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Abstract

A connected graph G = (V, E) is said to be (a, d)- antimagic, for

some positive integers a and d, if its edges admit a labeling by all

the integers in the set {1, 2, . . . , |E(G)|} such that the induced vertex

labels, obtained by adding all the labels of the edges adjacent to each

vertex, consist of an arithmetic progression with the first term a and

the common difference d. Mirka Miller and Martin Bac̆a proved

that the generalized Petersen graph P (n, 2) is ( 3n+6
2

, 3)-antimagic

for n ≡ 0 (mod 4), n ≥ 8 and conjectured that P (n, k) is ( 3n+6
2

, 3)-

antimagic for even n and 2 ≤ k ≤ n
2
− 1. The first author of this

paper proved that P (n, 3) is ( 3n+6
2

, 3)-antimagic for even n ≥ 6. In

this paper, we show that the generalized Petersen graph P (n, 2) is

( 3n+6
2

, 3)-antimagic for n ≡ 2 (mod 4), n ≥ 10.

Keywords: (a, d)-antimagic labeling, Petersen graph, vertex label-

ing, edge labeling
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1 Introduction

Hartsfield and Ringel [2] introduced the concept of arithmetic graphs.

An arithmetic graph G is a graph whose edges can be labeled with the

integers 1, 2, . . . , |E(G)| so that the sum of the labels at any given vertex

is different from the sum of the labels at any other vertex, in other words,

no two vertices receive the same weight, where the weight of a vertex is

defined in an obvious way. Hartsfield and Ringel conjectured that every

tree other than K2 is antimagic and, more strongly, every connected graph

other than K2 is antimagic.

Bodendiek and Walther[3] defined the concept of an (a, d)-antimagic

graph as a special case of an antimagic graph. Let G = (V, E) be a finite,

undirected and simple graph with vertex set V (G) and edge set E(G), and

let p = |V (G)| and q = |E(G)| be the number of vertices and edges of G,

respectively. A connected graph G = (V, E) is called (a, d)- antimagic if

there exist positive integers a, d and a bijection f : E → {1, 2, . . . , q} such

that the induced mapping gf : V → N , defined by gf (v) =
∑

f(uv), uv ∈
E(G), is injective and gf (V ) = {a, a + d, . . . , a + (p− 1)d}. In this case f

is called an (a, d)-antimagic labeling of G.

Bodendiek and Walther[4] proved that some graphs (including even cy-

cles, paths of even order, stars, C
(k)
3 , C

(k)
7 , K3,3 and a tree with odd order

n ≥ 5 and having a vertex adjacent to at least three end vertices) are not

(a, d)-antimagic. They also proved that P2k+1 is (k, 1)-antimagic; C2k+1 is

(k +2, 1)-antimagic; if a tree of odd order 2k +1(k > 1) is (a, d)-antimagic,

then d = 1 and a = k; if K4k (k ≥ 2) is (a, d)-antimagic, then d is odd

and d ≤ (2k + 1)(4k − 1) + 1; if K2k+1 (k ≥ 2) is (a, d)-antimagic, then

d ≤ (2k+1)(k−1)+1. For special graphs called parachutes, (a, d)-antimagic

labelings are described in [5, 6].

Let n and k be integers such that n ≥ 3, 1 ≤ k < n and n 6= 2k. For
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such n, k, the generalized Petersen graph P (n, k) is defined by

V (P (n, k)) = {ui, vi|1 ≤ i ≤ n},
E(P (n, k)) = {uiui+1, uivi, vivi+k|1 ≤ i ≤ n}

where and in the sequel the subscript of a vertex is computed modulo n

and taken the least positive residue of n, in other words, we take un and

vn instead of u0 and v0, respectively.

Since P (n, k)’s form an important class of 3-regular graphs with 2n

vertices and 3n edges, it is desirable to determine which P (n, k)’s are (a, d)-

antimagic.

Bodendiek and Walther[7] conjectured that P (n, 1) is ( 7n+4
2 , 1)-antimagic

for even n and P (n, 1) is ( 5n+5
2 , 2)-antimagic for odd n. These conjec-

tures were proved in [9], where it was also shown that P (n, 1) is ( 3n+6
2 , 3)-

antimagic for even n.

Mirka Miller and Martin Bac̆a [9] proved that P (n, 2) is ( 3n+6
2 , 3)-

antimagic for n ≡ 0 (mod 4), n ≥ 8 and conjectured that P (n, k) is ( 3n+6
2 , 3)-

antimagic for even n and 2 ≤ k ≤ n
2 − 1. The first author [10] of this paper

proved that P (n, 3) is ( 3n+6
2 , 3)-antimagic for even n ≥ 6. In this paper,

we show that the generalized Petersen graph P (n, 2) is ( 3n+6
2 , 3)-antimagic

for n ≡ 2 (mod 4), n ≥ 10.

2 Statement of the Main Result

Theorem 2.1 P (n, 2) is ( 3n+6
2 , 3)-antimagic for n ≡ 2 (mod 4), n ≥ 10.

Proof. We consider three cases:

Case 1: n ≡ 10 (mod 12), n ≥ 10.

For n ≥ 10, we define the edge labeling f of P (n, 2) as follows:
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f(ui−1ui) =





5n+5−i
2 if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

2n− i
2 if 2 ≤ i ≤ n− 2 and i ≡ 0 (mod 2),

3n + 1− i if n− 1 ≤ i ≤ n,

f(uivi) =





3n−1−i
2 if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

3n + 1− i
2 if 2 ≤ i ≤ n− 4 and i ≡ 0 (mod 2),

−n
2 + 1 + i if i = n− 2,

n + 4 + i if i = n− 1,
n
2 + i if i = n.

f(vi−2vi) =





i if 1 ≤ i ≤ n− 1 and i ≡ 1 (mod 2),

n + 1− i
2 if 2 ≤ i ≤ n−4

3 and i ≡ 2 (mod 4),

n− i
2 if n+2

3 ≤ i ≤ n− 2 and i ≡ 0 (mod 4),
n
2 − 1− i

2 if 4 ≤ i ≤ n−10
3 and i ≡ 0 (mod 4)

and n > 10,
n
2 − i

2 if n+8
3 ≤ i ≤ n− 4 and i ≡ 2 (mod 4),

2n if i = n.

For two integers a and b with a ≤ b, by [a, b] we denote the set of

consecutive integers from a to b. Set

A = {f(ui−1ui)|1 ≤ i ≤ n},
B = {f(uivi) |1 ≤ i ≤ n},
C = {f(vi−2vi)|1 ≤ i ≤ n}.
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Then we have A = A1 ∪A2 ∪A3, where

A1 = {f(ui−1ui)|1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2)}
= { 5n+5−i

2 | 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2)}
= { 5n

2 + 2, 5n
2 + 1, . . . , 2n + 5, 2n + 4}

= {2n + 4, 2n + 5, . . . , 5n
2 + 1, 5n

2 + 2},
A2 = {f(ui−1ui)|2 ≤ i ≤ n− 1 and i ≡ 0 (mod 2)}

= {2n− i
2 | 2 ≤ i ≤ n− 1 and i ≡ 0 (mod 2)}

= {2n− 1, 2n− 2, . . . , 3n
2 + 2, 3n

2 + 1}
= { 3n

2 + 1, 3n
2 + 2, . . . , 2n− 1},

A3 = {f(ui−1ui)|n− 1 ≤ i ≤ n} = {3n + 1− i|n− 1 ≤ i ≤ n}
= {2n + 2, 2n + 1} = {2n + 1, 2n + 2},

B = B1 ∪B2 ∪B3 ∪B4 ∪B5, where

B1 = {f(uivi)|1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2)}
= { 3n−1−i

2 |1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2)}
= { 3n

2 − 1, 3n
2 − 2, . . . , n + 2, n + 1}

= {n + 1, n + 2, . . . , 3n
2 − 1},

B2 = {f(uivi)|2 ≤ i ≤ n− 4 and i ≡ 0 (mod 2)}
= {3n + 1− i

2 |2 ≤ i ≤ n− 4 and i ≡ 0 (mod 2)}
= {3n, 3n− 1, . . . , 5n

2 + 4, 5n
2 + 3}

= { 5n
2 + 3, 5n

2 + 4, . . . , 3n− 1, 3n},
B3 = {f(uivi)|i = n− 2} = {−n

2 + 1 + i|i = n− 2} = {n
2 − 1},

B4 = {f(uivi)|i = n− 1} = {n + 4 + i|i = n− 1} = {2n + 3},
B5 = {f(uivi)|i = n} = {n

2 + i|i = n} = { 3n
2 },
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and C =
⋃6

i=1 Ci, where

C1 = {f(vi−2vi)|1 ≤ i ≤ n− 1 and i ≡ 1 (mod 2)}
= {i|1 ≤ i ≤ n− 1 and i ≡ 1 (mod 2)}
= {1, 3, 5, . . . , n− 1},

C2 = {f(vi−2vi)|2 ≤ i ≤ n−4
3 and i ≡ 2 (mod 4)}

= {n + 1− i
2 |2 ≤ i ≤ n−4

3 and i ≡ 2 (mod 4)}
= {n, n− 2, . . . , n− n−10

2 }
= {n− n−10

6 , n− n−22
6 , . . . , n− 2, n},

C3 = {f(vi−2vi)|n+2
3 ≤ i ≤ n− 2 and i ≡ 0 (mod 4)}

= {n− i
2 |n+2

3 ≤ i ≤ n− 2 and i ≡ 0 (mod 4)}
= {n− n+2

6 , n− n+14
6 , . . . , n

2 + 1}
= {n

2 + 1, n
2 + 3, . . . , n− n+14

6 , n− n+2
6 },

C4 = {f(vi−2vi)|4 ≤ i ≤ n−10
3 and i ≡ 0 (mod 4)}

= {n
2 − 1− i

2 |4 ≤ i ≤ n−10
3 and i ≡ 0 (mod 4)}

= {n
2 − 3, n

2 − 5, . . . , n
2 − n−4

6 }
= {n

2 − n−4
6 , n

2 − n−16
6 , . . . , n

2 − 5, n
2 − 3},

C5 = {f(vi−2vi)|n+8
3 ≤ i ≤ n− 4 and i ≡ 2 (mod 4)}

= {n
2 − i

2 |n+8
3 ≤ i ≤ n− 4 and i ≡ 2 (mod 4)}

= {n
2 − n+8

6 , n
2 − n+20

6 , . . . , 4, 2}
= {2, 4, . . . , n

2 − n+20
6 , n

2 − n+8
6 },

C6 = {f(vi−2vi)|i = n} = {2n}.

It is easy to see that

C1 ∪ C5 ∪ C4 ∪B3 ∪ C3 ∪ C2

= {1, 3, . . . , n− 1} ∪ {2, 4, . . . , n
2 − n+20

6 , n
2 − n+8

6 }
∪ {n

2 − n−4
6 , n

2 − n−16
6 , . . . , n

2 − 3} ∪ {n
2 − 1}

∪ {n
2 + 1, n

2 + 3, . . . , n− n+14
6 , n− n+2

6 }
∪ {n− n−10

6 , n− n−22
6 , . . . , n− 2, n}

= {1, 3, . . . , n− 1} ∪ {2, 4, . . . , n
2 − 1} ∪ {n

2 + 1, n
2 + 3, . . . , n}

= {1, 2, 3, . . . , n} = [1, n],

B1 ∪B5 ∪A2 ∪ C6

= {n + 1, n + 2, . . . , 3n
2 − 1} ∪ { 3n

2 } ∪ { 3n
2 + 1, 3n

2 + 2, . . . , 2n− 1} ∪ {2n}
= {n + 1, n + 2, . . . , 2n} = [n + 1, 2n]
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and

A3 ∪B4 ∪A1 ∪B2

= {2n + 1, 2n + 2} ∪ {2n + 3} ∪ {2n + 4, 2n + 5, . . . , 5n
2 + 1, 5n

2 + 2}
∪ { 5n

2 + 3, 5n
2 + 4, . . . , 3n− 1, 3n}

= {2n + 1, 2n + 2 . . . , 3n} = [2n + 1, 3n].

So, we can prove that f(E(G)) = [1, 3n].

Recall that for a vertex v ∈ V (G), gf (v) =
∑

uv∈E(G) f(uv). We now

prove that gf (V ) = {gf (v)|v ∈ V } = {a + 3i|i = 0, 1, . . . , 2n − 1}, where

a = 3n+6
2 .

For convenience, define hf (v) = 1
3 [gf (v)− a] and write

W = {hf (v)|v ∈ V (G)}.

Then, in order to prove gf (V ) = {a + 3i|i = 0, 1, . . . , 2n− 1} it suffices to

show W = [0, 2n− 1] or equivalently [0, 2n− 1] ⊆ W .

By definition we see that

hf (ui) = 1
3 [f(ui−1ui) + f(uiui+1) + f(uivi)− a] , 1 ≤ i ≤ n,

hf (vi) = 1
3 [f(vi−2vi) + f(vivi+2) + f(uivi)− a] , 1 ≤ i ≤ n.

(1) For 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2) we have

hf (vi) = 1
3 [f(vi−2vi) + f(vivi+2) + f(uivi)− a]

= 1
3

[
i + i + 2 + ( 3n−1−i

2 )− a
]

= i−1
2 ,

(2) For i = n− 2 we have that

hf (vn−2) = 1
3 [f(vn−4vn−2) + f(vn−2vn) + f(un−2vn−2)− a]

= 1
3

[
(n− n−2

2 + n− 2) + 2n + (−n
2 + 1 + n− 2)− a

]
= n−2

2 .

which and (1) imply [0, n−2
2 ] ⊆ W .

(3) For i = n− 1 we have that

hf (vn−1) = 1
3 [f(vn−3vn−1) + f(vn−1v1) + f(un−1vn−1)− a]

= 1
3 [(n− 1) + 1 + (n + 4 + n− 1)− a] = n

2 .
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which and (2) imply [0, n
2 ] ⊆ W .

(4) For n+2
3 ≤ i ≤ n− 4 and i ≡ 0 (mod 2) we have

hf (vi) = 1
3

[
(n− i

2 ) + (n
2 − i+2

2 ) + (3n + 1− i
2 )− a

]
= n− 1− i

2 ,

which and (3) imply [0, n− n+8
6 ] ⊆ W .

(5) For i = n− 2 we have

hf (un−2) = 1
3 (f(ui−1ui) + f(uiui+1) + f(uivi)− a)

= 1
3

[
(2n− i

2 ) + 3n + 1− (i + 1)− n
2 + 1 + i− a

]
= n− n+2

6 ,

which and (4) imply [0, n− n+2
6 ] ⊆ W .

(6) For 2 ≤ i ≤ n−10
3 and i ≡ 0 (mod 2) we have

hf (vi) = 1
3

[
(n + 1− i

2 ) + (n
2 − 1− i+2

2 ) + (3n + 1− i
2 )− a

]
= n− 1− i

2 ,

which and (5) imply [0, n− 2] ⊆ W .

(7) For i = n, n−4
3 we have

hf (vi) =





1
3

[
2n + n + 3n

2 − a
]

= n− 1, if i = n
1
3

[
(n + 1− n−4

6 ) + (n− n+2
6 )

]

+ 1
3

[
(3n + 1− n−4

6 )− a
]

= n, if i = n−4
3

which and (6) imply [0, n] ⊆ W .

(8) For 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2) we have

hf (ui) = 1
3

[
5n+5−i

2 + (2n− i+1
2 ) + 3n−1−i

2 − a
]

= 3n
2 − i+1

2 ,

which and (7) imply [0, 3n
2 − 1] ⊆ W .

(9) For n− 1 ≤ i ≤ n we have

hf (ui) =





1
3 [(2n + 2) + (2n + 1) + (2n + 3)− a]

= 3n
2 + 1, if i = n− 1

1
3

[
(2n + 1) + ( 5n

2 + 2) + 3n
2 − a

]
= 3n

2 , if i = n

which and (8) imply [0, 3n
2 + 1] ⊆ W .
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(10) For 2 ≤ i ≤ n− 4 and i ≡ 0 (mod 2) we have

hf (ui) = 1
3

[
(2n− i

2 ) + ( 5n+5−(i+1)
2 ) + (3n + 1− i

2 )− a
]

= 2n− i
2 ,

which and (9) imply [0, 2n− 1] ⊆ W .

We complete the proof of Case 1.

Case 2: n ≡ 6 (mod 12) and n ≥ 18.

For n ≥ 18, we define the edge labeling f of P (n, 2) as follows:

f(ui−1ui) =





2n− i−3
2 if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

5n
2 + 1− i

2 if 2 ≤ i ≤ n− 2 and i ≡ 0 (mod 2),

2 if i = n− 1,

n− 2 if i = n.

f(uivi) =





3n+5−i
2 if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

3n + 1− i
2 if 2 ≤ i ≤ n− 4 and i ≡ 0 (mod 2),

n− 4 if i = n− 2,
n
2 + 3 if i = n− 1,

n + 1 if i = n.
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f(vi−2vi) =





i if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

n− 1 if i = 2,

4 if i = 4,

6 if i = 6,
n
2 + 1 + i

2 if 8 ≤ i ≤ n− 22 and i ≡ 8 (mod 12),
n
2 + 2 + i

2 if 10 ≤ i ≤ n− 20 and i ≡ 10 (mod 12),
n
2 + 3 + i

2 if 12 ≤ i ≤ n− 18 and i ≡ 0 (mod 12),

1 + i
2 if 14 ≤ i ≤ n− 16 and i ≡ 2 (mod 12),

2 + i
2 if 16 ≤ i ≤ n− 14 and i ≡ 4 (mod 12),

3 + i
2 if 18 ≤ i ≤ n− 12 and i ≡ 6 (mod 12),

n
2 − 1 if i = n− 10,
n
2 + 1 if i = n− 8,

n if i = n− 6,

n + 2 if i = n− 4,
5n
2 + 1 if i = n− 2,
5n
2 + 2 if i = n− 1,

n + 3 if i = n.

In a similar way in Case 1, we can prove that f(E(G)) = [1, 3n] and

gf (V ) = {a + 3i|i = 0, 1, . . . , 2n− 1}. We omit the proof for short.

Case 3: n ≡ 2 (mod 12) and n ≥ 14.

For n ≥ 14, we define the edge labeling f of P (n, 2) as follows:

f(ui−1ui) =





5n+5−i
2 if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

2n− i
2 if 2 ≤ i ≤ n− 2 and i ≡ 0 (mod 2),

3n + 1− i if n− 1 ≤ i ≤ n,

f(uivi) =





3n−1−i
2 if 1 ≤ i ≤ n− 3 and i ≡ 1 (mod 2),

3n + 1− i
2 if 2 ≤ i ≤ n− 4 and i ≡ 0 (mod 2),

n
2 + 1 if i = n− 2,

2n + 3 if i = n− 1,
3n
2 if i = n.
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f(vi−2vi) =





i if 1 ≤ i ≤ n− 1 and i ≡ 1 (mod 2),

i if 2 ≤ i ≤ n−2
3 and i ≡ 0 (mod 2),

n + 1− i
2 if n+4

3 ≤ i ≤ n− 4 and i ≡ 2 (mod 4),
3n+6+i

4 ( if n+10
3 ≤ i ≤ n− 6 and i ≡ 0 (mod 8)

and n ≡ 14 (mod 24) )

or (if n+10
3 ≤ i ≤ n− 6 and i ≡ 4 (mod 8)

and n ≡ 2 (mod 24)),
n−2+i

4 (if n+22
3 ≤ i ≤ n− 2 and i ≡ 4 (mod 8)

and n ≡ 14 (mod 24)),

or (if n+22
3 ≤ i ≤ n− 2 and i ≡ 0 (mod 8)

and n ≡ 2 (mod 24)),

2n if i = n.

In a similar way in Case 1, we can prove that f(E(G)) = [1, 3n] and

gf (V ) = {a + 3i|i = 0, 1, . . . , 2n− 1}. We omit the proof for short.

According to the proof of Case 1, Case 2 and Case3, we thus conclude

that P (n, 2) is a ( 3n+6
2 , 3)-antimagic for n ≡ 2(mod 4), n ≥ 10. The proof

is complete. 2

In Figure 2.1, Figure 2.2 and Figure 2.3, we give (3n+6
2 , 3)-antimagic

labeling for P (18, 2) , P (22, 2) and P (26, 2).
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2 , 3)-antimagic labeling of the graph P (18, 2).
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Figure 2.3 : The (3n+6
2 , 3)-antimagic labeling of the graph P (26, 2).
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