Vol. 39, No. 3 Mar. 2009

JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

Article ID: 0253-2778(2009)03-0229-04

On addition of edges of graphs

HU Qing, XU Jun-ming

(Department of Mathematics, University of Science and Technology of China, Hefei 230026, China)

Abstract: Given positive integers t and $d(\geqslant 2)$, let P(t,d) denote the minimum diameter of a graph obtained by adding t extra edges to a path with diameter d. It was proved that P(6,4)=1, P(6,d)=2 for d=5,6,7, and

$$\lceil \frac{d}{7} \rceil \leqslant P(6,d) \begin{cases} \leqslant \lceil \frac{d}{7} \rceil + 2 & \text{if } h = 7; \\ \leqslant \lceil \frac{d}{7} \rceil + 1 & \text{otherwise,} \end{cases}$$

for d=7(2k-1)+h, where $k\geqslant 1$ and $1\leqslant h\leqslant 14$. Moreover, P(7,d)=2 for d=5,6,7,8, and

for d=8(2k-1)+h, where $k\geqslant 1$ and $1\leqslant h\leqslant 16$.

Key words: diameter; altered graphs; path; edge addition; minimum diameter

CLC number: O157. 5; TP302. 1 Document code: A

AMS Subject Classification (2000): 05C12

关于图的边添加

胡 青,徐俊明

(中国科学技术大学数学系,安徽合肥 230026)

摘要:给定任意正整数 t 和 $d(\geq 2)$,记 P(t,d) 为在直径 d 的路上加上 t 条边后所得图的最小直径. 证明了: P(6,4)=1; 当 d=5,6,7 时有 P(6,d)=2; 当 $d=7(2k-1)+h(k\geq 1,1\leq h\leq 14)$ 时有

$$\lceil \frac{d}{7} \rceil \leqslant P(6,d) \leqslant \begin{cases} \left| \frac{d}{7} \right| + 2 & \text{\textit{若}} h = 7; \\ \left| \frac{d}{7} \right| + 1 & \text{\textit{其他}}; \end{cases}$$

当 d=5,6,7,8 时有 P(7,d)=2; 当 d=8(2k-1)+h $(k \ge 1,1 \le h \le 16)$ 时有

Received: 2007-10-17; **Revised**: 2008-12-12

Foundation item: Supported by NNSF of China (10671191).

Biography: HU Qing, male, born in 1986, master. Research field: graphs and combinatorics.

Corresponding author: XU Jun-ming, Porf. E-mail: xujm@ustc. edu. cn

关键词:直径:变更图:路:加边:最小直径

0 Introduction

Let G = (V, E) be a simple undirected graph (without loops and multiple edges) with vertex-set V and edge-set E. Let P(t,d) denote the minimum diameter of a graph obtained by adding t extra edges to a path with diameter d. We follow Ref. [1] for graph-theoretical terminology and notation not defined here. It is well-known that when the underlying topology of an interconnection network of a system is modelled by a graph G, the diameter of G is an important measure for communication efficiency and message delay of the system^[2]. In a real-time system, the message delay must be limited within a given period since any message obtained beyond the bound may be worthless. If the message delay exceeds a given time-bound in a network, one often needs to add some links to the network to ensure that the reach of a message can be within a required time. This situation motivates Chung and Garey^[3] to propose the following wellknown "edge-addition problem" in graph theory: given positive integers t and d, what is the minimum diameter P(t,d) of the graph obtained by adding t edges to a path with diameter d?

It is easy to get that $P(1,d) = \left| \frac{d+1}{2} \right|$ for $d \geqslant$ 2. Schoone et al^[4] showed $P(2,d) = \left\lceil \frac{d+1}{3} \right\rceil$ for $d \geqslant 3$, and $P(3,d) = \left\lceil \frac{d+2}{4} \right\rceil$ for $d \geqslant 5$. Deng and $Xu^{[5]}$, Najim and $Xu^{[6]}$ proved that $\left|\frac{d}{5}\right| \leqslant P(4,d) \leqslant$ $\left| \frac{d}{5} \right| + 1 \text{ for } d \geqslant 4; \left| \frac{d}{6} \right| \leqslant P(5,d) \leqslant \left| \frac{d}{6} \right| + 1 \text{ for }$ $d \ge 4$, and $\left\lceil \frac{d}{t+1} \right\rceil \leqslant P(t,d) \leqslant \left\lceil \frac{d-2}{t+1} \right\rceil + 2.$

In this note, we prove that P(6,4) = 1, P(6,d)=2 for d=5,6,7, and

$$\left\lceil \frac{d}{7} \right\rceil \leqslant P(6,d) \leqslant \left\lceil \frac{d}{7} \right\rceil + 2 \text{ if } h = 7;$$
 $\left\lceil \frac{d}{7} \right\rceil + 1 \text{ otherwise,}$

for d=7(2k-1)+h, where $k\geqslant 1$ and $1\leqslant h\leqslant 14$. And P(7,d)=2 for d=5,6,7,8, and

for d=8(2k-1)+h, where $k \ge 1$ and $1 \le h \le 16$.

1 Several lemmas

Lemma 1.1 $P(t,d) \leq P(t,d')$ for $d \leq d'$.

This trivial lemma is obtained by a direct observation from the definitions.

Lemma 1. 2^[5] P(t,(2k-1)(t+1)+1)=2kfor any positive integer k.

Lemma 1. 3[3] For given positive integers t and d,

$$P(t,d) \geqslant \left\lceil \frac{d}{t+1} \right\rceil$$
.

Lemma 1.4 $P(6,7(2k-1)+h) \leq 2k+1$ for any positive integers k and h with $2 \le h \le 6$.

Proof Let d=7(2k-1)+h and $P=x_0x_1\cdots x_d$ be a simple path. The six vertices x_{2k-1} , x_{4k-1} , x_{6k} , x_{8k} , x_{10k} and x_{12k} partition P into seven segments:

$$P_1 = P(x_0, x_{2k-1}), P_2 = P(x_{2k-1}, x_{4k-1}),$$

 $P_3 = P(x_{4k-1}, x_{6k}), P_4 = P(x_{6k}, x_{8k}),$
 $P_5 = P(x_{8k}, x_{10k}), P_6 = P(x_{10k}, x_{12k}),$

$$P_7 = P(x_{12b}, x_d)$$
.

Let *G* be an altered graph obtained from *P* plus 6 extra edges $e_1 = x_0 x_{4k-1}$, $e_2 = x_{4k-1} x_{8k}$, $e_3 = x_{4k-1} x_{12k}$, $e_4 = x_{2k-1} x_{6k}$, $e_5 = x_{6k} x_{10k}$, $e_6 = x_{10k} x_d$ (see Fig. 1). Define 21 cycles as follows.

Fig. 1 Construction of Lemma 1. 4 for k=1 and h=6

$$C^{1} = P_{1} \cup P_{2} + e_{1},$$

$$C^{2} = P_{1} \cup P_{3} + e_{1} + e_{4},$$

$$C^{3} = P_{1} \cup P_{4} + e_{1} + e_{2} + e_{4},$$

$$C^{4} = P_{1} \cup P_{5} + e_{1} + e_{2} + e_{4} + e_{5},$$

$$C^{5} = P_{1} \cup P_{6} + e_{1} + e_{3} + e_{4} + e_{5},$$

$$C^{6} = P_{1} \cup P_{7} + e_{1} + e_{3} + e_{4} + e_{5} + e_{6},$$

$$C^{7} = P_{2} \cup P_{3} + e_{4},$$

$$C^{8} = P_{2} \cup P_{4} + e_{4} + e_{2},$$

$$C^{9} = P_{2} \cup P_{5} + e_{4} + e_{2} + e_{5},$$

$$C^{10} = P_{2} \cup P_{6} + e_{4} + e_{5} + e_{6} + e_{3},$$

$$C^{11} = P_{2} \cup P_{7} + e_{4} + e_{5} + e_{6} + e_{3},$$

$$C^{12} = P_{3} \cup P_{4} + e_{2},$$

$$C^{13} = P_{3} \cup P_{5} + e_{2} + e_{5},$$

$$C^{14} = P_{3} \cup P_{6} + e_{3} + e_{5},$$

$$C^{15} = P_{3} \cup P_{7} + e_{3} + e_{5} + e_{6},$$

$$C^{16} = P_{4} \cup P_{5} + e_{5},$$

$$C^{17} = P_{4} \cup P_{6} + e_{5} + e_{2} + e_{3},$$

$$C^{19} = P_{5} \cup P_{6} + e_{2} + e_{3},$$

$$C^{19} = P_{5} \cup P_{7} + e_{5} + e_{6} + e_{2} + e_{3},$$

$$C^{20} = P_{5} \cup P_{7} + e_{2} + e_{3} + e_{6},$$

$$C^{21} = P_{6} \cup P_{7} + e_{6}.$$

It is easy to see that,

$$\varepsilon(P_1) = 2k - 1, \ \varepsilon(P_2) = 2k, \ \varepsilon(P_3) = 2k + 1,$$

$$\varepsilon(P_4) = 2k, \ \varepsilon(P_5) = 2k, \ \varepsilon(P_6) = 2k,$$

$$\varepsilon(P_7) = 2k + h - 7.$$

Thus, we have

$$\varepsilon(C^1) = 4k$$
; $\varepsilon(C^{21}) \le 4k$;
 $\varepsilon(C^{16}) = 4k + 1$; $\varepsilon(C^{20}) \le 4k + 2$;
 $\varepsilon(C^i) = 4k + 2$, for $i = 2, 3, 7, 8, 12, 19$;
 $\varepsilon(C^i) = 4k + 3$, for $i = 4, 5, 9, 10, 13, 14, 17$;
 $\varepsilon(C^i) \le 4k + 3$, for $i = 6, 11, 15, 18$.

It is easy to see that for two vertices x and y of G,

they are contained in some cycle C^i as defined above. So, we have

$$\max\{d(C^i):\ 1\leqslant i\leqslant 21\}\leqslant \left\lfloor\frac{4k+3}{2}\right\rfloor=2k+1.$$

We get $P(6,7(2k-1)+h) \leq d(G) \leq 2k+1$ for any positive integers k and h with $2 \leq h \leq 6$.

Lemma 1.5 $P(7,8(2k-1)+h) \le 2k+2$ for any positive integers k and h with $2 \le h \le 8$.

Proof Let d=8(2k-1)+h and $P=x_0x_1\cdots x_d$ be a simple path. The seven vertices x_{2k-1} , x_{4k-1} , x_{6k} , x_{8k} , x_{10k} , x_{12k} and x_{14k} partition P into eight segments:

$$egin{aligned} P_1 &= P(x_0\,,x_{2k-1})\,,\ P_2 &= P(x_{2k-1}\,,x_{4k-1})\,,\ P_3 &= P(x_{4k-1}\,,x_{6k})\,,\ P_4 &= P(x_{6k}\,,x_{8k})\,,\ P_5 &= P(x_{8k}\,,x_{10k})\,,\ P_6 &= P(x_{10k}\,,x_{12k})\,,\ P_7 &= P(x_{12k}\,,x_{14k})\,,\ P_8 &= P(x_{14k}\,,x_{d})\,. \end{aligned}$$

Let *G* be an altered graph obtained from *P* plus seven extra edges $e_1 = x_0 x_{4k-1}$, $e_2 = x_{4k-1} x_{8k}$, $e_3 = x_{4k-1} x_{12k}$, $e_4 = x_{4k-1} x_d$, $e_5 = x_{2k-1} x_{6k}$, $e_6 = x_{6k} x_{10k}$, $e_7 = x_{10k} x_{14k}$ (see Fig. 2). Define 28 cycles as follows.

Fig. 2 Construction of Lemma 1.5 for k=1 and h=6

$$C^{1} = P_{1} \cup P_{2} + e_{1},$$
 $C^{2} = P_{1} \cup P_{3} + e_{1} + e_{5},$
 $C^{3} = P_{1} \cup P_{4} + e_{1} + e_{2} + e_{5},$
 $C^{4} = P_{1} \cup P_{5} + e_{1} + e_{2} + e_{5} + e_{6},$
 $C^{5} = P_{1} \cup P_{6} + e_{1} + e_{3} + e_{5} + e_{6},$
 $C^{6} = P_{1} \cup P_{7} + e_{1} + e_{3} + e_{5} + e_{6} + e_{7},$
 $C^{7} = P_{1} \cup P_{8} + e_{1} + e_{4} + e_{5} + e_{6} + e_{7},$
 $C^{8} = P_{2} \cup P_{3} + e_{5},$
 $C^{9} = P_{2} \cup P_{4} + e_{5} + e_{2},$
 $C^{10} = P_{2} \cup P_{5} + e_{5} + e_{6} + e_{2},$
 $C^{11} = P_{2} \cup P_{6} + e_{5} + e_{6} + e_{7},$
 $C^{12} = P_{2} \cup P_{7} + e_{5} + e_{6} + e_{7} + e_{3},$
 $C^{13} = P_{2} \cup P_{8} + e_{5} + e_{6} + e_{7} + e_{4},$
 $C^{14} = P_{3} \cup P_{4} + e_{2},$
 $C^{15} = P_{3} \cup P_{5} + e_{2} + e_{6},$
 $C^{16} = P_{3} \cup P_{6} + e_{3} + e_{6},$
 $C^{17} = P_{3} \cup P_{7} + e_{3} + e_{6} + e_{7},$

$$C^{18} = P_3 \cup P_8 + e_6 + e_7 + e_4$$
,
 $C^{19} = P_4 \cup P_5 + e_6$,
 $C^{20} = P_4 \cup P_6 + e_6 + e_2 + e_3$,
 $C^{21} = P_4 \cup P_7 + e_6 + e_7 + e_2 + e_3$,
 $C^{22} = P_4 \cup P_8 + e_6 + e_7 + e_2 + e_4$,
 $C^{23} = P_5 \cup P_6 + e_2 + e_3$,
 $C^{24} = P_5 \cup P_7 + e_2 + e_3 + e_7$,
 $C^{25} = P_5 \cup P_8 + e_2 + e_4 + e_7$,
 $C^{26} = P_6 \cup P_7 + e_7$,
 $C^{27} = P_6 \cup P_8 + e_3 + e_4 + e_7$,
 $C^{28} = P_7 \cup P_8 + e_3 + e_4$,

It is easy to see that,

$$\varepsilon(P_1) = 2k - 1$$
, $\varepsilon(P_2) = 2k$, $\varepsilon(P_3) = 2k + 1$, $\varepsilon(P_4) = 2k$, $\varepsilon(P_5) = 2k$, $\varepsilon(P_6) = 2k$, $\varepsilon(P_7) = 2k$, $\varepsilon(P_8) = 2k + h - 8$.

Thus, we have

$$\varepsilon(C^1) = 4k;$$

$$\varepsilon(C^i) = 4k + 1$$
, for $i = 19,26$;

$$\varepsilon(C^i) = 4k + 2$$
, for $i = 2, 3, 8, 9, 14, 23$;

$$\varepsilon(C^i) \leqslant 4k+2$$
, for $i=28$;

$$\varepsilon(C^i) = 4k + 3$$
, for $i = 4, 5, 10, 11, 15, 16, 20, 24$;

$$\varepsilon(C^i) \le 4k + 3$$
, for $i = 25, 27$;

$$\varepsilon(C^i) = 4k + 4$$
, for $i = 6, 12, 17, 21$;

$$\varepsilon(C^i) \leq 4k+4$$
, for $i = 7, 13, 18, 22$.

It is easy to see that for two vertices x and y of G, they are contained in some cycle C^i as defined above. So, we have

$$\max\{d(C^i): 1\leqslant i\leqslant 28\}\leqslant \left\lfloor\frac{4k+4}{2}\right\rfloor=2k+2.$$

Thus, $P(7,8(2k-1)+h) \leq d(G) \leq 2k+2$ for any positive integers k and h with $2 \leq h \leq 8$.

2 Proofs of main results

Theorem 2.1 P(6,4) = 1, P(6,d) = 2 for d=5,6,7, and

$$\left\lceil \frac{d}{7} \right\rceil \leqslant P(6,d) \leqslant \left\lceil \frac{d}{7} \right\rceil + 2 \text{ if } h = 7;$$
 $\left\lceil \frac{d}{7} \right\rceil + 1 \text{ otherwise,}$

for d=7(2k-1)+h, where $k\geqslant 1$ and $1\leqslant h\leqslant 14$.

Proof It is easy to verify that P(6,4)=1 and $P(6,d)=2=\left\lceil \frac{d}{7}\right\rceil+1$ if d=5, 6 or 7. Suppose $d\geqslant 8$ below. Note that for any positive integer

 $d(d \geqslant 8)$, there are positive integers k and h with $k \geqslant 1$ and $1 \leqslant h \leqslant 14$ such that d = 7(2k-1) + h. By

Lemma 1.3, we have $P(6,d) \ge \lceil \frac{d}{7} \rceil$. So we only need to prove $P(6,d) \le \lceil \frac{d}{7} \rceil + 1$.

If
$$h=1$$
, then

$$P(6,7(2k-1)+1) = 2k \leqslant \lceil \frac{d}{7} \rceil + 1$$

by Lemma 1. 2.

If
$$h=2,3,4,5,6$$
, then

$$P(6,7(2k-1)+h) \le 2k+1 = \lceil \frac{d}{7} \rceil + 1$$

by Lemma 1.4.

If
$$h=8,9,10,11,12,13,14$$
, then

$$P(6,7[2(k+1)-1]+1) = P(6,7(2k-1)+15) = 2(k+1) = 2k+2$$

by Lemma 1.2, and

$$P(6,7(2k-1)+h) \leqslant P(6,7(2k-1)+15) = 2k+2 = \left\lceil \frac{d}{7} \right\rceil + 1$$

by Lemma 1.1.

Thus, we have $\left\lceil \frac{d}{7} \right\rceil \leqslant P(6,d) \leqslant \left\lceil \frac{d}{7} \right\rceil + 1$ for any positive integer $d(d \geqslant 4$ and $d \neq 14k$, where $k = 1, 2, 3, \cdots$). It is easy to get $P(6, 14k) \leqslant 2k + 2 = \left\lceil \frac{d}{7} \right\rceil + 2$. And so the theorem holds. \square

Theorem 2.2 P(7, d) = 2 for d = 5, 6, 7, 8, and

for d=8(2k-1)+h, where $k\geqslant 1$ and $1\leqslant h\leqslant 16$.

Proof It is easy to verify that P(7,d) = 2 = d

$$\left| \begin{array}{c} \frac{d}{8} \right| + 1 \text{ if } d = 5, 6, 7 \text{ or } 8. \text{ Suppose } d \geqslant 9 \text{ below.} \end{array}$$

Note that for any positive d ($d \ge 8$), there are (下转第 264 页)

Bratislava: Ister Science Press, 1993.

- [8] Carroll R J, Fan J, Gijbels I, et al. Generalized partially linear single-index models[J]. J Am Statist Assoc, 1997, 92: 477-489.
- [9] Bates DM, Watts DG. Nonlinear Regression Analysis and Its Applications[M]. New York: John Wiley and Sons, 1988.
- [10] Fan J, Gijbels I. Local Polynomial Modelling and Its Applications[M]. New York: Chapel Hill and Louvain-la-Neuve, 1995.
- [11] Horowitz J L. Semiparametric Methods in Econometrics[M]. New York: Springe Verlag, 1998.
- [12] Naik P A, Tsai C L. Single-index model selections[J]. Biometrika, 2001, 88: 821-832.

(上接第 232 页)

positive integers k and h with $k \ge 1$ and $1 \le h \le 16$ such that d = 8(2k-1) + h. By Lemma 1.3, we have $P(7,d) \ge \left\lceil \frac{d}{8} \right\rceil$. So we only need to prove $P(7,d) \le \left\lceil \frac{d}{8} \right\rceil + 1$.

If h=1, then

$$P(7,8(2k-1)+1) = 2k \leqslant \left\lceil \frac{d}{8} \right\rceil$$

by Lemma 1.2.

If h=2,3,4,5,6,7,8, then

$$P(7,8(2k-1)+h) \le 2k+2 = \left\lceil \frac{d}{8} \right\rceil + 2$$

by Lemma 1.5.

If
$$h=9,10,11,12,13,14,15,16$$
, then
$$P(7,8[2(k+1)-1]+1) = P(7,8(2k-1)+17) = 2(k+1) = 2k+2$$

by Lemma 1.2, and

$$P(7,8(2k-1)+h) \leqslant P(7,8(2k-1)+17) = 2k+2 = \left\lceil \frac{d}{8} \right\rceil + 1$$

by Lemma 1.1.

Thus, we have

$$\left\lceil \frac{d}{8} \right\rceil \leqslant P(7,d) \leqslant$$

$$\begin{cases} \left\lceil \frac{d}{8} \right\rceil & \text{if } h = 1; \\ \left\lceil \frac{d}{8} \right\rceil + 2 & \text{if } h = 2, 3, 4, 5, 6, 7, 8; \\ \left\lceil \frac{d}{8} \right\rceil + 1 & \text{otherwise.} \end{cases}$$

The theorem is proved.

References

- [1] Xu Jun-ming. Theory and Application of Graphs [M].
 Dordrecht/Boston/London: Kluwer Academic
 Publishers, 2003.
- [2] Xu Jun-ming. Topological Structure and Analysis of Interconnection Networks [M]. Dordrecht/Boston/London: Kluwer Academic Publishers, 2001.
- [3] Chung F R K, Garey M R. Diameter bounds for altered graphs [J]. J Graph Theory, 1984, 8 (4): 511-534.
- [4] Schoone A A, Bodlaender H L, van Leeuwen J. Diameter increase caused by edge deletion [J]. J Graph Theory, 1987, 11(3): 409-427.
- [5] Deng Zhi-guo, Xu Jun-ming. On diameters of altered graphs [J]. J Mathematical Study, 2004, 37 (1): 35-41.
- [6] Najim A A, Xu Jun-ming. On edge addition of altered graph [J]. Journal of University of Science and Technology of China, 2005, 35(6): 725-731.