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Abstract To find a cycle (resp. path) of a given length in a graph is the
cycle (resp. path) embedding problem. To find cycles of all lengths from its
girth to its order in a graph is the pancyclic problem. A stronger concept
than the pancylicity is the panconnectivity. A graph of order n is said to
be panconnected if for any pair of different vertices x and y with distance
d there exist xy-paths of every length from d to n. The pancyclicity or the
panconnectivity is an important property to determine if the topology of a
network is suitable for some applications where mapping cycles or paths of
any length into the topology of the network is required. The pancyclicity
and the panconnectivity of interconnection networks have attracted much
research interest in recent years. A large amount of related work appeared
in the literature, with some repetitions. The purpose of this paper is to give
a survey of the results related to these topics for the hypercube and some
hypercube-like networks.

Keywords Cycle, path, pancyclicity, hamiltonicity, panconnectivity, fault-
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1 Introduction

It is well known that a topological structure of an interconnection network
can be modeled by a connected graph G. We follow Ref. [153] for graph-
theoretical terminology and notation not defined here. A graph G = (V, E)
always means a simple and connected graph, where V = V (G) is the vertex-
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set and E = E(G) is the edge-set of G.
There are a lot of mutually conflicting requirements in designing the

topology of an interconnection network. It is almost impossible to design
a network which is optimum from all aspects. One has to design a suitable
network depending on the requirements and its properties. One of the central
issues in designing and evaluating an interconnection network is to study
how well other existing networks can be embedded into this network. This
problem can be modeled by the following graph embedding problem: given
a host graph H, which represents the network into which other networks are
to be embedded, and a guest graph G, which represents the network to be
embedded, the problem is to find a mapping from V (G) to V (H) such that
each edge of G can be mapped to a path in H. Two common measures of
effectiveness of an embedding are the dilation, which measures the slowdown
in the new architecture, and the load factor, which gauges the processor
utilization [153].

A graph embedding has two main applications: to transplant parallel
algorithms developed for one network to a different one, and to allocate
concurrent processes to processors in the network.

The most ideal embedding is an isomorphic embedding, that is, the guest
graph is isomorphic to a subgraph of the host graph, since such an embedding
has both dilation and load one.

As two common guest graphs, linear arrays (i.e., paths) and rings
(i.e., cycles) are two fundamental networks for parallel and distributed
computation. They are suitable for developing simple algorithms with low
communication cost. Many efficient algorithms were originally designed based
on linear arrays and rings for solving a variety of algebraic problems, graph
problems and some parallel applications, such as those in image and signal
processing (see, for example, Refs. [4,105]). Thus, it is important to have an
effective path and/or cycle embedding in a network. The path and/or
cycle embedding properties of many interconnection networks have been
investigated in the literature.

A graph G of order n is k-pancyclic (k � n) if it contains cycles of every
length from k to n inclusive, and G is pancyclic if it is g-pancyclic, where
g = g(G) is the girth of G. A graph is of pancyclicity if it is pancyclic. The
pancyclicity, which means the hamiltonicity, is an important property to
determine if a topology of a network is suitable for some applications where
mapping cycles of any length into the topology of the network is required.

The concept of pancyclicity, proposed first by Bondy [13], has been
extended to vertex-pancyclicity [63] and edge-pancyclicity [7]. A graph G
of order n is vertex-pancyclic (resp. edge-pancyclic) if any vertex (resp. edge)
lies on cycles of every length from g(G) to n inclusive. Obviously, an edge-
pancyclic graph is certainly vertex-pancyclic.

A graph G is said to be hamiltonian connected if there exists a hamiltonian
path between any two vertices of G [122]. A graph G of order n is said to
be panconnected if for any pair of different vertices x and y with distance d
in G, there exist xy-paths of every length from d to n − 1 [5,151]. A graph
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is of panconnectivity if it is panconnected. Clearly, a panconnected graph is
certainly edge-pancyclic.

There exist some graphs indicating that the above concepts are not
equivalent. Fig. 1 shows the containment relationships of these hamiltonian-
like properties for graphs with at least three vertices.
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Fig. 1 Containment relationships of hamiltonian-like properties.
A : hamiltonian; B : hamiltonian-connected; C : pancyclic;

D : vertex-pancyclic; E : edge-pancyclic; F : panconnected

Since a bipartite graph contains no odd cycles, the concept of bipancyclic-
ity is proposed. A graph G of order n is bipancyclic (also called even-pancyclic
by some authors) if it contains cycles of every even length from g(G) to n if
n is even or n − 1 if n is odd [121]. It is easy to see that any hamiltonian
bipartite graph has no hamiltonian path between any two vertices in the
same partite set. For this reason, Simmons [131] introduced the concept of
hamiltonian laceability for bipartite graphs. A hamiltonian bipartite graph is
hamiltonian laceable if there is a hamiltonian path between any two vertices
in different partite sets.

Hsieh et al. [71] extended this concept to strongly hamiltonian laceabil-
ity. A hamiltonian bipartite graph G is strongly hamiltonian laceable if it is
hamiltonian laceable and there is a path of length n−2 between any two ver-
tices in the same partite set. Lewinter and Widulski [106] introduced another
concept, hyper hamiltonian laceability. A hamiltonian bipartite graph G is
hyper hamiltonian laceable if it is hamiltonian laceable and for any vertex x in
one partite set, there is a hamiltonian path of G−x between any two vertices
in the other partite set. So the hyper hamiltonian laceability is definitely also
strongly hamiltonian laceability. Chang et al. [17] generalized the concept of
hamiltonian laceability to super laceability. A connected bipartite graph G
with connectivity κ(G) is super laceable if for any two distinct vertices x to y
from different partite sets and any integer k with 1 � k � κ(G), there exist
k disjoint paths between x to y that contains all vertices of G.

Li et al. [110] generalized the concept of hamiltonian laceability to
bipanconnectivity. A graph G of order n is bipanconnected if for any pair
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of different vertices x and y with distance d in G, there is an xy-path of
length l for any l with d � l � n − 1 and l − d ≡ 0 (mod 2). Clearly, a
bipanconnected bipartite graph is certainly hamiltonian laceable, strongly
hamiltonian laceable, but not always hyper hamiltonian laceable.

Fault tolerance is also desirable in massive parallel systems that have a
relatively high probability of failure. A graph G is said to be faulty if it has at
least one faulty vertex or edge. The fault tolerance ability is a major factor
in evaluating the performance of networks.

A graph G is k-fault-tolerant hamiltonian (resp., connected, hamiltonian
connected, pancyclic) if G−F remains hamiltonian (resp., connected, hamil-
tonian connected, pancyclic) for any F ⊂ V (G) ∪ E(G) with |F | � k, and is
k-vertex-fault-tolerant hamiltonian (resp., connected, hamiltonian connected,
pancyclic) if G − F remains hamiltonian (resp., connected, hamiltonian con-
nected, pancyclic) for any F ⊂ V (G) with |F | � k, and k-edge-fault-tolerant
hamiltonian (resp., connected, hamiltonian connected, pancyclic) if G − F
remains hamiltonian (resp., connected, hamiltonian connected, pancyclic) for
any F ⊂ E(G) with |F | � k [70,91].

Use fv and fe to denote the numbers of faulty vertices and faulty edges
in G, respectively.

A large amount of related work for several interconnection networks have
appeared in the literature on the above topics, some of which are repeated.
The present paper is mostly concerned about the hypercube network and
its variations. We attempt to give a survey of known results on the above-
mentioned topics for the hypercube network and some well-known variations
of the hypercube network, from which we can find that many problems have
not yet been solved.

2 Hypercubes

The n-dimensional hypercube Qn has the vertex-set V = {x1x2 · · ·xn : xi ∈
{0, 1}, i = 1, 2, . . . , n}, and two vertices x and y are linked by an edge if and
only if they differ exactly in one coordinate. The graphs shown in Fig. 2 are
Q1, Q2, Q3 and Q4.

The hypercube Qn is an n-regular n-connected bipartite graph with 2n

vertices. Qn has a diameter of n and an average distance of about n/2 for
a large n. Moreover, Qn is a Cayley graph and hence vertex-transitive, and
also edge-transitive. Other properties of Qn obtained early is surveyed in
Ref. [59].

Saad and Schultz [127] proved that for every even l with 4 � l � 2n,
there is a cycle of length l in Qn for n � 2. This result means that Qn is
bipancyclic for n � 2. Li et al. [110] improved this result by proving that Qn

is edge-bipancyclic for n � 2.

Theorem 2.1 (Li et al. [110]) Qn is bipanconnected if n � 2.
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Fig. 2 Hypercubes Q1, Q2, Q3 and Q4

Recently, Tsai and Jiang [138] proposed a stronger concept than edge-
bipancyclicity, called the path bipancyclicity. A bipartite graph G of order
n is k-path bipancyclic if every path P of length m lies in a cycle of every
even length from max{4, 2m} to n inclusive, where 1 � m � k. From this
definition, it is clear that every k-path bipancyclic graph is edge-bipancyclic
where k � 1.

Theorem 2.2 (Tsai and Jiang [138]) Qn is (2n − 4)-path bipancyclic for
n � 3.

Next, we consider a path or a cycle embedding under the case that faulty
vertices and/or faulty edges appear in Qn. In the first place, we consider the
case of only faulty edges. It is clear that the condition fe � n−2 is necessary
to guarantee that Qn is fe-edge-fault-tolerant hamiltonian. Alspach et al. [6]
showed that Qn contains �n/2� edge-disjoint hamiltonian cycles. This result
implies that Qn is (�n/2�− 1)-edge-fault-tolerant hamiltonian. Later, it was
shown that Qn is (n−2)-edge-fault-tolerant hamiltonian for n � 2 by several
authors, for example, Chen and Shin [26], Leu and Kuo [107], Litifi et al. [104]
and Sen et al. [128]. Li et al. [110] improved this result by proving that Qn is
(n−2)-edge-fault-tolerant edge-bipancyclic for n � 2. Although the condition
fe � n − 2 is necessary for Qn to be fe-edge-fault-tolerant hamiltonian,
Sengupta [129] showed that Qn is (n − 1)-edge-fault-tolerant hamiltonian if
n � 4 and any vertex is incident with at least two fault-free edges. Xu et
al. [154] further improved these results by proving the following theorem.
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Theorem 2.3 (Xu et al. [154]) Qn is (n − 1)-edge-fault-tolerant edge-6-
bipancyclic provided n � 3 if any vertex is incident with at least two fault-free
edges.

Obviously, from Theorem 2.3, we have when fe � n−1 and all faulty edges
are not incident with the same vertex if fe = n− 1, then a fault-free cycle of
length 2n in Qn is a hamiltonian cycle, which is a result of Sengupta [129].
If fe � n − 2, then any vertex is incident with at least two fault-free edges
since Qn is n-regular, which satisfies the hypothesis in Theorem 2.3. Also,
any edge e in Qn lies on exactly n−1 cycles of length four. If fe � n−2, then
every edge in Qn must lie on a fault-free cycle of length four. Thus, Theorem
2.3 implies the result of Li et al. [110]. The results of Sengupta [129] and Li
et al. [110] can also be improved by the following result.

Theorem 2.4 (Xu et al. [157]) For any two different vertices x and y with
distance d in Qn, if fe � n − 2 and n � 2, then Qn contains a fault-free
xy-path of length l for every l with d + 2 � l � 2n − 1, where l and d have
the same parity.

If we restrict all faulty edges not to be incident with the same vertex if
fe = n − 1, then Theorem 2.4 can be improved as follows.

Theorem 2.5 (Jing et al. [96]) For any two different vertices x and y with
distance d in Qn, if fe � n − 1 (n � 4) and all faulty edges are not incident
with the same vertex if fe = n − 1, then Qn contains a fault-free xy-path of
length l for every l with d + 4 � l � 2n − 1, where l and d have the same
parity.

In 1989, Esfahanian [46] proved that Qn is (2n − 3)-edge-fault-tolerant
connected if every vertex is incident with at least one fault-free edge and
n � 2. Thus, it is quite natural to consider a path or a cycle embedding in
Qn for more faulty edges. Chan and Lee [15] showed that Qn is (2n − 5)-
edge-fault-tolerant hamiltonian provided n � 3 and every vertex is incident
with at least two fault-free edges; but there exists a Qn with 2n − 4 faulty
edges and where every vertex is incident with at least two fault-free edges not
containing a hamiltonian cycle. Tsai [136] improved this result by showing
that Qn is (2n − 5)-edge-fault-tolerant 4-bipancyclic provided n � 3 and
any vertex is incident with at least two fault-free edges. This is improved
by Tsai and Lai [139], Shih et al. [130], independently, by showing that Qn

is (2n − 5)-edge-fault-tolerant edge-6-bipancyclic and any vertex is incident
with at least two fault-free edges for n � 3. Recently, these results have been
further improved as follows.

Theorem 2.6 (Wang, Wang and Xu [149]) If Qn has at most (2n−5) faulty
edges and every vertex is incident with at least two fault-free edges, then for
any two distinct vertices x and y with distance d, there exists a fault-free
xy-path of length l for every l with d + 4 � l � 2n − 1, where l and d have
the same parity and n � 3.

In case of considering only faulty vertices, Provost and Melhem [126]
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developed an algorithm that is able to find a fault-free cycle of length 3×2n−2

in Qn if fv = 1, or a fault-free cycle of length 2n−1 if fv = 2. This result is
significantly improved by Chan and Lee [16] by showing that Qn contains a
fault-free cycle of length at least 2n−2fv if fv � �(n+1)/2�. Yang et al. [164]
further showed that Qn contains a fault-free cycle of length at least 2n − 2fv

if 1 � fv � n − 2. Fu [53] improved this result by tolerating more faults up
to 2n − 4.

Theorem 2.7 (Fu [53]) Qn contains a fault-free cycle of length at least
2n − 2fv if fv � 2n − 4 and n � 3.

In the case where both faulty vertices and faulty edges are considered,
Tseng [145] showed that Qn contains a fault-free cycle of length at least
2n − 2fv if fe � n − 4 and fv + fe � n − 1. Sengupta [129] generalized this
result by showing that Qn contains a fault-free cycle of length 2n − 2fv if
fv > 0 or fe � n − 2, and fv + fe � 2n − 4.

Sun et al. [133] showed that Qn−F is hyper hamiltonian if |F | = fav+fe �
n− 3 for n � 3, where fav is the number of disjoint pairs of adjacent vertices
in Qn. Hsieh [65] has improved the result of Sun et al. by showing that there
exists a fault-free cycle of length at least 2n − 2fv in Qn if fe � n − 2 and
fe + fv � 2n − 4 for n � 3. Hsieh and Shen [80] proved that every fault-free
edge of Qn lies on a cycle of every even length from 4 to 2n − 2fv in Qn if
fv + fe � n− 2 and n � 3. Recently, Tsai [137] has improved the two results
and the result of Xu et al. [154] (i.e., Theorem 2.3 above) by proving the
following theorem.

Theorem 2.8 (Tsai [137]) If fe + fv � n − 2 and n � 3, then every fault-
free edge and fault-free vertex of Qn lie on a fault-free cycle of every even
length from 4 to 2n − 2fv. If fe + fv = n − 1 and every fault-free vertex
is incident with at least two fault-free edges, then every fault-free edge and
fault-free vertex of Qn for n � 4 lie on a fault-free cycle of every even length
from 6 to 2n − 2fv. Furthermore, Qn for n � 5 has a fault-free cycle of every
even length from 4 to 2n − 2fv if fe � n − 2 and fe + fv � 2n − 4.

Du et al. [43] obtained the following result which can tolerate more edge-
faults.

Theorem 2.9 (Du et al. [43]) Qn (n � 3) contains a fault-free cycle of
length at least 2n − 2fv provided that fv + fe � 2n− 4, fe � 2n− 5 and each
vertex is incident with at least two non-faulty edges.

As regards to fault-tolerant panconnectivity, Fu [54] showed that for any
two distinct fault-free vertices x and y with distance d in Qn, if d is odd (or
even), then there exists a fault-free xy-path with length at least 2n − 2fv − 1
(or 2n − 2fv − 2) when fv � n− 2 and n � 3. Since Qn is bipartite, the path
of length 2n−2fv −1 (or 2n−2fv −2) turns out to be the longest if all faulty
nodes belong to the same partite set. Kueng et al. [102] and Ma et al. [113],
respectively, improved this result by showing the following two theorems.

Theorem 2.10 (Kueng et al. [102]) If fv � 2n − 5 and every vertex has
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at least two fault-free neighbors, then for any two distinct fault-free vertices
x and y with distance d in Qn, there exists a fault-free xy-path of length at
least 2n − 2fv − 1 (resp. 2n − 2fv − 2) if d is odd (resp. even) distance and
n � 3.

Theorem 2.11 (Ma et al. [113]) For any two distinct fault-free vertices x
and y with distance d in Qn, there exists a fault-free xy-path of length l with
fv + fe � n − 2 for each l satisfying d + 2 � l � 2n − 2fv − 1, where l and d
have the same parity and n � 3.

The bounds on path length l and faulty set size fv + fe for a successful
embedding are tight. That is, the result does not hold if l < d + 2 or l >
2n − 2fv − 1 or fv + fe > n − 2.

Lastly, we consider the hamiltonian laceability of Qn. Harary and
Lewinter [60] proved that Qn is strongly hamiltonian laceable if and only
if n � 2. Lewinter and Widulski [106] proved that Qn is hyper hamiltonian
laceable if and only if n � 3. Theorem 2.4 shows that Qn is (n−2)-edge-fault-
tolerant hamiltonian laceable and strongly hamiltonian laceable for n � 2.
This result was also obtained by Tsai et al. [141], independently. Hsieh and
Kuo [74], and Tsai et al. [141] showed that Qn is (n− 3)-edge-fault-tolerant
hyper hamiltonian laceable for n � 3. Sun et al.1) proved that Qn is (n− 3)-
fault-tolerant hamiltonian laceable and strongly hamiltonian laceable and
hyper hamiltonian laceable for n � 3 if fav + fe � n − 3. Chang et al. [17]
generalized the concept of the hamiltonian laceability to super laceability for
bipartite graphs. A connected bipartite graph G with connectivity κ(G) is
super laceable if for any two distinct vertices x to y from different partite sets
and any integer k with 1 � k � κ(G), there exist k disjoint paths between x
to y that contains all vertices of G.

Theorem 2.12 (Chang et al. [17]) Qn is super laceable, moreover, (n− 2)-
edge-fault-tolerant super laceable for any n � 1.

We conclude this section with an interesting result obtained by Chen [27].

Theorem 2.13 (Chen [27]) Let n > h � 2, F ⊂ E(Qn) with |F | < n − h,
and E0 ⊂ E(Qn) \F with |E0| = h. If the subgraph induced by E0 consists of
pairwise vertex-disjoint paths, then in the graph Qn − F all edges of E0 lie
on a cycle of every even length l with

2h−1(n + 1 − h) + 2(h − 1) � l � 2n.

Chen [27] also gave an example to show that when h = 2 the result in
Theorem 2.13 is optimal in the following sense. Qn contains two edges such
that any cycle in Qn passing through them is of length at least 2n, and edge
subsets E0 and F with |E0| = 2 and |F | = n−2 such that no Hamilton cycle
passes through the two edges of E0 in Qn − F.

1) Sun C -M, Hung C -N, Huang H -M, Hsu L -H. Hamiltonian laceability of faulty
hypercubes. 2008
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3 Folded hypercubes

The n-dimensional folded hypercube, denoted by FQn, is a graph obtained
from Qn by adding all complementary edges, which join a vertex x =
x1x2 · · ·xn to another vertex x = x1x2 · · ·xn for every x ∈ V (Qn), where
xi = 1 − xi. The graphs shown in Fig. 3 are FQ3 and FQ4, respectively.
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Fig. 3 FQ3 and FQ4 (thick lines represent the complementary edges)

The folded hypercube FQn, proposed by El-Amawy and Latifi [45], is an
(n + 1)-regular (n + 1)-connected graph with 2n vertices. Like Qn, FQn is a
Cayley graph and hence vertex-transitive. However, FQn has a diameter of
�n/2	, superior to Qn. Xu and Ma [155] showed that FQn is bipartite if and
only if n is odd, the length of a shortest odd cycle is n + 1 if n is even, and
obtained the following result on the pancyclicity of FQn.

Theorem 3.1 (Xu and Ma [155]) For n � 2, FQn is edge-even-pancyclic;
and if n is even, then FQn is also edge-(n + 1)-odd-pancyclic.

As regards to the panconnectivity, Ma and Xu [119] obtained the following
result.

Theorem 3.2 (Ma and Xu [119]) For any two vertices x and y with distance
d, FQn contains an xy-path of every length l with h � l � 2n − 1 provided l
and h have the same parity, where h ∈ {d, n + 1 − d}.

By Theorem 3.2, if n is odd then FQn is bipanconnected, and if n is even
then for any two different vertices x and y with distance d in FQn, there is
an xy-path of every length l with n − d + 1 � l � 2n − 1 and every length l′

with d � l′ � n− d provided l′ and d have the same parity. This result is the
best since the length of the shortest odd cycle is n + 1 in FQn if n is even.

In the case where only faulty edges are considered, Wang [148] showed
that FQn is (n−1)-edge-fault-tolerant hamiltonian for n � 2. It is clear that
if FQn has at most (n− 1) faulty edges, then each vertex is incident with at
least two fault-free edges since FQn is (n + 1)-regular. Thus, the following
theorems generalize the result of Wang.

Theorem 3.3 (Xu, Ma and Du [157]) For n � 3, FQn is (n − 1)-edge-
fault-tolerant edge-even-pancyclic; if n is even, FQn is also (n−1)-edge-fault-
tolerant edge-(n + 1)-odd-pancyclic.
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Theorem 3.4 (Ma, Xu and Du [120]) For n � 3, FQn is (2n − 3)-edge-
fault-tolerant hamiltonian if each vertex is incident with at least two fault-free
edges.

In the case where both faulty vertices and faulty edges are considered,
Hsieh [67] used Theorem 3.3, and Hsieh et al.1), independently, showed that
FQn contains a fault-free cycle with length at least 2n−2fv if fv +fe � n−1
for n � 4. Fu [56] improved the number of faults tolerated and showed the
following result.

Theorem 3.5 (Fu [56]) FQn contains a fault-free cycle with length at least
2n − 2fv if fv + fe � 2n − 4 and fe � n − 1, where n � 3.

For panconnectivity and laceability of FQn, Hsieh and Kuo [75] showed
that FQn is strongly hamiltonian-laceable when n is odd, and is hamiltonian-
connected when n = 1 or n (� 2) is even. Recently, Hsieh [66] has improved
this result as follows.

Theorem 3.6 (Hsieh [66]) FQn is (n− 2)-edge-fault-tolerant hamiltonian-
connected if n(� 2) is even, (n− 1)-edge-fault-tolerant strongly hamiltonian-
laceable if n(� 1) is odd, and (n − 2)-edge-fault-tolerant hyper hamiltonian-
laceable if n(� 3) is odd.

For more faulty edges, considering that any vertex is incident with at least
three fault-free edges is a necessary condition for a graph to be hamiltonian-
connected, and any vertex is incident with at least two fault-free edges is a
necessary condition for a graph to be hamiltonian-laceable, Chen [28] showed
the following result.

Theorem 3.7 (Chen [28]) FQn is (2n−5)-edge-fault-tolerant hamiltonian-
connected if n (� 4) is even and any vertex of FQn is incident with at least
three fault-free edges, and (2n − 4)-edge-fault-tolerant strongly hamiltonian-
laceable if n (� 3) is odd and any vertex is incident with at least two fault-free
edges.

In the case where both faulty vertices and faulty edges are considered,
Chen [28] obtained the following result.

Theorem 3.8 (Chen [28]) If fv + fe � n − 2 and n � 2, then for any two
distinct fault-free vertices x and y with distance d, FQn contains a fault-free
xy-path of every length l with

d + 2 � l � 2n − 2fv − 1

provided l and d have the same parity, and a fault-free xy-path of every length
l with

n − 1 � l � 2n − 2fv − 1

provided n (� 2) is even.

1) Hsieh S -Y, Kuo C -N, Huang H -L. Fault-tolerance ring embedding on folded
hypercubes with faulty elements. Parallel Computing, a manuscript, 2007-09-05



Survey on path and cycle embedding in some networks 227

4 Crossed cubes

Two binary strings x = x2x1 and y = y2y1 are pair-related, denoted by x ∼ y,
if and only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.

The n-dimensional crossed cube, denoted by CQn, is such a graph, its
vertex-set is the same as Qn, two vertices x = xn · · ·x2x1 and y = yn · · · y2y1

are linked by an edge if and only if there exists j (1 � j � n) such that
(a) xn · · ·xj+1 = yn · · · yj+1,

(b) xj �= yj ,

(c) xj−1 = yj−1 if j is even, and
(d) x2ix2i−1 ∼ y2iy2i−1 for each i = 1, 2, . . . , �j/2	 − 1.

The graphs shown in Fig. 4 are CQ3 and CQ4.
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Fig. 4 Crossed cubes CQ3 and CQ4

The crossed cube CQn was first proposed by Efe [44]. Like Qn, CQn

is an n-regular n-connected graph with 2n vertices. Furthermore, CQn has
a diameter of �(n + 1)/2t	, superior to Qn. Moreover, CQn is not vertex-
transitive if n � 5 proved by Kulasinghe and Bettayeb [103] and not edge-
transitive if n � 3 proved by Huang and Xu [92]. This lack of symmetry
removes the crossed cubes from the class of Cayley graphs if n � 5. For
n = 1, 2, 3, 4, CQn is a Cayley graph.

Efe [44], Chang et al. [18] and Huang et al. [88], independently, showed
that CQn is pancyclic for n � 2. This result was generalized by several
authors, independently.

Theorem 4.1 (Fan et al. [49], Hu et al. [86], Ma and Xu [116], Yang et
al. [166]) CQn is edge-pancyclic for n � 2.

In the case where only faulty edges are considered, Hung et al. [95] showed
that CQn is (2n−5)-edge-fault-tolerant hamiltonian if every vertex is incident
with at least two fault-free edges for n � 3.
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In the case where both faulty vertices and faulty edges are considered,
Huang et al. [90] and Chen et al. [29] showed, independently, that CQn is
(n − 2)-fault-tolerant hamiltonian for n � 3. Yang et al. [161] improved this
by showing the following result.

Theorem 4.2 (Yang et al. [161]) CQn is (n − 2)-fault-tolerant pancyclic
for n � 3.

As regards to panconnectivity of CQn, Fan et al. [50] showed that for
any two different vertices x and y in CQn, there exists an xy-path of every
length from �(n + 1)/2	+ 1 to 2n − 1 for n � 3. This result was improved by
several authors, independently.

Theorem 4.3 (Fan et al. [48,50], Xu et al. [156], Yang et al. [166]) For
any two vertices x and y with distance d in CQn with n � 2, CQn contains
an xy-path of every length l from d to 2n − 1 except for d + 1.

In Theorem 4.3, the length l = d+1 has to be removed. In fact, it is easy
to find that for any two integers n � 2 and l with 1 � l � �(n + 1)/2	 − 1,
there always exist two distinct vertices x and y in CQn with distance l and
no xy-path of length l + 1 in CQn. Recently, Hsu and Lai1) have given a
necessary and sufficient condition to check the existence of the path of length
dCQn(x, y) + 1, called the nearly shortest path, for any two distinct vertices
x, y in CQn. Moreover, only some pair of vertices have no nearly shortest
path and give a construction scheme for the nearly shortest path if it exists.

As regards to fault-tolerant panconnectivity of CQn, Huang et al. [90] and
Chen et al. [29], independently, showed that CQn is (n − 3)-fault-tolerant
hamiltonian connected for n � 3. Recently, Ma et al. [115] have improved
this result as follows.

Theorem 4.4 (Ma et al. [115]) If fv +fe � n−3, then for any two distinct
fault-free vertices x and y in CQn and for each l with 2n−1 − 1 � l �
2n − fv − 1, there exists a fault-free xy-path of length l for n � 3.

In Theorem 4.4, the lower bound on l and the upper bound of fv + fe for
a successful embedding are tight for some n. In other words, the result may
not hold if l � 2n−1 − 2 or fv + fe � n − 2.

For more faults, we can state only the following result.

Theorem 4.5 (Hsieh and Lee [76]) If each vertex is incident to at least two
fault-free edges, then CQn is (2n − 5)-edge-fault-tolerant hamiltonian.

5 Twisted cubes

In the literature, there are several twisted cubes, for example, see a brief
survey [40]. The n-dimensional twisted cube, denoted by TQn, was proposed
by Hilbers et al. [62]. The authors only consider TQn for odd value of n

1) Hsu H -C, Lai P -L. Constructing the nearly shortest path in crossed cubes. 2008
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exclusively. TQn is a variant of Qn, and has the same vertex-set of Qn. To
form TQn, we remove some edges from Qn and replace them with edges that
span two dimensions in such a manner.

To be precise, for a vertex x = xn−1xn−2 · · ·x1x0, we define the parity
function Pi = xi ⊕ xi−1 ⊕ · · · ⊕ x0, where ⊕ is the exclusive-or operation.
If P2j−2(x) = 0 for some 1 � j � �n/2�, we divert the edge on (2j − 1)-th
dimension to a vertex y = yn−1yn−2 · · · y1y0 such that y2jy2j−1 = x2jx2j−1

and yi = xi for i �= 2j or 2j − 1. TQ3 and TQ5 are shown in Fig. 5.
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Fig. 5 Twisted cubes TQ3 and TQ5

The twisted cube TQn is an n-regular graph with 2n vertices. Further-
more, TQn has a diameter of �(n + 1)/2	, superior to Qn.

For any odd integer n (� 3), Chang et al. [19] and Huang et al. [88],
independently, showed that TQn is pancyclic. This result is improved by Xu
and Ma1) as TQn is vertex-pancyclic. Later, Fan et al. [52] and Xu et al.2),

1) Xu J -M, Ma M -J. Vertex-pancyclicity of some hypercube-like networks. 2005
2) Xu M, Hu X -D, Xu J -M, Zhou M -J, Ma M -J. Edge-pancyclicity and hamiltonian

connectivity of twisted cubes. 2005
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respectively, generalized these to the following result.

Theorem 5.1 (Fan et al. [52] and Xu et al.2)) TQn is edge-pancyclic for
any odd integer n (� 3).

In the case where only faulty edges is considered, Fu [57] showed that
TQn is (2n − 5)-edge-fault-tolerant hamiltonian if every vertex is incident
with at least two fault-free edges for any odd integer n � 3. Li et al. [110]
showed the following result.

Theorem 5.2 (Li et al. [110]) TQn is (n− 2)-edge-fault-tolerant pancyclic
for any odd integer n � 3.

In the case where both faulty vertices and faulty edges are considered,
Huang et al. [91] and Chen et al. [29], independently, showed that TQn is
(n− 2)-fault-tolerant hamiltonian for any odd integer n � 3. This result was
improved by Chang et al. [23] and Yang et al. [162], independently.

Theorem 5.3 (Chang et al. [23] and Yang et al. [162]) TQn is (n − 2)-
fault-tolerant pancyclic for any odd integer n � 3.

As regards to fault-tolerant panconnectivity of TQn, we have known the
following results.

Theorem 5.4 (Chen et al. [29], Huang et al. [91]) TQn is (n − 3)-fault-
tolerant hamiltonian connected for any odd integer n � 3.

Theorem 5.5 (Fan et al. [51]) If fv +fe � n−3, then for any two fault-free
vertices x and y in TQn and for each l with 2n−1−1 � l � 2n − fv −1, there
exists a fault-free xy-path of length l for any odd integer n � 3.

For more faults, we can state only the following result.

Theorem 5.6 (Hsieh and Lee [76]) If each vertex is incident to at least two
fault-free edges, then TQn is (2n − 5)-edge-fault-tolerant hamiltonian.

6 Locally twisted cubes

The n-dimensional locally twisted cube LTQn (n � 2), proposed by Yang et
al. [165], is defined recursively as follows:

(a) LTQ2 is a graph isomorphic to Q2.

(b) For n � 3, LTQn is built from two disjoint copies of LTQn−1

according to the following steps. Let 0LTQn−1 denote the graph obtained by
prefixing the label of each vertex of one copy of LTQn−1 with 0, let 1LTQn−1

denote the graph obtained by prefixing the label of each vertex of the other
copy LTQn−1 with 1, and connect each vertex x = 0x2x3 . . . xn of 0LTQn−1

with the vertex 1(x2 + xn)x3 . . . xn of 1LTQn−1 by an edge, where ‘+’
represents the modulo 2 addition. The graphs shown in Fig. 6 are LTQ3 and
LTQ4.
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Fig. 6 LTQn for n = 3, 4.

(a) Ordinary drawing of LTQ3, (b) symmetric drawing of LTQ3, (c) LTQ4

For n � 3, Yang et al. [167] showed that LTQn is pancyclic. Xu and Ma1)

improved this result by proving that LTQn is vertex-pancyclic. Further, Ma
and Xu [117], Hu et al. [86] improved these results.

Theorem 6.1 (Hu et al. [86], Ma and Xu [117]) LTQn is edge-pancyclic
for n � 2.

As regards to fault-tolerant pancyclicity and panconnectivity of LTQn,
we have known only the following results.

Theorem 6.2 (Chang, Ma and Xu [22]) LTQn is (n − 2)-fault-tolerant
pancyclic for n � 3.

Theorem 6.3 (Ma and Xu [118]) For any two different vertices x and y
with distance d in LTQn (n � 3), there exists an xy-path of every length l
from d to 2n − 1 except for d + 1.

For more faults, we can state only the following result.

1) See footnote 1) on p. 229
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Theorem 6.4 (Hsieh and Lee [76]) If each vertex is incident to at least two
fault-free edges, then LTQn is (2n − 5)-edge-fault-tolerant hamiltonian.

7 Möbius cubes

The n-dimensional Möbius cube, denoted by MQn, is such an undirected
graph, its vertex set is the same as the vertex set of Qn, the vertex X =
x1x2 · · ·xn connects to n other vertices Yi, (1 � i � n), where each Yi

satisfies one of the following equations:

Yi =

{
x1x2 · · ·xi−1xixi+1 · · ·xn, xi−1 = 0,

x1x2 · · ·xi−1xixi+1 · · ·xn, xi−1 = 1.

From the above definition, X connects to Yi by complementing the bit
xi if xi−1 = 0 or by complementing all bits of xi, . . . , xn if xi−1 = 1. The
connection between X and Y1 is undefined, so we can assume that x0 is either
equal to 0 or equal to 1, which gives us slightly different network topologies.
If we assume x0 = 0, we call the network a ‘0-Möbius cube’; and if we assume
x0 = 1, we call the network a ‘1-Möbius cube’, denoted by 0-MQn and 1-
MQn, respectively. The graphs shown in Fig. 7 are 0-MQ4 and 1-MQ4.

The Möbius cubes MQn was first proposed by Cull and Larson [39]. Like
Qn, MQn is an n-regular n-connected graph with 2n vertices and n2n−1

edges. Moreover, MQn has a diameter of �(n + 2)/2	 for 0-MQn (n � 4)
and �(n + 1)/2	 for 1-MQn (n � 1). However, for n � 4, MQn is neither
vertex-transitive nor edge-transitive.

Cull and Larson [39] first proved the existence of hamiltonian cycles in
MQn by proving that in an n-dimensional 0-Möbius or 1-Möbius cube, there
are 2n−k disjoint cycles of length 2k for any k � 2. Huang et al.[88] and
Fan [47], independently, showed that MQn is pancyclic for n � 2. This result
was improved as follows.

Theorem 7.1 (Xu and Xu [160], Hu et al. [86]) MQn is edge-pancyclic for
n � 2.

Fan [47] proved that MQn is hamiltonian connected for n � 3. This result
is generalized by the following.

Theorem 7.2 (Xu et al. [156]) For any two different vertices x and y with
distance d in MQn (n � 3), there exists an xy-path of every length l from d
to 2n − 1 except for d + 1.

In the case where faulty vertices and faulty edges are considered,
respectively, we can state the following two results.

Theorem 7.3 (Hsieh and Chen [69]) MQn is (n − 2)-edge-fault-tolerant
pancyclic for n � 2.

Theorem 7.4 (Yang et al. [168]) MQn is (n − 2)-vertex-fault-tolerant
pancyclic for n � 2.
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Fig. 7 (a) 0-Möbius cube 0-MQ4, (b) 1-Möbius cube 1-MQ4

In the case where both faulty vertices and faulty edges are considered,
Huang et al. [89] showed that MQn is (n − 2)-fault-tolerant hamiltonian for
n � 3. This result is improved as follows.

Theorem 7.5 (Hsieh and Chang [68]) MQn is (n − 2)-fault-tolerant
pancyclic for n � 2.

As regards to the fault-tolerant panconnectivity of MQn, Hsieh and Chen
[69] proved that MQn contains a fault-free hamiltonian path if fe � n − 1.
Huang et al. [89] and Chen et al. [29], independently, proved that MQn is
(n− 3)-fault-tolerant hamiltonian connected for n � 3. Recently, Fan et al.1)

have improved this result by showing the following theorem.

Theorem 7.6 (Fan et al.1)) If fv � n − 3, then for any two distinct fault-
free vertices x and y in MQn, there exists a fault-free xy-path of every length
l from 2n−1 − 1 to 2n − fv − 1 for n � 3.

This result is tight in the sense that the two bounds on path length l and
faulty size fv. That is, the result does not hold if l � 2n−1 − 2 or fv � n− 2.

1) Fan J, Jia X, Lin X. Fault-tolerant embedding of paths in Möbius cubes. 2008
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8 Augmented cubes

The n-dimensional augmented cube AQn (n � 1), proposed by Choudum
and Sunitha [36–38], can be defined recursively as follows: AQ1 is a complete
graph K2 with the vertex set {0, 1}. For n � 2, AQn is obtained by taking
two copies of the augmented cube AQn−1, denoted by AQ0

n−1 and AQ1
n−1,

and adding 2 × 2n−1 edges between the two as follows.
Let

V (AQ0
n−1) = {0un−1 . . . u2u1 : ui = 0 or 1},

V (AQ1
n−1) = {1un−1 . . . u2u1 : ui = 0 or 1}.

A vertex u = 0un−1 . . . u2u1 of AQ0
n−1 is joined to a vertex v = 1vn−1 . . . v2v1

of AQ1
n−1 if and only if either

(i) ui = vi for 1 � i � n−1; in this case, v (resp. u) is called a hypercube
neighbor of u (resp. v), setting v = uh or u = vh, or

(ii) ui = vi for 1 � i � n − 1; in this case, v (resp. u) is called a
complement neighbor of u (resp. v), setting v = uc or u = vc.

The graphs shown in Fig. 8 are the augmented cubes AQ1, AQ2 and
AQ3, respectively.
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Fig. 8 Augmented cubes AQ1, AQ2 and AQ3

Obviously, AQn is a (2n− 1)-regular graph with 2n vertices. It has been
shown by Choudum and Sunitha [36–38] that AQn is vertex-symmetric, (2n−
1)-connected for n �= 3 (AQ3 is 4-connected) and has diameter �n/2	, the
wide-diameter and fault-diameter �n/2	+ 1 (n � 5). At the same time, they
showed that AQn is pancyclic for n � 2. This result was improved as follows.

Theorem 8.1 (Hsieh and Shiu [81]) AQn is vertex-pancyclic for n � 2.

Hsu et al. [83] proved that AQn (n � 1) is hamiltonian-connected, and
they also showed that AQn is (2n−3)-fault-tolerant hamiltonian and (2n−4)-
fault-tolerant hamiltonian connected for n � 4. Ma et al. [114] and Wang et
al. [150] improved these results as follows.

Theorem 8.2 (Ma et al. [114]) AQn is panconnected for n � 1 and (2n−3)-
edge-fault-tolerant pancyclic for n � 2.

Theorem 8.3 (Wang et al. [150]) AQn is (2n− 3)-fault-tolerant pancyclic
for n � 4.
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In the case where both faulty vertices and/or faulty edges are considered,
Xu and Wang1) showed the following result.

Theorem 8.4 (Xu and Wang1)) If fv + fe � 2n − 5, then for any two
distinct fault-free vertices x and y with distance d in AQn, there exists a
fault-free xy-path of length l for every l with d + 2 � l � 2n − fv − 1.

9 Balanced hypercubes

The n-dimensional balanced hypercube, denoted by BQn and proposed by
Huang and Wu [87,152], has 4n vertices. Each vertex has a unique
n-component vector on {0, 1, 2, 3} for an address, also called an n-bit string.
A vertex (a0, a1 . . . , an−1) connects to the following 2n vertices:{

((a0 + 1) (mod 4), a1, . . . , ai−1, ai, ai+1, . . . , an−1),

((a0 − 1) (mod 4), a1, . . . , ai−1, ai, ai+1, . . . , an−1),{
((a0 + 1) (mod 4), a1, . . . , ai−1, (ai + (−1)a0) (mod 4), ai+1, . . . , an−1),

((a0 − 1) (mod 4), a1, . . . , ai−1, (ai + (−1)a0) (mod 4), ai+1, . . . , an−1)

for 1 � i � n − 1.
Figure 9 shows BQ1 and BQ2. The balanced hypercube BQn is an 2n-

regular, vertex-transitive bipartite graph with 4n vertices. Wu and Huang
[152] showed that BQn contains all cycles of length 4l, 2×4l−1 for 1 � l � n.
Xu et al. [158] improve this result by showing the following theorem.
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Fig. 9 Balanced hypercubes BQ1 and BQ2

Theorem 9.1 (Xu et al. [158]) BQn is edge-bipancyclic and hamiltonian
laceable.

1) Xu J -M, Wang H -L. Fault-tolerant panconnectivity of augmented cubes. 2008
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We do not know any other results on this network.

10 Star graphs

An n-dimensional star graph, denoted by Sn, proposed by Akers and
Krishnamurthy [2], is an undirected graph consisting of n! vertices labelled
with n! permutations on a set of the symbols 1, 2, . . . , n. There is an edge
between any two vertices if and only if their labels differ only in the first and
another position. The graphs shown in Fig. 10 are S2, S3 and S4.
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Fig. 10 Star graphs S2, S3 and S4

Like the hypercube, the star graph is a vertex- and edge-transitive graph
[2]. Moreover, it has been proved [3] that Sn is a Cayley graph on the
symmetry group Sn with respect to the generating set {t1, t2, . . . , tn−1},
where ti = (1, i + 1) (1 � i � n − 1) denotes a permutation that exchanges
two symbols in the first and the (i + 1)-th position, which implies that Sn is
(n−1)-regular. Furthermore, Sn is bipartite since each edge connects an odd
permutation with an even permutation, and contains no cycles of length 4.

Jwo et al. [97] showed that Sn is bipancyclic for n � 3. In the case where
only faulty edges is considered, Tseng et al. [146] proved that Sn is (n − 3)-
edge-fault-tolerant hamiltonian for n � 4, and Li [108] showed that Sn is
(n − 3)-edge-fault-tolerant bipancyclic for n � 3. Xu et al. [159] improved
these results as follows.

Theorem 10.1 (Xu et al. [159]) For n � 3, Sn is (n−3)-edge-fault-tolerant
edge-bipancyclic.
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We now consider faulty vertices. Since Sn is a bipartite graph with two
partite sets of equal size, any xy-path has maximal length (n! − 1) if the
distance between them is odd and (n!− 2) if distance between them is even.
Tseng et al. [146] showed that Sn with fv � n − 3 can embed a fault-free
cycle of length at least n! − 4fv for n � 4. Hsieh et al. [72] showed that Sn

with fv � n − 5 can embed a fault-free path of length n! − 2fv − 2 (resp.
n!− 2fv − 1) between two arbitrary distinct fault-free vertices of even (resp.
odd) distance for n � 6.

Theorem 10.2 (Hsieh [64]) Sn with fv � n− 3 can embed a fault-free path
of length n! − 2fv − 2 (resp. n! − 2fv − 1) between two arbitrary distinct
fault-free vertices of even (resp. odd) distance for n � 4.

Since Sn is regular of degree n − 1 and is bipartite with two partite sets
of equal size, this result is optimal (in the worst case) with respect to both
the length of the embedded path and the number of tolerable vertex faults.

Hsieh et al. [71] proved that Sn with n � 4 is strongly hamiltonian lace-
able. In Ref. [73], they also proved that Sn is (n − 4)-edge-fault-tolerant
hamiltonian laceable and is (n − 3)-edge-fault-tolerant hamiltonian laceable
exclusive of two exceptions in which at most two vertices are excluded for
n � 6. Li et al. obtained stronger results.

Theorem 10.3 (Li et al. [109]) For n � 4, Sn is (n−3)-edge-fault-tolerant
hamiltonian laceable, (n−3)-edge-fault-tolerant strongly hamiltonian laceable
and (n − 4)-edge-fault-tolerant hyper hamiltonian laceable.

Theorem 10.4 (Lin et al. [111]) Sn is super laceable if and only if n �= 3.

For more faulty edges, Fu [55] showed that Sn is (2n − 7)-edge-fault-
tolerant hamiltonian if every vertex is incident with at least two fault-free
edges for n � 4. Tsai, Fu and Chen [144] have obtained a stronger result.

Theorem 10.5 (Tsai, Fu and Chen [144]) Sn is (2n−7)-edge-fault-tolerant
strongly hamiltonian laceable if every vertex is incident with at least two fault-
free edges for n � 4.

Recently, Hsieh and Wu [82] improved the result of Fu [55] by increasing
faulty edges from 2n − 7 to 3n− 10.

Theorem 10.6 (Hsieh and Wu [82]) Sn is (3n − 10)-edge-fault-tolerant
hamiltonian if every vertex is incident with at least two fault-free edges for
n � 4.

11 Pancake graphs

The n-dimensional pancake graph, denoted by Pn and proposed by Akers
and Krishnameurthy [3], is a graph consisting of n! vertices labelled with n!
permutations on a set of the symbols 1, 2, . . . , n. There is an edge from vertex
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i to vertex j if and only if j is a permutation of i such that

i = i1i2 · · · ikik+1 · · · in,

j = ik · · · i2i1ik+1 · · · in,

where 2 � k � n. The pancake graphs P2, P3, and P4 are shown in Fig. 11
for illustration.
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Fig. 11 Pancake graphs P2, P3 and P4

The pancake graph Pn is (n−1)-regular and (n−1)-connected and contains
no cycles of length four [111]. Moreover, Pn is a Cayley graph and, hence, is
vertex transitive, but not edge-transitive [3]. It was shown in Ref. [61] that
the diameter of the pancake graph is bounded above by 3(n + 1)/2. It is still
an open problem to compute the exact diameter of the pancake graph.

Theorem 11.1 (Kanevsky and Feng [99]) Pn contains cycles of every length
from 6 to n! except for n! − 1 for n � 4.

Theorem 11.2 (Hung et al. [94]) Pn is (n−3)-fault hamiltonian and (n−4)-
fault hamiltonian connected for n � 4.

In particular, the fact that Pn−F is hamiltonian when F consists of only
a single vertex implies the existence of a cycle of length n! − 1. As a simple
consequence, Theorem 11.2 improves Theorem 11.1. Combining Theorem
11.1 with Theorem 11.2, we have Pn is pancyclic for n � 4. The first result
in Theorem 11.2 is improved as follows.

Theorem 11.3 (Tsai, Fu and Chen [143]) Pn is (2n− 7)-fault hamiltonian
for n � 4.
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12 Bubble-sort graphs

A bubble-sort graph Bn, proposed by Akers and Krisnamurthy [3], has n!
vertices labelled by distinct permutations on {1, 2, . . . , n}. Two vertices x =
x1x2 · · ·xn and y = y1y2 · · · yn in Bn are adjacent if and only if xi = yi+1

and xi+1 = yi for some i and xj = yj for all j �= i or i + 1. Fig. 12 shows the
bubble-sort graphs B2, B3 and B4.
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Fig. 12 Bubble-sort graphs B2, B3 and B4

Bn is bipartite, (n − 1)-regular and vertex transitive. A very important
property of the bubble-sort graph is a recursive structure. We define a
subgraph Bn(i) in Bn for any fixed i, 1 � i � n, as the induced subgraph
by the set of vertices {x | x[n] = i}, where x[n] represents the n-th element
of the label of vertex x in Bn. By the definition of the bubble-sort graph,
Bn(i) is isomorphic to Bn−1. Hence, Bn is partitioned into n subgraphs each
of which is isomorphic to Bn−1.

Also, by the definition, Bn is a Cayley graph on the symmetric group on
{1, 2, . . . , n} with the set of transpositions {(1, 2), (2, 3), . . . , (n−1, n)} as the
generating set. Tchuente [134] proved that Cayley graphs on the symmetric
group on {1, 2, . . . , n} generated by transpositions are hamiltonian laceable
for n � 4, which implies the following result.

Theorem 12.1 (Tchuente [134]) Bn is hamiltonian laceable for n � 4.

Recently, Kikuchi and Araki [100] have shown the following result.

Theorem 12.2 (Kikuchi and Araki [100]) Bn is edge-bipancyclic for n � 5,
(n − 3)-edge-fault-tolerant bipancyclic for n � 4.

Theorem 12.3 (Araki and Kikuchi [8]) Bn is (n − 3)-edge-fault-tolerant
strongly hamiltonian laceable for n � 4.
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13 (n, k)-Stars

We have seen that the number of vertices is n! for an n-star graph Sn, and
there is a large gap between n! and (n + 1)! for expanding an Sn to an Sn+1.
To remedy this drawback, Chiang and Chen [34] proposed the (n, k)-star
graph, denoted by Sn,k, with vertex set

{u1u2 · · ·uk : ui ∈ {1, 2, . . . , n}, ui �= uj for i �= j}.

Adjacency is defined as follows: a vertex u1u2 · · ·ui · · ·uk is adjacent to
(1) the vertex uiu2 · · ·u1 · · ·uk, where 2 � i � k (i.e., we swap ui with

u1), and
(2) the vertex xu2u3 · · ·uk, where x ∈ {1, 2, . . . , n} − {ui : 1 � i � k}.
Figure 13 shows a (4, 2)-star graph S4,2.
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Fig. 13 (4, 2)-star graph S4,2

By definition, Sn,n−1
∼= Sn and Sn,1

∼= Kn. Thus, Sn,k is a generalization
of Sn. It has been shown that Sn,k is an (n − 1)-regular (n − 1)-connected
vertex-transitive graph with n!/(n−k)! vertices, diameter 2k−1 for k � �n/2�
and �(n − 1)/2� + k for k � �n/2�+ 1.

For n−k = 1, Sn,n−1
∼= Sn [34], which is known to be hamiltonian if and

only if n > 2 and hamiltonian connected if and only if n = 2 [1].

Theorem 13.1 (Chen et al. [30]) Sn,k is 3-vertex-pancyclic when 1 � k �
n − 4 and n � 6, and 6-vertex-pancyclic when n − 3 � k � n − 2.

Theorem 13.2 (Hsu et al. [84]) S4,2 is 1-fault-tolerant hamiltonian and
hamiltonian connected. For two integers n and k with n > k � 1, Sn,k

is (n − 3)-fault-tolerant hamiltonian, and (n − 4)-fault-tolerant hamiltonian-
connected.
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14 Arrangement graphs

The arrangement graph was proposed by Day and Tripathi [41] as a
common generalization of star graphs and alternating group graphs. Given
two positive integers n and k with n > k, the (n, k)-arrangement graph An,k

is the graph with vertex-set V = {p : p = p1p2 · · · pk with pi ∈ {1, 2, . . . , n}
for 1 � i � k and pi �= pj if i �= j} and edge-set E = {(p, q) : p, q ∈ V and
p, q differ in exactly one position}. Fig. 14 shows A4,2.

4 3 2 3 2 1 4 1

1 3

2 4

3 1

1 4 3 4

3 21 2

4 2

Fig. 14 Structure of A4,2

The (n, k)-arrangement graph An,k is a regular graph of degree k(n −
k) with n!/(n − k)! vertices and diameter �3k/2�. An,1 is isomorphic to a
complete graph Kn and An,n−1 is isomorphic to a star graph Sn. Moreover,
An,k is vertex-transitive and edge-transitive [41].

Since the arrangement graph An,n−1 is isomorphic to a star graph Sn,
which is bipartite, we consider k � n − 2 below.

Theorem 14.1 (Day and Tripathi [42]) An,k is pancyclic for n − k � 2.

Hsieh et al. [70] studied the existence of hamiltonian cycles in faulty
arrangement graphs, Lo and Chen [112] studied edge fault hamiltonian
connectivity of the arrangement graph. These results have been generalized
by Hsu et al. [85].

Theorem 14.2 (Hsu et al. [85]) An,k is (k(n−k)−2)-fault-tolerant hamil-
tonian, and (k(n−k)−3)-fault-tolerant hamiltonian-connected for n > k � 1.

For panpositionable hamiltonicity of An,k, Teng et al. [135] obtained the
following result.

Theorem 14.3 (Teng et al. [135]) An,k is panpositionable hamiltonian and
panconnected for k � 1 and n − k � 2.
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15 Alternating group graphs

An n-dimensional alternating group graph, denoted by AGn, proposed by Jwo
et al. [98] and further investigated by Cheng et al. [31–33], is an undirected
graph with vertices labelled with even permutations on a set of the symbols
1, 2, . . . , n. There is an edge between two vertices p and q if and only if q can
be obtained from p by rotating the symbols in positions 1, 2, and i from left
to right for some i = 3, 4, . . . , n. Fig. 15 depicts examples of AG3 and AG4.

231 312

123
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4213 1423

2143

2314 3124

1342 3241

4132 2431

1234

3412 4321

AG4

Fig. 15 Examples of alternating group graphs

It is easy to see that AGn is (2n− 4)-regular, has n!/2 vertices and (n −
2)n!/2 edges. Moreover, AGn, which belongs to the class of Cayley graphs,
has been shown to be vertex-transitive, edge-transitive, maximal connectivity,
and has a small diameter and average distance. Furthermore, Chiang and
Chen [35] showed that AGn is isomorphic to the (n, n−2)-arrangement graph
An,n−2.

Theorem 15.1 (Jwo et al. [98]) AGn is pancyclic and hamiltonian-
connected for n � 3.

Theorem 15.2 (Chang et al. [20]) AGn is panconnected for n � 3, (n−2)-
vertex-fault-tolerant hamiltonian and (n−3)-vertex-fault-tolerant hamiltonian-
connected for n � 4.

Since AGn is isomorphic to the (n, n− 2)-arrangement graph An,n−2, by
Theorem 14.2, the following result holds.

Theorem 15.3 (Hsu et al. [85]) AGn is (2n−6)-fault-tolerant hamiltonian
and (2n − 7)-fault-tolerant hamiltonian-connected for n � 4.

Recently, Tsai, Chen and Fu [142] have further shown that the alternating
group graph remains pancyclic, even if there are up to 2n− 6 edge faults for
n � 3.
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Theorem 15.4 (Tsai, Chen and Fu [142]) AGn is (2n − 6)-edge-fault-
tolerant edge-pancyclic for n � 3.

For vertex faults, we can state the following result.

Theorem 15.5 (Chang et al. [21]) AGn is (n − 2)-vertex-fault-tolerant
pancyclic, (n − 3)-vertex-fault-tolerant vertex-pancyclic, (n − 4)-vertex-fault-
tolerant edge-4-pancyclic for n � 4.

Teng et al.1) have proposed a new concept called panpositionable
hamiltonicity. The panpositionable hamiltonian property advances the
hamiltonicity further. A hamiltonian graph G of order n is panpositionable
if for any two different vertices x and y of G and for any integer l satisfying
dG(x, y) � l � n − dG(x, y), there exists a hamiltonian cycle C of G such
that dC(x, y) = l. The following result is obtained.

Theorem 15.6 (Teng et al.1)) AGn is panpositionable hamiltonian if n � 3.

16 k-ary n-cubes

The n-dimensional undirected toroidal mesh, denoted by Q(k1, . . . , kn), is
defined as the cartesian products Ck1 ×Ck2×· · ·×Ckn , where Cki is a cycle of
length ki (� 3) for each i = 1, 2, . . . , n and n � 2. It is clear that Q(k1, . . . , kn)
has k1 · · ·kn vertices and has girth g = min{4, ki, 1 � i � n}, and is bipartite
if and only if ki is even for each i = 1, 2, . . . , n. By properties of cartesian
products (see Ref. [153]), we obtain immediately that Q(k1, . . . , kn) is a
2n-regular and 2n-connected Cayley graph with diameter d, where

d =
n∑

i=1

⌊ki

2

⌋
.

For fault-tolerant hamiltonicity and hamiltonian-connectivity of Q(k1, . . . ,
kn), we only know the following result.

Theorem 16.1 (Kim and Park [101]) If m � 3, n � 3 and n is odd,
then Q(m, n) is 2-fault-tolerant hamiltonian and 1-fault-tolerant hamiltonian
connected.

Assume that ki = k � 3 for each i = 1, 2, . . . , n and n � 2 below. The
n-dimensional undirected toroidal mesh Q(k, k, . . . , k) is called the k-ary n-
dimensional cube, or k-ary n-cube for short, denoted by Qk

n.
Bettayeb [12] and Bose et al. [14] showed that Qk

n is hamiltonian, respec-
tively. Recently, Huang2) has proved that Qk

n is strongly hamiltonian laceable
if k is even. Ashir and Stewart [10] showed that Qk

n contains a cycle of some
given length. Wang et al. [147] showed that Qk

n is hamiltonian-connected

1) Teng Y -H, Tan J J M, Hsu L -H. Panpositionable hamiltonicity of the alternating
group graphs. 2006

2) Huang C -H. Strongly Hamiltonian laceability of the even k-ary n-cube. 2008



244 Jun-Ming XU, Meijie MA

when k is odd. Hsieh, Lin and Huang [79] showed that Q3
n is panconnected

and edge-pancyclic. Hsieh and Lin further showed the following two results.

Theorem 16.2 (Hsieh and Lin [78]) If k is even, then any edge in Qk
n lies

on a cycle of every length from k to kn.

Theorem 16.3 (Hsieh and Lin [77,78]) If k is odd then for any two distinct
vertices x and y in Qk

n, there exists an xy-path of every length l for �k/2�n �
l � kn − 1; if k is even then Qk

n is bipanconnected.

Stewart and Xiang [132] also obtained the second conclusion in the above
theorem that if k is even then Qk

n is bipanconnected, and strengthened the
result of Hsieh et al. [79] that Q3

n is panconnected and edge-pancyclic as
follows.

Theorem 16.4 (Stewart and Xiang [132]) If k is odd, then Qk
n is edge-

bipancyclic; and m-panconnected, where m = (n(k − 1) + 2k − 6)/2, and
(k − 1)-pancyclic.

A graph G of order υ is called bipancycle-connected if each pair of vertices
x and y in G is contained by a cycle of each even length from the length of
the smallest cycle that contains x and y to υ, and called strictly m-pancycle-
connected for m < υ if each pair of vertices in G is contained by a cycle of
each length from m to υ.

Theorem 16.5 (Fang1)) If k is even then Qk
n is bipancycle-connected; and

if k is odd then Qk
n is strictly m-pancycle-connected, where m = nk − n.

The lower bound nk − n in the above theorem may be reached.
In the case where both faulty vertices and/or faulty edges are considered,

Yang, Tan and Hsu [163] obtained the following result.

Theorem 16.6 (Yang, Tan and Hsu [163]) If k is odd, then Qk
n is (2n−2)-

fault-tolerant hamiltonian and (2n− 3)-fault-tolerant-hamiltonian connected.

Since Qk
n is regular of degree 2n, the degrees of fault-tolerance 2n−3 and

2n−2 respectively, are optimal in the worst case. For more faults, Ashir and
Stewart [11] obtained the following result.

Theorem 16.7 (Ashir and Stewart [11]) If every vertex is incident with at
least two fault-free edge, then Qk

n is (4n − 5)-fault-tolerant hamiltonian.

This result is optimal in the worst case, that is, there are situations where
the number of faults is 4n − 4 and every vertex is incident with at least two
fault-free edge and no Hamilton cycle exists. At the same time, Ashir and
Stewart [11] also remarked that given a faulty Qk

n, the problem of deciding
whether there exists a Hamilton cycle is NP-complete.

1) Fang J -F. The bipancycle-connectivity and the m-pancycle-connectivity of the
k-ary n-cube. 2008
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17 Remarks and comments

The topological structure of an interconnection network can be modeled by a
graph whose vertices represent components of the network and whose edges
represent links between components. An n-dimensional hypercube or n-cube
Qn is one of the most efficient networks for parallel computation. It has many
desirable and attractive features such as regularity, recursive structure, vertex
and edge symmetry, maximum connectivity, and effective routing and broad-
casting algorithms, and becomes the first choice for the topological structure
of parallel processing and computing systems. However, the hypercube has
its own intrinsic drawbacks, such as its large diameter. As a result of a
focused attention, several variations of the hypercube have been proposed
to improve some properties such as diameter; some of these variations have
been mentioned in this paper.

In interconnection networks, the simulation of one architecture by
another is important. The problem of simulating one network by another
is modeled as a graph-embedding problem. Path or cycle networks are
suitable for designing simple algorithms with low communication costs. These
have motivated a great deal of research on embedding paths or cycles into
various other interconnection networks. We have seen from this survey that
the path-embedding and cycle-embedding problems for the hypercubes have
been studied in depth. However, the same problems for variations of the
hypercube have not been studied much although some known results have
been mentioned in this survey.

It has be observed that the hypercube and its variations mentioned above
are of recursive structures, and so all proof proceeds of known results
apply induction on order by making good use of the recursive structure of the
networks. In the process of proofs, two key obstacles are generally encoun-
tered. The one is the induction base for small order, which is often used by
simple observation, direct verification, or indirect verification by a computer
search. The other is to construct a required path or cycle by the induc-
tion hypothesis, which relates to some structural properties of the networks.
Thus, the authors deem that the key of studying the path-embedding and
cycle-embedding problems for variations of the hypercube is to investigate
the structural properties of these networks.

In this paper, we survey many results on hamiltonicity, hamiltonian-
connectivity, pancyclicity, vertex-pancyclicity, edge-pancyclicity, and pancon-
nectivity for the hypercube network and its variations. In fact, these notions
have been investigated in the context of some other networks, for example, in
recursive circulant networks [9,24,124], Butterfly networks [25,93,140], cube-
connected cycle networks [58], hypercube-like networks [76,86,123,125], and
so on.
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