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Abstract

A connected graph G = (V, E) is said to be (a,d)- antimagic, for
some positive integers a and d, if its edges admit a labeling by all
the integers in the set {1,2, ..., |E(G)|} such that the induced vertex
labels, obtained by adding all the labels of the edges adjacent to each
vertex, consist of an arithmetic progression with the first term a and
the common difference d. Mirka Miller and Martin Baca proved
that the generalized Petersen graph P(n,2) is (%8, 3)-antimagic

for n =0 (mod 4), n > 8 and conjectured that P(n, k) is (2%t8, 3)-

antimagic for even n and 2 < k < § — 1. The first author of this

paper proved that P(n,3) is (2%, 3)-antimagic for even n > 6. In

this paper, we show that the generalized Petersen graph P(n,2) is
(3t8 3)-antimagic for n = 2 (mod 4), n > 10.
Keywords: (a,d)-antimagic labeling, Petersen graph, vertex label-

ing, edge labeling
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1 Introduction

Hartsfield and Ringel [2] introduced the concept of arithmetic graphs.
An arithmetic graph G is a graph whose edges can be labeled with the
integers 1,2,...,|E(G)| so that the sum of the labels at any given vertex
is different from the sum of the labels at any other vertex, in other words,
no two vertices receive the same weight, where the weight of a vertex is
defined in an obvious way. Hartsfield and Ringel conjectured that every
tree other than K5 is antimagic and, more strongly, every connected graph

other than K5 is antimagic.

Bodendiek and Walther[3] defined the concept of an (a,d)-antimagic
graph as a special case of an antimagic graph. Let G = (V, E) be a finite,
undirected and simple graph with vertex set V(G) and edge set E(G), and
let p = |V(G)| and ¢ = |E(G)| be the number of vertices and edges of G,
respectively. A connected graph G = (V, E) is called (a,d)- antimagic if
there exist positive integers a,d and a bijection f : F — {1,2,...,q} such
that the induced mapping gy : V' — N, defined by gs(v) = > f(uv), wv €
E(QG), is injective and ¢¢(V) = {a,a +d,...,a+ (p — 1)d}. In this case f

is called an (a, d)-antimagic labeling of G.

Bodendiek and Walther[4] proved that some graphs (including even cy-
cles, paths of even order, stars, C’ék), C;k), K3 3 and a tree with odd order
n > 5 and having a vertex adjacent to at least three end vertices) are not
(a, d)-antimagic. They also proved that Pay1 is (k, 1)-antimagic; Cogy1 is
(k+2,1)-antimagic; if a tree of odd order 2k +1(k > 1) is (a, d)-antimagic,
then d = 1 and a = k; if Ky (k > 2) is (a,d)-antimagic, then d is odd
and d < (2k + 1)(4k — 1) + 1; if Kokq1 (K > 2) is (a,d)-antimagic, then
d < (2k+1)(k—1)+1. For special graphs called parachutes, (a, d)-antimagic
labelings are described in [5, 6].

Let n and k be integers such that n > 3, 1 < k < n and n # 2k. For



such n, k, the generalized Petersen graph P(n, k) is defined by

V(P(n,k)) = {u;,v]1 <i < n},
E(P(n,k)) = {ujuir1, uvi, vivipg|l <i<n}

where and in the sequel the subscript of a vertex is computed modulo n
and taken the least positive residue of n, in other words, we take u,, and

vy, instead of ug and vy, respectively.

Since P(n,k)’s form an important class of 3-regular graphs with 2n
vertices and 3n edges, it is desirable to determine which P(n, k)’s are (a, d)-

antimagic.

Bodendiek and Walther[7] conjectured that P(n, 1) is (7%, 1)-antimagic

2
for even n and P(n,1) is (242, 2)-antimagic for odd n. These conjec-

tures were proved in %1, where it was also shown that P(n, 1) is (36, 3)-

antimagic for even n.

Mirka Miller and Martin Baca [9] proved that P(n,2) is (2%¢,3)-
antimagic for n = 0 (mod 4), n > 8 and conjectured that P(n, k) is (222, 3)-

antimagic for even n and 2 < k < % — 1. The first author [10] of this paper

proved that P(n,3) is (¥%t8, 3)-antimagic for even n > 6. In this paper,
we show that the generalized Petersen graph P(n,2) is (2%, 3)-antimagic
for n =2 (mod 4), n > 10.

2 Statement of the Main Result

Theorem 2.1 P(n,2) is (24, 3)-antimagic for n = 2 (mod 4), n > 10.

Proof. We consider three cases:
Case 1: n =10 (mod 12), n > 10.

For n > 10, we define the edge labeling f of P(n,2) as follows:



Snt5—i if1<i<n-—3andi=1 (mod 2),

flui—quy) = 2n — % if2<i<n-2andi=0 (mod 2),
3n+1—i ifn—1<i<n,

dn—loi ifl<i<n-—3andi=1 (mod 2),
3n+1—% if2<i<n-—4andi=0 (mod 2),
fluw) = —5+1+i ifi=n-2,
n+4+1 ifi=n-—1,
24 ifi =n.
i ifl<i<n-—1landi=1 (mod 2),
n+1—4 if2<i<23*andi=2 (mod 4),
n—1i if 2 <j<n—2andi=0 (mod 4),
floi—ov;) = 5 1—% if4§i§%mandi50(mod4)
and n > 10,
n_ i if 28 <i<n-—4andi=2(mod4),
2n ifi=n.

For two integers a and b with a < b, by [a,b] we denote the set of

consecutive integers from a to b. Set

A= {f(ui—1u;)|1 <i < nj,
B ={f(uv;) [l <i<n},
C = {f(vi_gvi)|1 S ) S n}



Then we have A = Ay U Ay U A3, where

Ay

A

As

{flujm1u;)|1 <i<n-—3and i =1 (mod 2)}
{ordi=t |1 <i<n-3andi=1 (mod 2)}
{32 +2,52 41, ,2n+5,2n + 4}

5n 5n
{2n+4,2n+5,..., 3¢ + 1, 5% + 2},
{f(ui—1u;)|2 <i<n—1and i=0 (mod 2)}
{2n—Z]2<i<n—-1andi=0 (mod 2)}
{2n—1,2n—2,...,32 42,32 4+ 1}
3n 3n
{74’1,74’2,,277]71},
{flujmu)in —=1<i<n}={3n+1—-idn—-1<i<n}
{2n+2,2n 4+ 1} = {2n+ 1,2n + 2},

B:BluBQUB3UB4UB5,Wh€I‘e

B

Bs
By
Bs

{f(u;v;)]1 <i<n—3andi=1 (mod 2)}
{3n5=1<i<n-3andi=1 (mod 2)}
m_1,3—2,...,n+2,n+1}
{n—&-l,n—i—?,...,%"—l},
{f(u;v;)|2<i<n—4andi=0 (mod 2)}
{3n+1-%2<i<n—4andi=0 (mod 2)}
{3n,3n—1,...,52 +4,32 + 3}

{22 4+3,32 +4,...,3n — 1,3n},

{fluvg)li =n =2} = {-5 +14ili=n -2} = {§ — 1},
{fluv))li=n—-1} ={n+4+ili=n—1} = {2n + 3},
[fww)li = n} = {2 +ili = n} = {32},



and C = U?:l C;, where

C1 = {fuigv)1<i<n—Tlandi=1 (mod2)}
= {ill<i<n-1landi=1 (mod 2)}
= {1,3,5,...,n—1},

Cy = {f(vi2v;)|2<i< 5% and i =2 (mod 4)}
= {n+1-%)2<i< 2% and i =2 (mod 4)}
= {n,n-2,...,n— 2519}
= {n—"_Glo,n—"_GQQ,...,n—Zn},

Cs = {f(vi2vy)|2F2 <i<n—2andi=0 (mod4)}
= {n—i22 <i<n-2andi=0 (mod4)}
= {n-—nf2p-_ndd 14}
= {%4—17%—}—3,...,71—”%14,71—”%'2,

Cy = {f(vi2vy)[4 <i< 2519 and i =0 (mod 4)}
= {Z2-1-i4<i<2% andi=0 (mod 4)}
— n n n n—4
= {53355 "%
o —4 7 —16
~ {3-2lg- gt g-58-9),

Cs = {f(vi2v)|2F2 <i<n—4andi=2 (mod4)}
= {Z-L22f <i<n—4andi=2 (mod 4)}

n nt+8 n n+20

- gomtgomp g
= {2,4,...,2 — 2420 2 _ nd8}

06 == {f(vi,gvi)h' = n} = {277,}

It is easy to see that

CiUCsUCyUB3UC3UCy
={1,3,...,n—-1}U{2,4,..., 2 — o420 2 _ nid

’ 2 6 72 6
U{g-—242-nd6 2_3lu{2-1}
U{%—i—l,%—&—i’),...,n—"'2147n—"T+2}
U{n—280 n—222  n-2n}

:{1,3,...,n—1}U{2,4,...,%—1}U{g—|—1,%+3,...,n}
={1,2,3,...,n} =[1,n],
B1UBsUAyUCg

={n+1,n+2,...,2-13u{Zu{3+1,22+2,...,2n-1}U{2n}

={n+1,n+2,...,2n} = [n+1,2n]



and
A3UB4UA1 UBQ
={2n+1,2n+2}U{2n+3}U{2n+4,2n+5,..., 2 + 1,32 + 2}
U{3 +3,224+4,...,3n—1,3n}
={2n+1,2n+2...,3n} = [2n+ 1,3n].
So, we can prove that f(E(G)) = [1,3n].
Recall that for a vertex v € V(G), g(v) = 3, ,ep(q) f(wv). We now

prove that g;(V) = {gs(v)|lv € V} = {a + 3ili = 0,1,...,2n — 1}, where

__ 3n+6
a = 9 -

For convenience, define f(v) = $[gs(v) — a] and write
W = {hs(v)lv € V(G)}.

Then, in order to prove g¢(V) = {a + 3i[i = 0,1,...,2n — 1} it suffices to
show W = [0,2n — 1] or equivalently [0,2n — 1] C W.

By definition we see that
hy(ui) = 5 [f(uimiui) + f(uiuigr) + fluw) —al, 1 <i<n,
hy(vi) = % [f(vi—ovi) + f(viviga) + f(uv;) —a], 1 <i < n.
(1) For 1 <i<n-—3and i=1 (mod 2) we have

h‘f(vi) = % [f(vifﬂ)i) + f(UiUiJrz) + f(ulvl) - a]
= fli+i+2+ (225 —a] =,

(2) For i = n — 2 we have that

h‘f(vn*Q) = % [f(vn74vn72) + f(vn72vn) + f(un72vn72) - a]
= 2[n-"2+n-2)+2n+ (-2 +14+n-2)—a| =252
which and (1) imply [0, "7_2] CcCWwW.
(3) For i = n — 1 we have that

hp(no1) = % [f(vn—svn_1) + f(Un—101) + f(Un—10n—1) — d
= fn-1)+1+(n+44+n—-1)—a =2



which and (2) imply [0, 5] C W.

(4) For 2 <i<n—4 and i = 0 (mod 2) we have

hi(vi) = 2[(n—5H+H-F)+Bn+1-%)—a]=n-1-1,
which and (3) imply [0,n — 28] C W.

(5) For ¢ = n — 2 we have

(f(ui—1ui) + fuguivr) + f(uivi) — a)
[(@n—%)+3n+1-(i+1)—2+1+i—a] =n— 22,

hy (un—2)

Wl Wl

which and (4) imply [0,n — %2] C W.
(6) For 2 <i < =10 and i = 0 (mod 2) we have
hr(vi) = 2[n+1-LH)+(F-1-3F2)+@Bn+1-%)—a]=n—-1-4,
which and (5) imply [0,n — 2] C W.

(7) For i =n, 2% we have

%[Zn—kn—i—%”—a]:n_l’ ifi=n
he(e) =g gL+ 1= G+ (n - 2]
+5[Bn+1-25Y) —a] =n, ifi=251

which and (6) imply [0,n] C W.
(8) For 1 <i<n—3andi=1 (mod 2) we have
R R et
which and (7) imply [0, 22 — 1] C W.

(9) For n — 1 <7 < n we have

1
3

hp(us) = ¢ =% +1, ifi=n—1
$len+ D)+ (3 +2)+3 —a] =3, ifi=n



(10) For 2 <i<mn—4 and i =0 (mod 2) we have
hy(u;) = 3% {(Qn -9+ (75n+5;(i+1)) +@Brn+1-—4)— a] =2n— 1%
which and (9) imply [0,2n — 1] C W.
We complete the proof of Case 1.

Case 2: n =6 (mod 12) and n > 18.

For n > 18, we define the edge labeling f of P(n,2) as follows:

2n — 52 ifl<i<n-—3andi=1 (mod 2),
B 241-1% if2<i<n—2andi=0 (mod 2),
flumw) =y, iti—=n—1,
n—2 if i = n.
Snt5i if1<i<n—3andi=1 (mod 2),
3n+1—4% if2<i<n-—4andi=0 (mod 2),
flu) = n—4 ifi=n—2,
%4—3 ifi=n—1,
n+1 if i = n.




i ifl<i<n-—-3andi=1 (mod 2),

n—1 if i =2,
4 if i = 4,
6 if i = 6,

24144 if8<i<n—22andi=8 (mod 12),
24241 if10<i<n-—20andi=10 (mod 12),

24341 if12<i<n-—18andi=0 (mod 12),

1+ 1 if 14 <i<n-—16 and i = 2 (mod 12),
floiavy) = 2+ 4 if 16 <i<n—14 and i = 4 (mod 12),

3+% if18<i<n-—12and i =6 (mod 12),

21 if i = n — 10,

241 ifi =n—S8,

n ifi=n—6,

n—+2 ifi=n—4,

Bnt1 ifi=n-—2,
542 ifi=n-—1,
n—+3 if i = n.

In a similar way in Case 1, we can prove that f(E(G)) = [1,3n] and
gs(V)={a+3ili =0,1,...,2n — 1}. We omit the proof for short.

Case 3: n =2 (mod 12) and n > 14.

For n > 14, we define the edge labeling f of P(n,2) as follows:

fndd—t jf1<i<n-—3andi=1 (mod 2),
flui—qu;) = 2n — % if2<i<n-—2andi=0 (mod 2),
3n+1—i ifn—1<i<n,

dn-loi if1<i<n-—3andi=1 (mod 2),

3n+1—4% if2<i<n-—4andi=0 (mod 2),
fluw) = 5+1 ifi=n-—2,

2n+3 ifi=n-1,

3n if i = n.

2

10



i ifl<i<n-—1landi=1 (mod 2),

i if 2<i< 222 and i =0 (mod 2),
n+1—% if 4 <i<n—4andi=2 (mod 4),
Snt0ti (if 2419 <§ <n—6and i =0 (mod 8)

and n = 14 (mod 24) )
or (if 2419 <§ <n—6 and i = 4 (mod 8)
and n = 2 (mod 24)),

”‘TQH (if%mgign—Zandizél(modS)
and n = 14 (mod 24)),
or (if 2422 < <n—2and i =0 (mod 8)
and n = 2 (mod 24)),

2n if i =n.

f(Ui—ZUz') =

In a similar way in Case 1, we can prove that f(E(G)) = [1,3n] and
gr(V)={a+3ili=0,1,...,2n — 1}. We omit the proof for short.

According to the proof of Case 1, Case 2 and Case3, we thus conclude
that P(n,2) is a (258, 3)-antimagic for n = 2(mod 4),n > 10. The proof

is complete. O

In Figure 2.1, Figure 2.2 and Figure 2.3, we give (%%, 3)-antimagic
labeling for P(18,2) , P(22,2) and P(26,2).
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Figure 2.1 : The (248, 3)-antimagic labeling of the graph P(18,2).
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141

Figure 2.2 : The (w, 3)-antimagic labeling of the graph P(22,2).
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195 51 196 67 159

Figure 2.3 : The (%, 3)-antimagic labeling of the graph P(26,2).
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