2k+ 1)γk + 2k− 1. �

Lemma 2.9. Let G be a tree of order n and k-domination number γk >
⌈

n
2k+1

⌉
. For each vertex v ∈ V(G),

if k ≡ 1(mod 2), then

σ(v,G) ≤

k−1
2∑

i=0
(2n− (2k+ 1)γk + k+ 2i)2

−

k−1
2∑

i=1
(A+ k+ 2i)2

−
1
2
(A+ 2k)(A+ 2k+ 1)+ At +

3
2
t2
+

t

2
; (2.1)

(here, let
∑ k−1

2
i=1 (A+ k+ 2i)2

= 0 if k = 1.)
if k ≡ 0(mod 2), then

σ(v,G) ≤

k−2
2∑

i=0
(2n− (2k+ 1)γk + k+ 2i)2

−

k
2∑

i=1
(A+ k+ 2i)2

+
1
2

(2n− (2k+ 1)γk + 2k− 1) (2n− (2k+ 1)γk + 2k)+ At +
3
2
t2
+

t

2
. (2.2)

The equality holds if and only if G = Hn,γk and v = v1.

Proof. The proof proceeds by induction on n. For n ≤ 3k+ 3, by d n
2k+1 e < γk ≤ b

n
k+1 c, it can verify that v = v1 ∈ Hn,γk is the

vertex satisfying σ(v, Hn,γk) getting the maximum. Thus, the statement holds by some calculations. Let n ≥ 3k+ 4. Suppose
that the statement holds for all trees of order less than n. Now let G be a tree and v ∈ V(G) such that σ(v,G) is maximum
among all trees of order n and k-domination number at least γk. Since each vertex having maximum transmission in a tree
is an end-vertex, we can assume that v is a diametral vertex. Let u be an eccentric vertex of v with dG(u, v) = diam(G)

and Puv be a diametral path in G. Then u must be an end-vertex of Puv and the neighbor u1 is unique. By γk >
⌈

n
2k+1

⌉
, we

get (2k + 1)γk ≥ n + (2k + 1). Hence, diam(G) ≤ 2n − (2k + 1)γk + 2k − 1 ≤ n − 2. Since u must be within distance
k from some vertex of G, and we aim to get an upper bound for σ(v,G), then we can assume the existence of a subpath
Puuk = (u, u1, u2, . . . , uk) of Puv. By the choice of u, we have degG(ui) = 2 for all i = 1, 2, . . . , k. Otherwise, if ui is adjacent to
another vertex u′i not on Puv, then G′ = G− ui−1ui + ui−1u′i satisfies γk(G′) ≥ γk(G) and σ(v,G′) > σ(v,G).

Hence G− {u, u1, . . . , uk} is connected and has k-domination number at least γk(G)− 1. By the induction hypothesis and
by Lemma 2.8, we have that, for k ≡ 1(mod 2),

σ(v,G) ≤ σ(v,G− {u, u1, . . . , uk})+ (2n− (2k+ 1)γk + 2k− 1)

+ (2n− (2k+ 1)γk + 2k− 2)+ · · · + (2n− (2k+ 1)γk + k− 1)

≤ σ(v, Hn−(k+1),γk−1)+ (2n− (2k+ 1)γk + 2k− 1)

+ (2n− (2k+ 1)γk + 2k− 2)+ · · · + (2n− (2k+ 1)γk + k− 1)

=

k−1
2∑

i=0
(2n− (2k+ 1)γk + k+ 2i)2

−

k−1
2∑

i=1
(A+ k+ 2i)2

−
1
2
(A+ 2k)(A+ 2k+ 1)+ At +

3
2
t2
+

t

2
, (2.3)

and for k ≡ 0(mod 2),

σ(v,G) ≤ σ(v,G− {u, u1, . . . , uk})+ (2n− (2k+ 1)γk + 2k− 1)

+ (2n− (2k+ 1)γk + 2k− 2)+ · · · + (2n− (2k+ 1)γk + k− 1)

≤ σ(v, Hn−(k+1),γk−1)+ (2n− (2k+ 1)γk + 2k− 1)

+ (2n− (2k+ 1)γk + 2k− 2)+ · · · + (2n− (2k+ 1)γk + k− 1)

=

k−2
2∑

i=0
(2n− (2k+ 1)γk + k+ 2i)2

−

k
2∑

i=1
(A+ k+ 2i)2

+
1
2

(2n− (2k+ 1)γk + 2k− 1) (2n− (2k+ 1)γk + 2k)+ At +
3
2
t2
+

t

2
. (2.4)
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Fig. 3. The extremal graph Gn,γk with 1 ≤ γk ≤ n
2k+1 .

It remains to prove the uniqueness of the extremal graph. If the equality holds in (2.1) or (2.2), then it also holds in (2.3)
or (2.4). By the induction hypothesis, we have that

G− {u, u1, . . . , uk} = Hn−(k+1),γk−1,

and v = v1. Notice that the vertices u, u1, . . . , uk are exactly at distance

2n− (2k+ 1)γk + 2k− 1,

2n− (2k+ 1)γk + 2k− 2,

· · · ,

2n− (2k+ 1)γk + k− 1

from v1, which implies that G = Hn,γk and v = v1. �

From Lemmas 2.7 and 2.9, we get the following corollary.

Corollary 2.10 (Dankelmann, Lemma 3 in [6]). Let G be a tree of order n and domination number γ. Then, for each vertex v ∈ V(G),

σ(v,G) ≤


(3γ − 1)

(
n−

3
2
γ

)
, if γ ≤

n

3
;

(2n− 3γ + 1)2
−

1
2
(3n− 6γ + 3)(3n− 6γ + 2), if γ >

n

3
.

The equality holds if and only if G = Hn,γ and v = v1.

3. Main results

Now we prove the following sharp upper bounds on the average distance of a graph with given order n and k-domination
number γk. The shape of the extremal graphs also differs depending on γk ≤ n

2k+1 , γk =
⌈

n
2k+1

⌉
or γk >

⌈
n

2k+1

⌉
. We will treat

the three cases separately.

Definition 3.1. For positive integers n and γk, a class of graphs Gn,γk is defined as follows.
(i) If γk ≤ n

2k+1 , then Gn,γk is obtained from a single path P(2k+1)γk−2 with end-vertices v1 and v2, and two independent sets
of vertices W1 and W2 of order

⌈
n−(2k+1)γk+2

2

⌉
and

⌊
n−(2k+1)γk+2

2

⌋
, by joining each vertex of Wi to vi, where i = 1, 2 (see Fig. 3).

(ii) If γk =
⌈

n
2k+1

⌉
, then Gn,γk is a single path Pn = (v1, v2, . . . , vn).

Theorem 3.2. Let G be a connected graph of order n and k-domination number γk ≤
⌈

n
2k+1

⌉
. Then we have

µ(G) ≤



n+ 1
3
−

(n− (2k+ 1)γk) (n− (2k+ 1)γk + 2) (2n+ (2k+ 1)γk − 7)

6n(n− 1)
,

if γk ≤
n

2k+ 1
and n− γk is even;

n+ 1
3
−

(n− (2k+ 1)γk) (n− (2k+ 1)γk + 2) (2n+ (2k+ 1)γk − 7)− 3 ((2k+ 1)γk − 3)

6n(n− 1)
,

if γk ≤
n

2k+ 1
and n− γk is odd;

n+ 1
3

,

if γk =
⌈

n

2k+ 1

⌉
.

The equality holds if and only if G = Gn,γk .
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Fig. 4. The structure of G in Claim 2.

Proof. The proof proceeds by induction on n. It is easy to check that the statement holds for n ≤ 4k + 2. Assume that the
statement holds for all values smaller than n.

We will prove the statement for a fixed n (≥ 4k+3) by induction on γk ≥ 1. Clearly, it holds for γk = 1, so we may assume
γk ≥ 2. If γk =

⌈
n

2k+1

⌉
or γk = n

2k+1 , then the result follows immediately from the fact that the graph G
n,
⌈

n
2k+1

⌉ or Gn, n
2k+1

is
isomorphic to the graph Pn. So let γk < n

2k+1 .
Let G be a connected graph of order n and k-domination number γk that has maximum transmission. Then G is a tree by

Lemma 2.1.
Since γk ≥ 2, by Corollary 2.3, we can choose an edge xy in a diametral path P, whose deletion does not change γk(G).
Let Gx and Gy denote the components of G − xy that contains x and y, respectively. Since n ≥ 4k + 3, we also can choose

the edge xy such that Gx and Gy contain at least k+ 1 vertices, respectively.

Claim 1. There exists one vertex at distance k from the vertices x and y in Gx and Gy, respectively.

Proof. Without loss of generality, we only prove the statement for Gx. Suppose that every vertex of Gx is at distance less than
k to x. Then {x} is a minimum k-dominating set for Gx. Take the farthest vertex x′ of x in Gx on the path P, and let Pxx′ denote
the path between x and x′ on P in Gx. Since |Gx| ≥ k + 1, there exists a vertex x1 on Pxx′ such that deg(x1) ≥ 3. Suppose that
x2 is the neighbor of x1 which is nearer to x′ on Pxx′ , and x3 is a neighbor of x1 not on Pxx′ .

Let G′ = G− x1x2+ x2x3. Thus, we have G′x = Gx− x1x2+ x2x3 and γk(G′) = γk(G). Since σ(G′x) > σ(Gx), σ(x,G′x) > σ(x,Gx),
and

σ(G) =

 ∑
a,b∈V(Gx)

+
∑

a,b∈V(Gy)

+ 2
∑

a∈V(Gx)
b∈V(Gy)

 dG(a, b)

= σ(Gx)+ σ(Gy)+ 2|V(Gx)||V(Gy)| + 2|V(Gy)|σ(x,Gx)+ 2|V(Gx)|σ(y,Gy),

we have σ(G′) > σ(G), a contradiction to the maximality of σ(G). �

By Claim 1, there exist paths of length k which belongs to P in Gx and Gy, denoted by Pxxk = (x, x1, . . . , xk−1, xk) and
Pyyk = (y, y1, . . . , yk−1, yk), respectively.

Claim 2. deg (x) = 2, deg (y) = 2, deg(xi) = 2 and deg(yi) = 2 for i = 1, . . . , k− 1.

Proof. We first prove that deg (x) = 2. Suppose that deg (x) ≥ 3 and let x′ denote a neighbor of x not on P. Let G′ = G−xy+x′y.
By the same proof in Claim 1, we will get γk(G′) = γk(G) and σ(G′) > σ(G), a contradiction to the maximality of σ(G).
Similarly, we can prove deg (y) = 2.

Thus, x and y are diametral vertices in Gx and Gy, respectively. By γk(G − xy) = γk(G), we have xk and yk must be in a
minimum k-dominating set of G.

Now, we prove deg(xi) = 2 for i = 1, . . . , k− 1. Let xi be the nearest vertex to x on Pxxk such that deg(xi) ≥ 3 and yj be the
nearest vertex to y on Pyyk such that deg(yj) ≥ 3. Without loss of generality, we assume that i ≤ j.

Let x′i be a vertex farthest from xi not on Pxxk . Since x is a diametral vertex in Gx, we have dG(xi, x′i) ≤ i. Let M denote the
vertices in all connected components of G− xi which contain no vertices on Pxxk , and let N denote the set of vertices adjacent
to xi in M (see Fig. 4).

If |V(Gx)| > |V(Gy)| + |M|, then let G′ = G− xiN + yiN. By dG(xi, x′i) ≤ i, γk(G′) = γk(G) and

σ(G′)− σ(G) =
∑
a∈M

b∈V(G′)−M

dG′(a, b)−
∑
a∈M

b∈V(G)−M

dG(a, b)

= 2|M| (|V(Gx)| − |M| − i) (2i+ 1)− 2|M|
(
|V(Gy)| − i

)
(2i+ 1)

= 2|M|(2i+ 1)
(
|V(Gx)| − |V(Gy)| − |M|

)
> 0,

a contradiction to the choice of G.
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If |V(Gx)| ≤ |V(Gy)| + |M|, then let G′ = G− xiN + xi+1N. By dG(xi, x′i) ≤ i, γk(G′) = γk(G) and

σ(G′)− σ(G) =
∑
a∈M

b∈V(G′)−M

dG′(a, b)−
∑
a∈M

b∈V(G)−M

dG(a, b)

= 2|M|
(
(|V(Gy)| + i+ 1)− (|V(Gx)| − |M| − i− 1)

)
= 2|M|

(
|V(Gy)| − |V(Gx)| + |M| + 2i+ 2

)
> 0

a contradiction to the choice of G.
Hence, no matter |V(Gx)| > |V(Gy)| + |M| or |V(Gx)| ≤ |V(Gy)| + |M|, we get both the contradictions with σ(G). Thus

deg xi = 2 and deg yi = 2 for i = 1, . . . , k− 1. �

By Claim 2, now suppose that G′ is the graph obtained from G by identifying the 2k + 2 vertices xk, xk−1, . . . , x1, x and
yk, yk−1, . . . , y1, y with a new vertex z and deleting loops. Then, G′ has n− (2k+ 1) vertices and γk(G′) = γk(G)− 1 satisfying
γk(G′) ≤

|V(G′)|
2k+1 .

Let

X = V(Gx)− {x, x1, . . . , xk},

Y = V(Gy)− {y, y1, . . . , yk},

Z = {xk, . . . , x1, x, y, y1, . . . , yk},

p = |V(Gx)|,

q = γk(Gx).

By the induction hypothesis, we have,

σ(G) =

(∑
a,b∈X

+
∑
a,b∈Y

+ 2
∑

a∈X,b∈Y

)
dG(a, b)+ σ (G[Z])

+ 2
∑

a∈X∪Y

(
k∑

i=1
dG(a, xi)+ dG(a, x)+ dG(a, y)+

k∑
i=1

dG(a, yi)

)
=

∑
a,b∈X

dG′(a, b)+
∑
a,b∈Y

dG′(a, b)+ 2
∑

a∈X,b∈Y

(dG′(a, b)+ (2k+ 1))

+σ (G[Z])+ 2
∑
a∈X

((2k+ 1)dG(a, x)+ dG′(a, z)+ 2k+ 1)

+ 2
∑
a∈Y

((2k+ 1)dG(a, y)+ dG′(a, z)+ 2k+ 1)

=
∑
a,b∈X

dG′(a, b)+
∑
a,b∈Y

dG′(a, b)+ 2
∑

a∈X,b∈Y

(dG′(a, b)+ (2k+ 1))

+σ (G[Z])+ 2
∑

a∈X∪Y

dG′(a, z)+ 2(2k+ 1)
∑
a∈X

(dG(a, x)+ 1)

+ 2(2k+ 1)
∑
a∈Y

(dG(a, y)+ 1)

= σ(G′)+ 2(2k+ 1)|X||Y| +
1
3
(2k+ 1)(2k+ 2)(2k+ 3)

+ 2(2k+ 1)
(
σ(x,Gx)+ σ(y,Gy)− k(k+ 1)+ |X| + |Y|

)
= σ(G′)+ 2(2k+ 1)|X||Y| +

1
3
(2k+ 1)(2k+ 2)(2k+ 3)

+ 2(2k+ 1)
(
σ(x,Gx)+ σ(y,Gy)− k(k+ 1)+ n− (2k+ 2)

)
≤ σ

(
Gn−(2k+1),γk−1

)
+ 2(2k+ 1)n−

1
3
(2k+ 6)(2k+ 1)(k+ 1)

+ 2(2k+ 1)
[
(p− (k+ 1)) (n− p− (k+ 1))+ σ(v1, Hp,q)+ σ(v1, Hn−p,γk−q)

]
. (3.1)

Let

F(p, q) = (p− (k+ 1)) (n− p− (k+ 1))+ σ(v1, Hp,q)+ σ
(
v1, Hn−p,γk−q

)
.

Case 1. q ≥
⌈

p
2k+1

⌉
or γk− q ≥

⌈
n−p

2k+1

⌉
. Without loss of generality, we only prove q ≥

⌈
p

2k+1

⌉
, then γk− q ≤ γk−

⌈
p

2k+1

⌉
≤

n−p
2k+1 .
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If q = d p
2k+1 e, then

F(p, q) = (p− (k+ 1)) (n− p− (k+ 1))+
p(p− 1)

2
+ ((2k+ 1)(γk − q)− 1)

(
n− p−

2k+ 1
2

(γk − q)
)

.

(3.2)

Since F′p(p, q) ≥
1
2 > 0, then F(p, q) ≤ F ((2k+ 1)q, q). Since G is a graph with k-domination number γk and maximum

transmission, then σ(G) ≥ σ(Gn,γk). By (3.1) and (3.2) and γk < n
2k+1 , we get a contradiction as follows,

0 ≤ σ
(
Gn−(2k+1),γk−1

)
+ 2(2k+ 1)n−

1
3
(k+ 1)(2k+ 1)(2k+ 6)+ 2(2k+ 1)F ((2k+ 1)q, q)− σ

(
Gn,γk

)
= −

k+ 1
2

(n− (2k+ 1)γk)
2 < 0.

If q >
⌈

p
2k+1

⌉
, then σ(v1, Hp,q) < σ

(
v1, H

p,
⌈

p
2k+1

⌉). By γk − q ≤ γk −
⌈

p
2k+1

⌉
≤

n−p
2k+1 , we have σ(v1, Hn−p,γk−q) <

σ

(
v1, H

n−p,γk−
⌈

p
2k+1

⌉). Thus, F(p, q) < F
(
p, d p

2k+1 e
)

and we can get the same contradiction as above.

Case 2. q ≤ p
2k+1 and γk − q ≤ n−p

2k+1 .
We have,

F(p, q) = −
[
p−

(
n− (2k+ 1)γk

2
+ (2k+ 1)q

)]2

+
n2

4
+

2k+ 1
2

γkn

−
(2k+ 1)2

4
γ2
k − (k+ 2)n+

2k+ 1
2

γk + (k+ 1)2,

that is,

F(p, q) ≤ F
(
(2k+ 1)q+

⌊
n− (2k+ 1)γk

2

⌋
, q
)

=



n2

4
+

2k+ 1
2

γkn−
(2k+ 1)2

4
γ2
k − (k+ 2)n+

2k+ 1
2

γk + (k+ 1)2
;

if n− γk is even
n2

4
+

2k+ 1
2

γkn−
(2k+ 1)2

4
γ2
k − (k+ 2)n+

2k+ 1
2

γk + (k+ 1)2
+

1
4
;

if n− γk is odd.

(3.3)

Since G is a graph with k-domination number γk and maximum transmission, then σ(G) ≥ σ(Gn,γk). We can calculate
σ
(
Gn−(2k+1),γk−1

)
and σ(Gn,γk) by the shape of Gn,γk defined in Definition 3.1. By (3.1) and (3.3), we obtain that,

0 ≤ σ
(
Gn−(2k+1),γk−1

)
+ 2(2k+ 1)n−

1
3
(k+ 1)(2k+ 1)(2k+ 6)

+ F
(
(2k+ 1)q+

⌊
n− (2k+ 1)γk

2

⌋
, q
)
− σ(G)

≤ σ
(
Gn−(2k+1),γk−1

)
+ 2(2k+ 1)n−

1
3
(k+ 1)(2k+ 1)(2k+ 6)

+ F
(
(2k+ 1)q+

⌊
n− (2k+ 1)γk

2

⌋
, q
)
− σ(Gn,γk)

= 0. (3.4)

This yields σ(G) = σ(Gn,γk).
Now we only need to prove the uniqueness of the extremal graph Gn,γk . Since equality σ(G) = σ(Gn,γk) implies the equal-

ity in (3.2), we have σ(G′) = σ
(
Gn−(2k+1),γk−1

)
, σ(x,Gx) = σ

(
v1, Hp,q

)
and σ(y,Gy) = σ

(
v1, Hn−p,γk−q

)
. By the induction

hypothesis, G′ = Gn−(2k+1),γk−1. By the uniqueness of Lemma 2.9, we get Gx = Hp,q and Gy = Hn−p,γk−q.
It is easy to see that Gn,γk is the only class of graphs satisfying all of these properties and the theorem holds. �

Corollary 3.3 (Dankelmann, Theorem 1 in [6]). Let G be a connected graph of order n and domination number γ ≤ n
3 . Then we

have

µ(G) ≤


n+ 1

3
−

(n− 3γ)(n− 3γ + 2)(2n+ 3γ − 7)

6n(n− 1)
, if n− γ is even;

n+ 1
3
−

(n− 3γ)(n− 3γ + 2)(2n+ 3γ − 7)− 9(γ − 1)

6n(n− 1)
, if n− γ is odd.

The equality holds if and only if G = Gn,γ .
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Fig. 5. The extremal graph Dn,γk with
⌈

n
2k+1

⌉
< γk ≤

⌊
n

k+1

⌋
.

Definition 3.4. For positive integers n and γk with
⌈

n
2k+1

⌉
< γk ≤

⌊
n

k+1

⌋
, let s and t be the quotient and the reminder of the

division of (2k + 1)γk − n by k and let A be defined as in Definition 2.5. Let Dn,γk be the graph obtained from a single path
P2n−(2k+1)γk =

(
v1, v2, . . . , v2n−(2k+1)γk

)
, by attaching exactly one Pk to the vertex vi for 1 ≤ i ≤ d s2 e; by attaching exactly one

Pk to the vertex v2n−(2k+1)γk+1−j for 1 ≤ j ≤ b s2 c; and by attaching exactly one path Pt to the vertex vdme+A+t−k (see Fig. 5).

Theorem 3.5. Let G be a graph of order n with k-domination number γk >
⌈

n
2k+1

⌉
. Let s and t be the quotient and the reminder

of the division of (2k+ 1)γk − n by k, namely (2k+ 1)γk − n = sk+ t, where s ≥ 0 and 0 ≤ t ≤ k− 1, and assume A, B, C,D as
in Definition 2.5.

If γk−n−t
k

is even, then

µ(G) ≤
n+ 1

3
−

B

6n(n− 1)
[((2k+ 1)γk − n− t − 2k) (C − 2(k+ 1))

+ 3t (D− 2)]− 2t(k− t)
(
A+ t − k− 1

n(n− 1)

)
. (3.5)

If γk−n−t
k

is odd, then

µ(G) ≤
n+ 1

3
−

B− k− 1
6n(n− 1)

[((2k+ 1)γk − n− t − 3k) (C − (k+ 1))

+ 3t (D+ 2k)+ 3 (kD+ (k− 1)t − k(k+ 1))]− 2t(k− t)
(

A+ t

n(n− 1)

)
. (3.6)

The equality holds if and only if G = Dn,γk .

Proof. The proof proceeds by induction on n. Since the bounds in (3.5) and (3.6) are strictly decreasing in γk, it suffices to
prove the statements for all graphs with k-domination number greater than or equal to a given number γk. For n ≤ 3k+ 3,
by d n

2k+1 e < γk ≤ b
n

k+1 c, we can see, by some calculations, that the statement holds. So we can assume n ≥ 3k+ 4.
Let G be a connected graph of order n and k-domination number γk(G) ≥ γk with maximum transmission. By Lemma 2.1,

G is a tree.
Let Ph ◦ Pk denote the graph obtained by attaching a path Pk to each vertex of Ph. We will first show that G contains at

least one induced subgraph isomorphic to Ph ◦ Pk for some positive integer h. Then the graph obtained by shrinking Ph ◦ Pk to
Ph−1 ◦ Pk will have k-domination number less than γk(G), to which the induction hypothesis can be applied.

Let a and b be two vertices of G such that dG(a, b) = diam(G), and let Pab denote a diametral path in G. Let Paak =
(a, a1, . . . , ak) and Pbbk = (b, b1, . . . , bk) be two subpaths of Pab. Note that they do not overlap. Otherwise, we get γk(G) = 1, a
contradiction to γk > d n

2k+1 e and n ≥ 3k + 4. By the choice of the vertices a and b, deg(a) = deg(b) = 1. Furthermore,
deg(ai) = 2 and deg(bi) = 2, for i = 1, 2, . . . , k. Otherwise, if ai is adjacent to another vertex a′i not on Pab, then
G′ = G− ai−1ai + ai−1a′i satisfies γk(G′) ≥ γk(G) and σ(G′) > σ(G), a contradiction to the assumption of G. Let {c1, . . . , ck} and
{d1, . . . , dk} be two subpaths of Pab − Paak − Pbbk such that c1 is adjacent to ak, and d1 is adjacent to bk. Note that they may
overlap.
Case 1. deg(c1) = 2 or deg(d1) = 2. Without loss of generality, we assume that deg(c1) = 2.

If deg(ci) = 2 for i = 1, 2, . . . , k, let G′ = G−{a, a1, . . . , ak, c1, . . . , ck}. Then G′ is connected and has k-domination number
γk(G)− 1 ≥ γk − 1. Let V ′ = V(G′). By Lemma 2.9 and the induction hypothesis,

σ(G) =

 ∑
x,y∈V′
+ 2

∑
x∈V′

y∈V(G)−V′

+
∑

x,y∈V(G)−V′

 dG(x, y)

= σ(G′)+ 2
∑
x∈V′

(
(2k+ 1)dG(a, x)−

(2k+ 1)2k
2

)
+

(2k+ 1)(2k+ 2)2k
3
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Fig. 6. The structure of G as deg(ci) ≥ 3 for i ∈ {2, . . . , k} and deg(dj) ≥ 3 for j ∈ {2, . . . , k}.

= σ(G′)+ 2(2k+ 1)σ(a,G)− 2k(2k+ 1)n+
(2k+ 1)(2k+ 2)2k

3

≤ σ(Dn−(2k+1),γk−1)+ 2(2k+ 1)σ
(
a, Hn,γk

)
− 2k(2k+ 1)n+

(2k+ 1)(2k+ 2)2k
3

. (3.7)

Since the assumption on G, we have σ(G) ≥ σ
(
Dn,γk

)
. By Lemma 2.9 and (3.7), we get,

0 ≥ σ
(
Dn,γk

)
− σ

(
Dn−(2k+1),γk−1

)
− 2(2k+ 1)σ

(
v1, Hn,γk

)
+ 2k(2k+ 1)n−

(2k+ 1)(2k+ 2)2k
3

=



(1+ k)(1+ 2k)
2k

(
n2
− t2

)
+

(
(1+ k)(1+ 2k)3

2k

)
γ2
k −

(
(1+ k)(1+ 2k)2

k

)
γkn+ 2(1+ k)(1+ 2k)n

−2(1+ k)(1+ 2k)2γk + 2k(1+ k)(1+ 2k) if
γk − n− t

k
is even;

(1+ k)(1+ 2k)
2k

(
n2
− t2

)
+

(
(1+ k)(1+ 2k)3

2k

)
γ2
k −

(
(1+ k)(1+ 2k)2

k

)
γkn

+(1+ k)(1+ 2k)(2n+ t)− 2(1+ k)(1+ 2k)2γk +
3
2
k(1+ k)(1+ 2k) if

γk − n− t

k
is odd.

(3.8)

Let F(n, γk) be the latter expression in (3.8). For constants n and γk(G) ≥ d n
2k+1 e + 1 ≥ n+(2k+1)

2k+1 , we get dF(n,γk)
dγk

> 0. When
γk(G) = n+(2k+1)

2k+1 , then (2k+ 1)γk − n = 2k+ 1. Thus, we have t = 0 if k = 1, and t = 1 if k 6= 1. Hence, we have

0 ≥ F(n, γk) ≥ F
(
n,

n+ (2k+ 1)

2k+ 1

)

=


−

(1+ 3k+ 2k2)(t2
− 1)

2k
if
γk − n− t

k
is even;

−
(1+ 3k+ 2k2)(k2

+ t2
− 2kt − 1)

2k
if
γk − n− t

k
is odd.

(3.9)

Inequality (3.9) is correct only in two cases. The first one is when γk−n−t
k

is even, n = (2k + 1)(γk − 1), k ≥ 2 and t = 1.
The second one is when γk−n−t

k
is odd, n = (2k + 1)(γk − 1), k = 1 and t = 0 or k = 2 and t = 1. Thus, equality holds in

(3.7) only at the above two cases. Then σ(a,G) = σ
(
a, H(2k+1)(γk−1),γk

)
and σ(G) = σ(D(2k+1)(γk−1),γk). By Lemma 2.9, we have

G = H(2k+1)(γk−1),γk . Notice that H(2k+1)(γk−1),γk = D(2k+1)(γk−1),γk . Therefore, the result follows in this case.
Suppose now that deg(ci) ≥ 3 for some i ∈ {2, . . . , k}. Thus, k ≥ 2. If deg(dj) = 2 for j = 1, . . . , k, then the result follows

with the same argument as above. So we assume that deg(dj) ≥ 3 for some j ∈ {2, . . . , k} below. Let ci be the nearest vertex
to a on Pab such that deg(ci) ≥ 3, and dj be the nearest vertex to b on Pab such that deg(dj) ≥ 3.

Let c′ and d′ denote the vertices, not on Pab, farthest from ci and dj, respectively. With the same method employed in the
proof of Lemma 2.7, we have k− i < dG(ci, c′) ≤ k and k− j < dG(dj, d′) ≤ k. In fact, we can also prove that dG(ci, c′) = k− i+1.
If dG(ci, c′) ≥ k− i+ 2, let c′′ be the neighbor of ci on Pcic′ and G′ = G− cici−1 + c′′ci−1,then γk(G′) = γk(G) and σ(G′) > σ(G),
a contradiction to the assumption of G. Similarly, let d′′ be the neighbor of dj on Pdjd′ , we can prove dG(dj, d′) = k − j + 1.
Furthermore, let M (M′) denote all vertices in the connected components of G− ci (G− dj) which contains no vertices in Pab.
We can prove G[M] = Pc′′c′ and G[M′] = Pd′′d′ . Suppose that v ∈ V(M) − Pc′′c′ exists such that v is adjacent to some vertex in
{ci}∪V(Pc′c′′). If G′ = G− ci−1ci+ ci−1v+ vci, then we have γk(G′) = γk(G) and σ(G′) > σ(G), a contradiction to the assumption
on G (see Fig. 6).

If ci = dj, then γk(G) = 3 and {ak, bk, ci} is a minimum k-dominating set for G. Since G has the maximum transmission
σ(G), we have i = j = k. Hence, n = 4k + 2. By (2k + 1)γk − n = 2k + 1 = sk + t and k ≥ 2, we have t = 1. Then we have
G = D4k+2,3. If ci 6= dj, we can calculate that σ(G) < σ(Dn,γk) by the definition of σ(G) =

∑
(u,v)∈V×V dG(u, v), see Figs. 5 and 6.

Case 2. Consider now the case deg(c1) > 2 and deg(d1) > 2.
We first deal with the cases when t = 0 and no assumption on γk−n−t

k
, or t 6= 0 and γk−n−t

k
is odd. Let wc be a neighbor of

c1 not on Pab. Then wc must be an end-vertex of Pk with no vertices on Pab. In fact, suppose that c1 is adjacent to an end-vertex
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of some P` = (w1
c ,w

2
c , . . . ,w

`
c ), where ` < k. Let G′ = G− akc1 + akw`c , then γk(G′) ≥ γk(G) and σ(G′) > σ(G), a contradiction

to the choice of G. Denote the path Pk by (w1
c ,w

2
c , . . . ,w

k
c).

Hence G contains an induced subgraph H1 = G[{a, a1, . . . , ak, c1,w1
c , . . . ,w

k
c}]with the following properties

P1 :


H1 is isomorphic to Ph1 ◦ Pk for some h1 ≥ 2;
NG (V(H1)) = {u} for some vertex u ∈ V(Ph1)
with deg

H1

(u) = 2

where NG(V(H)) denote the set of all vertices in H which are adjacent to some vertex in G− H.
Among all induced subgraphs H1 of G with properties P1, choose one of maximum order. Then the vertex u has two

neighbors in H1, one end-vertex u1 of Pk = (u1, u2, . . . , uk) and one vertex u′ with degree at least 2 in H1. Let Z denote the set
of the remaining neighbors of u in G− H1. We define a new graph

G′ = G− {u, u1, . . . , uk} + u′Z,

i.e., we delete the vertices {u, u1, . . . , uk} and join the neighbors of u in V(G)− V(H1) to u′.
With X = V(H1)− {u, u1, . . . , uk}, and Y = V(G)− V(H1), we have

σ(G) =

(∑
x,y∈X

+
∑
x,y∈Y

+ 2
∑

x∈X,y∈Y

)
dG(x, y)+ 2

∑
x∈V(G)−{u,u1,...,uk}

(
dG(u, x)+

k∑
i=1

dG(ui, x)

)

+
1
3
k(k+ 1)(k+ 2)

=

(∑
x,y∈X

+
∑
x,y∈Y

+ 2
∑

x∈X,y∈Y

)
dG′(x, y)+ 2 ((k+ 1)h1 − (k+ 1)) (n− (k+ 1)h1)

+ 2
∑

x∈V(G)−{u,u1,...,uk}

(
(k+ 1)dG(uk, x)−

k(k+ 1)

2

)
+

1
3
k(k+ 1)(k+ 2)

= σ(G′)+ 2(k+ 1)(h1 − 1) (n− (k+ 1)h1)+ 2(k+ 1) (σ(uk,H1)+ σ(uk,G− X))

− k(k+ 1)n−
1
3
k(k+ 1)(2k+ 1).

It is easy to check that γk(G′) = γk(G)− 1 and γk(G′) >
⌈
|V(G′)|
2k+1

⌉
. By the induction hypothesis and

γk(H1) = h1, γk(G− X) = γk − h1 + 1 ≥
|V(G)− X|

2k+ 1
,

we have

σ(G) ≤ σ
(
Dn−(k+1),γk−1

)
+ 2(k+ 1)(h1 − 1) (n− (k+ 1)h1)+ 2(k+ 1)σ

(
uk, H(k+1)h1,h1

)
+ 2(k+ 1)σ

(
uk, Hn−(k+1)h1+(k+1),γk−h1+1

)
− k(k+ 1)n−

k(k+ 1)(2k+ 1)

3
. (3.10)

Let F(h1) denote the latter expression in (3.10). By (2.1) and (2.2) in Lemma 2.9, we get σ
(
uk, H(k+1)h1,h1

)
and

σ
(
uk, Hn−(k+1)h1+(k+1),γk−h1+1

)
. σ

(
Dn−(k+1),γk−1

)
is also obtained from (3.5) and (3.6) because of the induction hypothesis.

By replacing them into F(h1), we get the derivative of F(h1) on h1 as

d(F(h1))

dh1
= 2(1+ k)(1+ 2k) ((1+ k)γk − n) ≤ 0.

That is, for constants n and γk, and h1 − 1 ≥
⌈

(2k+1)γk−n−t−k
2k

⌉
, F(h1) is a decreasing function on h1 and attains its maximum

at h1 =
⌈

(2k+1)γk−n−t
2k

⌉
. Thus, h1 =

B
2(k+1)

if γk−n−t
k

is even, and h1 =
B

2(k+1)
+

1
2 if γk−n−t

k
is odd. By (2.1), (2.2), (3.5), (3.6) and

(3.10), we see that the right-hand side of (3.10) equals the value of σ
(
Dn,γk

)
, that is,

σ(G) ≤ F
(⌈

(2k+ 1)γk − n− t

2k

⌉)
= σ

(
Dn−(k+1),γk−1

)
− k(k+ 1)n−

k(k+ 1)(2k+ 1)

3
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+



2(k+ 1)

(
B

2(k+ 1)
− 1

)(
n−

B

2

)
+ 2(k+ 1)σ

(
uk, H B

2 , B
2(k+1)

)
+ 2(k+ 1)σ

(
uk, Hn− B

2+(k+1),γk−
B

2(k+1)
+1

)
if
γk − n− t

k
is even;

2(k+ 1)

(
B

2(k+ 1)
−

1
2

)(
n−

B+ (k+ 1)

2

)
+ 2(k+ 1)σ

(
uk, H B+(k+1)

2 , B
2(k+1)

+
1
2

)
+ 2(k+ 1)σ

(
uk, H

n− B+(k+1)
2 +(k+1),γk−

B
2(k+1)

+
1
2

)
if
γk − n− t

k
is odd.

= σ
(
Dn,γk

)
.

Thus, as the cases when t = 0 and no assumption on γk−n−t
k

, or t 6= 0 and γk−n−t
k

is odd, the inequality of Theorem 3.5 is
proved. If the equality holds in Theorem 3.5, we have G′ = Dn−(k+1),γk−1 and H1 = H(k+1)h1,h1 for h1 =

⌈
(2k+1)γk−n−t

2k

⌉
. By the

induction hypothesis and the uniqueness of Lemma 2.9, Dn,γk is the only class of graphs satisfying all of the above properties.
Now we prove Theorem 3.5 when γk−n−t

k
is even and t 6= 0. By the same argument as above we can see that d1 must be

adjacent to an end-vertex w1
d of a path Pk = (w1

d,w
2
d, . . . ,w

k
d) which has no vertices on Pab. Hence G contains another induced

subgraph H2 = G
[{
b, b1, . . . , bk, d1,w1

d, . . . ,w
k
d

}]
with the following properties P2.

P2 :


H2 is isomorphic to Ph2 ◦ Pk for some h2 ≥ 2 ;
NG (V(H2)) = {v} for some vertex v ∈ V(Ph2)
with deg

H2

(v) = 2.

In addition to the graph H1, among all subgraphs H2 of G with the property P2, choose one of maximum order. Then the
vertex v has two neighbors in H2, one end-vertex v1 of Pk = (v1, . . . , vk) and one vertex v′ with degree at least 2 in H2. Let Z
denote the remaining neighbors of v in G− H2. Let

G′ = G− {u, u1, . . . , uk} − {v, v1, . . . , vk} + u′Z + v′Z,

that is, we delete the vertices u, u1, . . . , uk and v, v1, . . . , vk, joining the neighbors of u and v in V(G) − V(H1) − V(H2) to u′

and v′, respectively. Let

G′′ = G− H1 − H2 + {u, u1, . . . , uk} + {v, v1, . . . , vk}.

Let

X = V(H1)− V({u, u1, . . . , uk}),

Y = V(H2)− V({v, v1, . . . , vk}),

W = V(G)− V(H1)− V(H2).

By σ(G) =
∑

(x,y)∈V×V dG(x, y), we obtain,

σ(G) =

( ∑
x,y∈X

+
∑

x,y∈Y

+
∑

x,y∈W

+ 2
∑

x∈X ,y∈Y

+ 2
∑

x∈X ,y∈W

+ 2
∑

x∈Y ,y∈W

)
dG(x, y)

+ 2
∑

x∈X∪Y ∪W

(
dG(u, x)+

k∑
i=1

dG(ui, x)+ dG(v, x)+
k∑

i=1
dG(vi, x)

)

+
2
3
(k+ 1)(k+ 2)k+ 2

∑
x∈{u,u1,...,uk},
y∈{v,v1,...,vk}

dG(x, y)

=

[( ∑
x,y∈X

+
∑

x,y∈Y

+
∑

x,y∈W

)
dG′(x, y)+ 2

∑
x∈X ,y∈Y

(dG′(x, y)+ 2)

+ 2
∑

x∈X ,y∈W

(dG′(x, y)+ 1)+ 2
∑

x∈Y ,y∈W

(dG′(x, y)+ 1)

]

+

2
∑
x∈W

(
dG(u, x)+

k∑
i=1

dG(ui, x)+ dG(v, x)+
k∑

i=1
dG(vi, x)

)

+
2(k+ 1)(k+ 2)k

3
+ 2

∑
x∈{u,u1,...,uk}
y∈{v,v1,...,vk}

dG(x, y)+ σ(G[W])

− σ(G[W])
+ 2

∑
x∈X

((k+ 1)dG(uk, x)+ (k+ 1)dG(vk, x)− k(k+ 1))
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Fig. 7. The structure of G[W] as the equality holds in (3.12).

+ 2
∑
x∈Y

((k+ 1)dG(uk, x)+ (k+ 1)dG(vk, x)− k(k+ 1))

= σ(G′)+ 4(k+ 1)2(h1 − 1)(h2 − 1)+ 2(k+ 1) (n− (h1 + h2)(k+ 1)) (h1 + h2 − 2)

+σ(G′′)+ 2
∑
x∈X

((k+ 1)dG(uk, x)+ (k+ 1) (dG(uk, x)+ d)− k(k+ 1))

+ 2
∑
x∈Y

((k+ 1) (dG(vk, x)+ d)+ (k+ 1)dG(vk, x)− k(k+ 1))− σ(G[W])

= σ(G′)+ σ(G′′)+ 4(k+ 1)σ
(
uk, Hh1(k+1),h1

)
+ 4(k+ 1)σ

(
vk, Hh2(k+1),h2

)
+ 4(k+ 1)2(h1 − 1)(h2 − 1)

+ 2(k+ 1)2(h1 + h2 − 2)(d− k)− 4k(k+ 1)2

+ 2(k+ 1) (n− (h1 + h2)(k+ 1)) (h1 + h2 − 2)− σ(G[W]) (3.11)

where d = dG(u, v).
It is easy to check that γk(G′) = γk(G)− 2 and γk(G′) >

⌈
|V(G′)|
2k+1

⌉
; γk(G′′) = γk(G)− h1 − h2 + 2 and γk(G′′) >

⌈
|V(G′′)|
2k+1

⌉
. By

the induction hypothesis and (3.11), we have

σ(G) ≤ σ
(
Dn−2(k+1),γk−2

)
+ σ

(
Dn−(h1+h2−2)(k+1),γk−(h1+h2−2)

)
+ 4(k+ 1)σ

(
uk, Hh1(k+1),h1

)
+ 4(k+ 1)σ

(
vk, Hh2(k+1),h2

)
+ 4(k+ 1)2(h1 − 1)(h2 − 1)+ 2(k+ 1)2(h1 + h2 − 2)(d− k)− 4k(k+ 1)2

+ 2(k+ 1) (n− (h1 + h2)(k+ 1)) (h1 + h2 − 2)− σ(G[W]). (3.12)

Let F(h1, h2) denote the latter expression in (3.12). The equality holds in (3.12) if and only if G′ = Dn−2(k+1),γk−2 and
G′′ = Dn−(h1+h2−2)(k+1),γk−(h1+h2−2). Thus, by the structure of Dn−2(k+1),γk−2 or Dn−(h1+h2−2)(k+1),γk−(h1+h2−2), we get that the
shape of G[W] (see Fig. 7), and d = n+ 1− (k+ 1)(h1+ h2)− t. By σ(G[W]) =

∑
(x,y)∈V(G[W])×V(G[W]) dG(x, y) and Fig. 7, we have

σ(G[W]) =
(d− 1)d(d− 2)

3
+

t(t + 1)(t − 1)

3
+ t(k− t)(k− t + 3)

+ t(d+ t − k− 1)(d+ t − k)+ t(t − 1)(d− 1). (3.13)

By (3.12), (3.13) and d = n+ 1− (k+ 1)(h1 + h2)− t, we get that

∂(F(h1, h2))

∂h1
< 0 and

∂(F(h1, h2))

∂h2
< 0.

That is, for constants n and γk,

h1 − 1 ≥
(2k+ 1)γk − n− t − 2k

2k
and h2 − 1 ≥

(2k+ 1)γk − n− t − 2k
2k

,

F(h1, h2) attains its maximum at h1 =
(2k+1)γk−n−t

2k and h2 =
(2k+1)γk−n−t

2k . Thus,

h1 = h2 =
B

2(k+ 1)
and h1 + h2 =

B

k+ 1
.

Now we can get

σ
(
uk, Hh1(k+1),h1

)
= σ

(
vk, Hh2(k+1),h2

)
= σ

(
v, H B

2 , B
2(k+1)

)
by (2.1) and (2.2) in Lemma 2.9; σ

(
Dn−2(k+1),γk−2

)
and

σ
(
Dn−(h1+h2−2)(k+1),γk−(h1+h2−2)

)
= σ

(
Dn−(B−2(k+1)),γk−

B
k+1+2

)
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by the induction hypothesis; σ(G[W]) by (3.13), and

d = n+ 1− (k+ 1)(h1 + h2)− t.

Hence, we can calculate that, for γk−n−t
k

even and t 6= 0,

σ(G) ≤ F
(

(2k+ 1)γk − n− t

2k
,
(2k+ 1)γk − n− t

2k

)
= σ

(
Dn−2(k+1),γk−2

)
+ σ

(
Dn−(B−2(k+1)),γk−

B
k+1+2

)
− σ(G[W])

+ 2(k+ 1) (B− 2(k+ 1)) (n+ 1− B− t − k)+ 2(k+ 1) (n− B)

(
B

k+ 1
− 2

)
+ 4(k+ 1)σ

(
v1, H B

2 , B
2(k+1)

)
+ 4(k+ 1)σ

(
v1, H B

2 , B
2(k+1)

)
+ 4(k+ 1)2

(
B

2(k+ 1)
− 1

)2

= σ(Dn,γk).

The uniqueness of the graph can be easily verified by the the induction hypothesis. �

Corollary 3.6 (Dankelmann, Theorem 2 in [6]). Let G be a graph of order n with domination number γ ≥ n
3 . Then

µ(G) ≤


n+ 1

3
−

(3γ − n)(3γ − n− 2)(5n− 6γ − 4)

3n(n− 1)
, if n− γ is even;

n+ 1
3
−

(3γ − n− 1)(3γ − n− 3)(5n− 6γ − 2)+ 6(2n− 3γ − 1)

3n(n− 1)
, if n− γ is odd.

The equality holds if and only if G = Dn,γ .
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