A note on "The super connectivity of augmented cubes"

Meijie Ma ${ }^{\text {a,* }}$, Xuegong Tan ${ }^{\text {b }}$, Jun-Ming Xu ${ }^{\text {c }}$, Guizhen Liu ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\mathrm{b}}$ The College of Chinese Language and Culture, Jinan University, Guangzhou 510631, China
${ }^{\text {c }}$ Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
${ }^{\text {d }}$ School of Mathematics and System Science, Shandong University, Jinan 250100, China

ARTICLE INFO

Article history:

Received 8 June 2008
Received in revised form 13 January 2009
Available online 14 February 2009
Communicated by A.A. Bertossi

Keywords:

Augmented cube
Connectivity
Edge-connectivity
Interconnection networks
Super edge-connectivity

Abstract

The aim of this note is to mend a flaw in the proof of Theorem 2 in our paper [M. Ma, G. Liu, J.-M. Xu, The super connectivity of augmented cubes, Information Processing Letters 106 (2008) 59-63].

(c) 2009 Elsevier B.V. All rights reserved.

For the terminology and notation not given here, the reader is referred to [1]. Theorem 2 in [1] is stated as $\lambda^{\prime}\left(A Q_{n}\right)=4 n-4$ for $n \geqslant 5$. However, we find a flaw in the proof, that is, we misstate R 's edge-connectivity $2 n-1$ instead of $2 n-3$, which leads to an improper proof. Now we restate our result and give its proof.

Theorem. $\lambda^{\prime}\left(A Q_{n}\right)=4 n-4$ for $n \geqslant 2$.
Proof. It is clear that $\xi\left(A Q_{n}\right)=4 n-4$. By Lemma 2 in [1], we only need to prove $\lambda^{\prime}\left(A Q_{n}\right) \geqslant 4 n-4$ for $n \geqslant 2$. The proof proceeds by induction on $n \geqslant 2$.

It is trivially true for $A Q_{2}$. Suppose that the result is true for $A Q_{n-1}$ with $n \geqslant 3$. We will prove the result is true for $A Q_{n}$.

Let F be an arbitrary subset of edges in $A Q_{n}$ such that $|F| \leqslant 4 n-5$. We will prove that if $A Q_{n}-F$ contains no isolated vertices then $A Q_{n}-F$ is connected.

Like [1], we write $A Q_{n}=L \oplus R$, where $L \cong A Q_{n-1}^{0}$ and $R \cong A Q_{n-1}^{1}$, and call the edges between L and R crossed

[^0]edges (see Fig. 1). Every vertex of $A Q_{n}$ is incident with two crossed edges. Let $F_{L}=F \cap L$ and $F_{R}=F \cap R$. Without loss of generality, we may suppose that $\left|F_{L}\right| \geqslant\left|F_{R}\right|$. Then $\left|F_{R}\right| \leqslant\lfloor(4 n-5) / 2\rfloor=2 n-3$.

Our aim is to prove that if $A Q_{n}-F$ contains no isolated vertices then $A Q_{n}-F$ is connected. The proof strongly depends on whether $R-F_{R}$ is connected or not. However, in [1], we only showed this conclusion for the former, and neglected the later. Now, we replenish our proof. Suppose that $R-F_{R}$ is not connected. Then, $\left|F_{R}\right|=2 n-3=\lambda(R)$, $2 n-3 \leqslant\left|F_{L}\right| \leqslant 2 n-2$, and so there is at most one crossed edge in F. By the induction hypothesis, $\lambda^{\prime}(R)=4(n-1)-$ $4=4 n-8$. Since $\lambda(R)=2 n-3<4 n-8=\lambda^{\prime}(R)$ for $n \geqslant 3$, $R-F_{R}$ certainly contains an isolated vertex U and another connected component R^{\prime}.

Case 1. $L-F_{L}$ is connected. Since every vertex is incident with two crossed edges and at most one of them is in F, every vertex in R is connected to a vertex in L via a crossed edge not in F. Hence, $A Q_{n}-F$ is connected.

Case 2. $L-F_{L}$ is not connected.
If $\left|F_{L}\right|=2 n-2$, then every crossed edge is not in F. Every vertex in L is connected to a vertex in R^{\prime} via a crossed

Fig. 1. Illustrations for the proof of the theorem.
edge. The isolated vertex U in R is connected to a vertex in R^{\prime} via two crossed edges (see Fig. 1(a)). Hence, $A Q_{n}-F$ is connected.

If $\left|F_{L}\right|=2 n-3$, then there is at most one crossed edge in F. By the induction hypothesis, $\lambda^{\prime}(L)=4(n-1)-4=$ $4 n-8$. Since $\lambda(L)=2 n-3<4 n-8=\lambda^{\prime}(L)$ for $n \geqslant 3$, $L-F_{L}$ certainly contains an isolated vertex V and another connected component L^{\prime}. It is clear that L^{\prime} and R^{\prime} are connected via crossed edges. There are two crossed-
edge disjoint paths joining U (respectively, V) to $L^{\prime} \cup R^{\prime}$ (see Fig. 1(b) (c)), at least one of which contains no edges in F. Hence, $A Q_{n}-F$ is connected.

Thus, $A Q_{n}-F$ is connected, which means $\lambda^{\prime}\left(A Q_{n}\right) \geqslant$ $4 n-4$ for $n \geqslant 2$. The theorem follows.

References

[1] M. Ma, G. Liu, J.-M. Xu, The super connectivity of augmented cubes, Information Processing Letters 106 (2008) 59-63.

[^0]: * Corresponding author.

 E-mail address: mameij@zjnu.cn (M. Ma).

