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a b s t r a c t

The reinforcement number of a graph G is the minimum cardinality of a set of extra edges
whose addition results in a graph with domination number less than the domination
number of G. In this paper we consider this parameter for digraphs, investigate the
relationship between reinforcement numbers of undirected graphs and digraphs, and
obtain further results for regular graphs. We also determine the exact values of the
reinforcement numbers of de Bruijn digraphs and Kautz digraphs.
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1. Introduction

For the terminology and notation not defined here, we refer the reader to [17,18]. In this paper a graph G = (V , E) can be
an undirected graph or a digraph. Let υ(G) = |V (G)|, ε(G) = |E(G)|. The symbol∆+(G) denotes the maximum out-degree
of a digraph G.
For an undirected graph G = (V , E) and v ∈ V (G), we use NG(v) to denote the set of neighbors of v, and let

NG[v] = NG(v) ∪ {v}. A vertex v dominates all vertices in NG[v]. Analogously for a digraph G = (V , E) and v ∈ V (G),
let N+G (v) be the set of out-neighbors of v, and let N

+

G [v] = N
+(v) ∪ {v}. A vertex v dominates all vertices in N+G [v].

Let G = (V , E) be a graph. A set D ⊆ V is a dominating set if D dominates V (G). The minimum cardinality over all
dominating sets is called the domination number, and denoted by γ (G). A dominating set D is called a γ -set if |D| = γ (G).
An undirected graph G can be thought of as a symmetric digraph which is obtained by replacing each edge of G by two

symmetric edges, i.e., two directed edges with the same end vertices but of opposite directions. Thus, to study the properties
of digraphs is in some sensemore general than for undirected graphs. A digraph, called an orientation of an undirected graph
G, can be obtained by specifying the direction of each edge of G.
In 1990, Kok and Mynhardt [13] introduced the reinforcement number r(G) of a graph G, which is the minimum number

of extra edges whose addition to G results in a graph G′ with γ (G′) < γ (G). They defined r(G) = 0 if γ (G) = 1. In this
paper, we consider a graph Gwith γ (G) > 1. In [13], the authors established some upper bounds for undirected graphs and
found a method to determine r(G) in terms of γ (G). No results are known for digraphs so far.
In this paper, we present an original investigation into the reinforcement for digraphs. In Section 2 we show that most

of the results in [13] are also valid for digraphs and that for an undirected graph G, r(G) = r(H) where H is the symmetric
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digraph of G. The study on reinforcement numbers for digraphs is in some sense more general than that for undirected
graphs. We also prove that there exist two orientations H1 and H2 of an undirected graph G such that r(H1) 6 r(G) 6 r(H2).
In Section 3we establish the upper bounds and give some characterizations for graphs that attain the bounds,which partially
answer a question proposed in [5].We obtain further results for regular graphs in Section 4 and determine the reinforcement
numbers of de Bruijn digraphs and Kautz digraphs in Section 5. Finally, we conclude this paper with some remarks and
problems in Section 6.

2. Reinforcement in digraphs

2.1. Fundamental

Lemma 2.1. If G is a digraph with γ (G) > 2, then r(G) 6 υ(G)−∆+(G)− γ (G)+ 1.
Proof. It is clear that ∆+(G) < υ(G) − 1 since γ (G) > 2. Let u be a vertex of maximum out-degree and let E ′ =
{(u, v) : v ∈ V (G) \ N+G [u]} a set of extra edges. Then γ (G + E

′) = 1 since {u} is a dominating set in G + E ′. Hence
r(G) 6 |E ′| = υ(G)−∆+(G)− 1. This fact means that there are r(G)− 1 vertices v1, v2, . . . , vr(G)−1 in V (G) \ N+G [u].
Now let G′ be a digraph obtained from G by adding r(G) − 1 extra edges (u, vi) for each i = 1, . . . , r(G) − 1. By the

definition of r(G), γ (G) = γ (G′) 6 υ(G′)−∆+(G′) = υ(G)− (∆+(G)+ r(G)− 1), which yields the lemma. �

For a digraph G, we can calculate r(G) in terms of γ (G). To the end, let us set
η(G) = υ(G)−max{|N+G [X]| : X ⊂ V (G), |X | = γ (G)− 1}.

We call a subset X ⊂ V (G) an η- set if η(G) = υ(G)− |N+G [X]| in G.

Lemma 2.2. r(G) = η(G) for any digraph G with γ (G) > 1.
Proof. Let X be an η-set in G. Then there is a subset Y of η(G) vertices of G not dominated by X . Let G′ be a digraph obtained
from G by adding extra directed edges from some vertex in X to each vertex in Y such that X is a dominating set of G′. Then
γ (G′) 6 |X | 6 γ (G)− 1. It follows that r(G) 6 η(G).
On the other hand, let E ′ be a set of r(G) extra directed edges whose addition to G results in G′ with γ (G′) = γ (G) − 1.

Let Y ′ be a γ -set of G′ and V ′ = {v : (u, v) ∈ E ′, u ∈ Y ′}. Then every vertex in V (G) − V ′ is dominated by Y ′ in G. Hence
η(G) 6 |V (G)− N+G [Y

′
]| 6 |V ′| = r(G). �

We have the following corollary from Lemma 2.2 immediately.

Corollary 2.3. r(G) = υ(G)−∆+(G)− 1 for any digraph G with γ (G) = 2.
This result shows that the upper bound given in Lemma 2.1 is best for γ (G) = 2.
Now we consider the relationship between reinforcement numbers of undirected graphs and digraphs.

Theorem 2.4. For an undirected graph G, let H be its symmetric digraph. Then γ (H) = γ (G) and r(H) = r(G).
Proof. Let X be a subset of vertices in G. It is clear that NG[X] = N+H [X]. Hence X is a dominating set in G if and only if X is
a dominating set in H , which implies that γ (G) = γ (H) = γ . For any set Y of γ − 1 vertices, we have η(G) = η(H) since
|NG[Y ]| = |N+H [Y ]|. By Lemma 2.2, r(G) = r(H). �

Theorem 2.5. For an undirected graph G, there exist two orientations H1 and H2 of G such that r(H1) 6 r(G) 6 r(H2).
Proof. For a given orientation H of G and a subset X ⊆ V (G), clearly, N+H [X] ⊆ NG[X]. This fact means γ (H) > γ (G) for any
orientation H since any γ -set in H is a dominating set in G.
Let D′ be an η-set in G, and letH1 be an orientation of G obtained by giving a direction from u to v for each edge uv ∈ E(G)

with u ∈ D′ and v 6∈ D′, and arbitrarily giving directions for other edges of G. Then |N+H1 [D
′
]| = |NG[D′]| = υ(G) − η(G).

Since γ (H1) > γ (G) > 1, we can obtain a set X with |X | = γ (H1) − 1 by arbitrarily adding γ (H1) − γ (G) vertices
to X . Clearly |N+H1 [X]| > |N

+

H1
[D′]| = υ(G) − η(G) and so η(H1) 6 υ(H1) − |N+H1 [X]| 6 η(G). By Lemma 2.2, we have

r(H1) = η(H1) 6 η(G) = r(G).
Let D be a γ -set in G, and let H2 be an orientation of G obtained by giving a direction from u to v for each edge uv ∈ E(G)

with u ∈ D and v 6∈ D, and arbitrarily giving directions to other edges. Clearly D is also a dominating set in H2. Hence
γ (H2) = γ (G) = γ > 1. Let D′ be an η-set in G. For any set X of γ − 1 vertices in H2, |N+H2 [X]| 6 |NG[X]| 6 |NG[D

′
]|, which

implies that η(H2) > υ(H2)− |N[D′]| = η(G). Thus r(H2) > r(G) by Lemma 2.2. �

2.2. Selected families of digraphs

In this subsection we will determine the reinforcement numbers of special classes of digraphs. Some of them show the
tightness of our results in Section 2. First we will generalize some results in [13].

Proposition 2.6. Let
−→
C n and

−→
P n be a directed cycle and a directed path with n = 2k + i vertices, where k is a nonnegative

integer and i ∈ {1, 2}. Then r(
−→
C n) = r(

−→
P n) = i.
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Proof. Assume
−→
C n = (0, 1, . . . , n − 1). It is clear that γ (

−→
C n) = dn/2e = k + 1 since {0, 2, . . . , 2k} is a dominating

set. Let X be a set of k vertices in Cn. Then |N+−→C n
[X]| 6 2k with equality if X = {0, 2, . . . , 2k − 2}. By Lemma 2.2,

r(
−→
C n) = η(

−→
C n) = n− 2k = i. Similarly we have r(

−→
P n) = η(

−→
P n) = i. �

Remark 2.7. Kok and Mynhardt [13] proved that r(Pn) = r(Cn) = i where Pn and Cn are an undirected path and an
undirected cycle with n = 3k + i vertices. Then r(Pn) = 1 < 2 = r(

−→
P n) and r(Cn) = 1 < 2 = r(

−→
C n) if n = 6k + 4,

whereas r(
−→
P n) < 3 = r(Pn) and r(

−→
C n) < 3 = r(Cn) if n = 3k.

Let G1 = (V1, E1) and G2 = (V2, E2) be two digraphs. The cartesian product of G1 and G2 is a digraph, denoted by G1×G2,
where V (G1 × G2) = V1 × V2. There is a directed edge from a vertex x1x2 to another y1y2, where x1, y1 ∈ V (G1) and
x2, y2 ∈ V (G2), in G1 × G2 if and only if either x1 = y1 and (x2, y2) ∈ E(G2), or x2 = y2 and (x1, y1) ∈ E(G1).

Proposition 2.8. Let
−→
K m and

−→
K n be two complete digraphs, 2 6 m 6 n. Then r(

−→
K m ×

−→
K n) = n − m + 1. Furthermore,

−→
K n ×

−→
K n is domination edge critical.

Proof. By Theorem 2.4, γ (
−→
K m ×

−→
K n) = γ (Km × Kn) = m and r(

−→
K m ×

−→
K n) = r(Km × Kn) = m− n+ 1. (See [13].)

Let G =
−→
K n ×

−→
K n with vertex-set {xy : x, y = 0, 1, . . . , n− 1}. Then e = ((ij), (i′j′)) is an edge of G if and only if i 6= i′

and j 6= j′. Let f be a permutation on {0, 1, . . . , n − 1} such that f (i) = j and f (i′) = j′. Then D = {(k, f (k)) : k 6= i′} is a
dominating set in G+ e. Hence γ (G+ e) = n− 1. �

The circulant graph
−→
C (n; S) of order n is the Cayley graph C(Zn, S), where Zn = {0, 1, . . . , n− 1} is the additive group of

order n and S is a nonempty subset of Zn without the identity element. It is well known that
−→
C (n; S) is a vertex-transitive

digraph of degree |S|. If S−1 = S, then
−→
C (n; S) is symmetric and we view it undirected.

Proposition 2.9. Let S = {1, 2, . . . , k} and n = p(k + 1) + q, where 1 6 q 6 k + 1. Then γ (
−→
C (n; S)) = p + 1 and

r(
−→
C (n; S)) = q.

Proof. Since
−→
C (n; S) is k-regular, every vertex dominates k+ 1 vertices, which implies that γ (

−→
C (n; S)) > d nk+1e = p+ 1.

On the other hand, D = {0, k, . . . , pk} is a dominating set in G. Hence γ (
−→
C (n; S)) = d nk+1e = p+ 1.

For any set X of p vertices, N+[X] 6 p(k+ 1)with equality if X = D− {pk}. Hence

r(
−→
C (n; S)) = η(

−→
C (n; S)) = n− p(k+ 1) = q. �

2.3. Compositions of digraphs

The following proposition is straightforward by computing η(G ∪ H).

Proposition 2.10. Let G and H be two digraphs. Then r(G ∪ H) = min{r(G), r(H)}.

For two undirected graphs G and H , the join G + H is defined as an undirected graph consisting of G and H with each
vertex of G adjacent to every vertex of H . If G and H are digraphs then we can define two kinds of joins G→ H and G↔ H .
The digraph G → H consists of G and H with extra edges from each vertex of G to every vertex of H , and G ↔ H can be
obtained from G→ H by adding edges from each vertex of H to every vertex of G.

Proposition 2.11. Let G and H be two digraphs. Then
(1) r(G→ H) = r(G);
(2) r(G↔ H) =

{
υ(G)+ υ(H), if min{γ (G), γ (H)} = 1;
min{υ(G)−∆+(G)− 1, υ(H)−∆+(H)− 1}, otherwise.

Proof. (1) Let D be a γ -set in G. By the definition, D is also a dominating set in G→ H . Hence γ (G→ H) 6 |D| = γ (G). On
the other hand, any set consisting of fewer than γ (G) vertices cannot dominate V (G), since no vertex in H dominates any
vertex in G. Hence γ (G→ H) = γ (G) = γ .
Let D′ be an η-set in G. Then in G → H , any set X of γ − 1 vertices dominates at most |N+G [D

′
]| + υ(H) vertices, with

equality if X = D′. Hence

η(G→ H) = υ(G→ H)− |N+G [D
′
]| − υ(H)

= υ(G)− |N+G [D
′
]| = η(G).

(2) If min{γ (G), γ (H)} = 1, then γ (G ↔ H) = 1 and r(G ↔ H) = υ(G ↔ H) = υ(G) + υ(H). Otherwise
γ (G↔ H) = 2. By Corollary 2.3,
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r(G↔ H) = υ(G↔ H)−∆+(G↔ H)− 1
= υ(G)+ υ(H)−max{∆+(G)+ υ(H),∆+(H)+ υ(G)} − 1
= min{υ(G)−∆+(G)− 1, υ(H)−∆+(H)− 1}.

The proof is complete. �

Next we consider an operation of graphs, called the corona. The corona G◦H of two undirected graphs G and H is formed
from one copy of G and υ(G) copies of H by joining vi to Hi, where vi is the ith vertex of G and Hi is the ith copy of H .
For digraphs G and H , if all the additional edges are from G to H , then we denote the resulting digraph by G−→◦ H; if all the
additional edges are from H to G, then we denote the resulting digraph by G←−◦ H .

Proposition 2.12. Let G and H be two digraphs. Then
(1) r(G−→◦ H) =

{
υ(H)+ 1 if G = Kn, n > 2;
υ(H) otherwise.

(2) r(G←−◦ H) = r(H).

Proof. (1) A single vertex in G−→◦ H does not dominate two vertices in different copies of H; we need at least υ(G) vertices
to dominate υ(G) copies of H . Hence γ (G−→◦ H) > υ(G). Since V (G) is a dominating set of G−→◦ H , then γ (G−→◦ H) = υ(G).
If υ(G) = 1, then r(G−→◦ H) = υ(G−→◦ H) = υ(H). Assume υ(G) > 2 below. For any set X of υ(G)− 1 vertices, there exists

an integer i such that vi and Hi do not belong to X (otherwise |X | > υ(G)).
If G contains no edge, then X cannot dominate the vi and Hi, which implies that |N+[X]| 6 υ(G−→◦ H) − υ(H) − 1. Let

D′ be a set consisting of υ(G) − 1 vertices of G. Then |N+[D′]| = (υ(G) − 1)(υ(H) + 1) = υ(G−→◦ H) − υ(H) − 1. Hence
r(G−→◦ H) = η(G−→◦ H) = υ(H)+ 1.
If there exists an edge (u, v) ∈ E(G), then X cannot dominate the ith copy of V (H), which implies that |N+[X]| 6

υ(G−→◦ H) − υ(H). Let D′ = V (G) − {v}. Then D′ can dominate v and so |N+[D′]| = (υ(G) − 1)(υ(H) + 1) + 1 =
υ(G−→◦ H)− υ(H). Hence r(G−→◦ H) = η(G−→◦ H) = υ(H).
(2) By the definition of G←−◦ H , we need at least γ (H) vertices to dominate Hi and so γ (G←−◦ H) > υ(G)γ (H). Let Di be a

γ -set in Hi. It is easy to observe that D = ∪
υ(G)
i=1 Di is a dominating set of G

←−
◦ H . Hence γ (G←−◦ H) = υ(G)γ (H).

For any set X of υ(G)γ (H) − 1 vertices in G←−◦ H , there exists some integer i such that Xi = X ∩ V (Hi) 6 γ (H) − 1. By
Lemma 2.2, |N+[Xi]| 6 υ(Hi)− r(Hi) and so |N+[X]| 6 υ(G←−◦ H)− r(H). Note that any subset D′ ⊂ D with |D′| = |D| − 1
dominates υ(G←−◦ H)− r(H) vertices. Hence r(G←−◦ H) = r(H). �

Using Propositions 2.11 and 2.12 we can construct large graphs with required r(G).

Corollary 2.13. For a given positive integer r, there is a connected directed planar graph such that its reinforcement number is
equal to r.

Proof. Let G =
−→
P 2−→◦ Kr . Clearly G is a connected planar graph with r(G) = r by Proposition 2.12. The examples for

undirected graphs are similar. (Use the proposition for the undirected corona in [13].) �

3. More upper bounds

Kok and Mynhardt [13] discussed the relationship between r(G) and ρ(G), the private neighborhood number of G,
and obtain an upper bound for r(G). We generalize that the result to digraphs. For a graph G, let x ∈ X ⊆ V (G). The
private neighborhood of x with respect to X is the set PN(x, X) = {N[x] − N[X − {x}]} or {N+[x] − N+[X − {x}]}. Let
ρ(X) = min{|PN(x, X)| : x ∈ X} and define ρ(G) = min{ρ(D) : D is a γ -set of G} to be the private neighborhood number of
G. It is clear that ρ(G) > 1 since every vertex in a minimal dominating set has at least one private neighbor.

Theorem 3.1. For a graph G, r(G) 6 ρ(G) with equality if r(G) = 1.

Proof. The result for undirected graphs has been given in [13]. The proof for digraphs is similar. If γ (G) = 1 then r(G) =
υ(G) = ρ(G). Assume γ (G) > 2 below. LetD be a γ -set such that there exists a vertex v ∈ Dwith |PN(v,D)| = ρ(D) = ρ(G).
Pick a vertex u ∈ D − {v} and let H = G + {(u, w) : w ∈ PN(v,D)}. Clearly D − {v} is a dominating set in H . Thus
r(G) 6 |PN(v,D)| = ρ(G).
If r(G) = 1 then there exists a dominating set D′ in G+ {(u, v)}with |D′| = γ (G)− 1. Clearly D = D′ ∪ {v} is a γ -set in

G and PN(v,D) = {v}. It follows that ρ(G) 6 ρ(D) 6 |PN(v,D)| = 1 and so ρ(G) = 1. �

Note that
∑

v∈D |PN(v,D)| 6 υ(G). Then there exists a vertex v in any γ -set D such that |PN(v,D)| 6 υ(G)/|D|. Thus the
following corollary holds.

Corollary 3.2. For a graph G, r(G) 6 ρ(G) 6 υ(G)/γ (G).

Kok and Mynhardt [13] demonstrated that for any γ (G) > 2, the gap between r(G) and ρ(G) can be arbitrarily large for
connected undirected graphs. By Theorem 2.4, this result is also valid for digraphs.
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Theorem 3.3 ([13]). For any integer r, s, t with 2 6 r 6 s and t > 2, there exists a connected graph G such that r(G) = r,
ρ(G) = s and γ (G) = t.

The next question is when the equalities in Theorem 3.1 hold. Dunbar et al. [5] proposed the following problems for
undirected graphs, which remain open. We can ask similar questions for digraphs.
Open Problem [5] Characterize graphs G for which r(G) = ρ(G) = υ(G)/γ (G).
Now we give some results on this problem. For this purpose we refer to the efficient dominating set, or E-set for short,

which is a dominating set D such that every vertex of G is dominated by a unique vertex of D. Bange et al. [2] introduced this
concept as a measure of the efficiency of domination in graphs. Bange et al. [1] proved that every undirected graph has an
orientation with an efficient dominating set. Clearly a dominating set D is efficient if and only if PN(v,D) = N[v] or N+[v]
for any v ∈ D. Furthermore, the γ -set and E-set are equivalent for regular graphs possessing an E-set.

Lemma 3.4 ([8]). If G is a k-regular graph, then γ (G) > d υ(G)k+1 e, with equality if and only if G has an E-set. In addition, if G has
an E-set, then every E-set is a γ -set, and vice versa.

Proof. Here we only consider digraphs. The proof for undirected graphs is similar. Since G is k-regular, |N+[v]| = k+ 1 for
each v ∈ V (G). Hence γ (G) > d υ(G)k+1 e. It is easy to observe that equality holds if and only if there exists a dominating set D
such that PN(v,D) = N+[v] for every v ∈ V (G), equivalently, D is an E-set.
Now suppose that G has an E-set, i.e., γ (G) = υ(G)

k+1 . Then a dominating set D is a γ -set if and only if |D| =
υ(G)
k+1 . On the

other hand, D is efficient if and only if |D| = υ(G)
k+1 . The lemma follows. �

Theorem 3.5. For a graph G, ρ(G) = υ(G)/γ (G) if and only if every γ -set of G is an E-set consisting of vertices with the same
(out-)degree equal to ρ(G)− 1.

Proof. For any γ -set D of G,

γ (G)ρ(G) 6 |D| · |ρ(D)| 6
∑
v∈D

|PN(v,D)| 6 υ(G).

Hence ρ(G) = υ(G)/γ (G) if and only if the following equalities∑
v∈D

|PN(v,D)| = υ(G) and (3.1)

|PN(v,D)| = ρ(D) = ρ(G) for any v ∈ D (3.2)

hold for any γ -set D.
Clearly (3.1) holds if and only if D is an E-set. If G is a digraph, then (3.2) is equivalent to ρ(G) = |PN(v,D)| = d+(v)+ 1

for any v ∈ D, since D is efficient. Hence d+(v) = ρ(G) − 1 is a constant. Similarly we obtain the result for undirected
graphs. �

Corollary 3.6. If every vertex of a graph G belongs to a γ -set, then r(G) = ρ(G) = υ(G)/γ (G) if and only if G is regular and has
an E-set.

Proof. Assume ρ(G) = υ(G)/γ (G). Since every vertex of G belongs to a γ -set, Lemma 3.4 and Theorem 3.5 imply that G is
regular and has an E-set.
Conversely, suppose that G is k-regular and has an E-set. Clearly every set of γ (G) − 1 vertices dominates at most

(γ (G) − 1)(k + 1) = υ(G) − k − 1 vertices. Thus r(G) = η(G) > k + 1. On the other hand, r(G) 6 ρ(G) = k + 1.
Hence r(G) = ρ(G). �

4. Regular graphs

Section 3 presented some results on the characterization of r(G) = ρ(G) = υ(G)/γ (G). In view of Corollary 3.6, it is not
difficult to obtain further results for regular graphs.

Theorem 4.1. Let G be a k-regular graph. Then r(G) = ρ(G) = υ(G)/γ (G) if and only if G has an E-set.

Proof. The necessity follows from Theorem 3.5. For the sufficiency, letD be an E-set of G. By Lemma 3.4, υ(G)/γ (G) = k+1.
Let X be a set of γ (G)− 1 vertices. Clearly |N+[X]| 6 (γ (G)− 1)(k+ 1) = υ(G)− k− 1 since G is k-regular; equality holds
if X ⊂ D and |X | = γ (G)− 1. Hence r(G) = η(G) = k+ 1. The theorem follows. �

Next we consider the following problem for regular graphs.
Open Problem [5] Determine additional upper and lower bounds for r(G).
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Lemma 4.2. Given two positive integers ` and γ , let a1 = `
γ
and an =

`+dan−1e
γ

for any integer n > 2. Then

lim
n→∞

an =


`

γ − 1
if (γ − 1) | ` ;

`+ 1+ b `
γ−1c

γ
otherwise.

Proof. First we show that an converges. Clearly an is monotone increasing. We prove by induction on n that an has an upper
bound

bn =
`+ 1
γ − 1

−
`+ 1

γ υ(γ − 1)
.

It is trivial for n = 1. Assume an 6 bn. Then

an+1 =
`+ dane
γ

6
`+ dbne
γ

6
`+ bn + 1

γ
= bn+1.

Thus an 6 bn for any n. Since limn→∞ bn = `+1
γ−1 , an converges to a real number a.

Next we determine a. Let t = dae − a ∈ [0, 1). Then 1− t is just the fractional part of a unless a is an integer. Note that
limn→∞dane = a, since an is monotone increasing. By the definition of an,

a = lim
n→∞

an = lim
n→∞

(
`+ dan−1e

γ

)
=
`+ dae
γ

=
`+ a+ t

γ
,

that is, a = `+t
γ−1 . Let l = (γ − 1)p + q, where 0 6 q 6 γ − 2. Then a = p +

q+t
γ−1 . Since q + t 6 γ − 2 + t < γ − 1, then

q+t
γ−1 < 1 is the fractional part of a.
First consider q = 0, i.e., (γ − 1) | l. If t = 0, then a = `

γ−1 is an integer. If t > 0, then a has the fractional part
1 − t = q+t

γ−1 =
t

γ−1 . Hence t = 1 −
1
γ
and a = `

γ−1 +
1
γ
. There are two possible values of a. We prove by induction that

an 6 `
γ−1 for any n, which implies that a =

`
γ−1 . Clearly a1 6

`
γ−1 . Assume an 6

`
γ−1 . Then dane =

`
γ−1 since (γ − 1) | `,

and

an+1 =
`+ dane
γ

6
`+ `

γ−1

γ
=

`

γ − 1
.

Hence an 6 `
γ−1 for any n. Then a 6=

`
γ−1 +

1
γ−1 and so a =

`
γ−1 .

Now consider q > 1. Then a has the fractional part 1 − t = q+t
γ−1 . Hence t = 1 −

q+1
γ
and a = p + 1 − t = `+p+1

γ
. The

result follows. �

Theorem 4.3. For a k-regular graph G, let γ = γ (G) > 2 and ` = γ (k+ 1)− υ(G). Then

k+ 1− ` 6 r(G) 6 ρ(G) 6 k+ 1−


`

γ − 1
if (γ − 1) | ` ;⌈

`+ 1+ b `
γ−1c

γ

⌉
otherwise.

Proof. Let γ = γ (G). For any set D′ consisting of γ − 1 vertices, |N+[D′]| 6 (γ − 1)(k + 1). Hence r(G) = η(G) >
υ(G)− (γ − 1)(k+ 1) = k+ 1− `.
Let a1 = `/γ and an = `/γ+dan−1e/γ for any integer n > 2.Weproceed by induction on n to show thatρ(G) 6 k+1−an

for any n.
Since

∑
v∈D |PN(v,D)| 6 υ(G) for any γ -set D, there exists a vertex v ∈ D such that

ρ(G) 6 |PN(v,D)| 6 υ(G)/γ (G)
= k+ 1− `/γ = k+ 1− a1.

Suppose that ρ(G) 6 k + 1 − an. We show ρ(G) 6 k + 1 − an+1. By the assumption on ρ(G), there exists a γ -
set D and a vertex v ∈ D such that |PN(v,D)| = ρ(G) 6 k + 1 − an. Hence in N+[v] there are at least dane vertices
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not belonging to PN(v,D); clearly these vertices do not belong to PN(v′,D) for any v′ 6= v and v′ ∈ D. It follows that∑
v∈D |PN(v,D)| 6 υ(G)− dane and there exists some vertex u ∈ D such that

ρ(G) 6 |PN(u,D)|
6 k+ 1− (`+ dane)/γ
= k+ 1− an+1.

Thus ρ(G) 6 k + 1 − an for any n. Let n tend to infinity and we obtain ρ(G) 6 k + 1 − limn→∞ an. Note that ρ(G) is an
integer. The theorem follows from Lemma 4.2. �

Remark 4.4. The lower bound in Theorem 4.3 is sharp for any positive integer k and any integer n > k + 1, as shown in
Proposition 2.9. The upper bound is strictly smaller than υ(G)/γ (G) unless ` = 0.

Note that the lower and upper bounds in Theorem 4.3 are equal for γ = 2 or ` = 0. Then Corollary 2.3 and Theorem 4.1
can be immediately derived from Theorem 4.3. The following corollary is straight forward if we let ` = 1.

Corollary 4.5. Let G be a k-regular graph. If υ(G) = γ (G)(k+ 1)− 1, then r(G) = ρ(G) = k.

5. de Bruijn digraphs and Kautz digraphs

In this section we determine the reinforcement numbers of de Bruijn Digraphs and Kautz Digraphs. Note that loops may
arise. We cannot directly apply results in Section 4 to de Bruijn Digraphs and Kautz Digraphs.
First recall the definition of the de Bruijn digraph B(d, n). It is a digraph with vertex-set V = {x1 · · · xn : xi ∈ {0, 1, . . . ,

d − 1}}; there is a directed edge from x to y if and only if x = x1x2 . . . xn and y = x2 · · · xnα, where α ∈ {0, 1, . . . , d − 1}.
B(d, n) has dn vertices, dn+1 edges, and is d-regular.
Shibata and Gonda [15] defined the extended de Bruijn digraph EB(d, n; q1, . . . , qp). It is a digraph whose vertex-set is

the set of n-dimensional vectors on d elements divided into p blocks of sizes q1, . . . , qp, expressed as follows

x = (x11x12 · · · x1q1)(x21x22 · · · x2q2) · · · (xp1xp2 · · · xpqp),

where 0 6 xij 6 d− 1, and q1 + q2 + · · · + qp = n. The out-neighbors of x are those vertices having the form

(x12 · · · x1q1α1)(x22 · · · x2q2α2) · · · (xp2 · · · xpqpαp),

where 0 6 αi 6 d − 1 for each i = 1, 2, . . . , p. The extended de Bruijn digraph EB(d, n; q1, . . . , qp) has dn vertices, dn+p
edges and is dp-regular. From the definition, if p = 1, i.e., the vertices are not divided, then clearly EB(d, n; n) = B(d, n).
Although loops arise, we can determine r(G) for G = EB(d, n; q1, . . . , qp) with q1 = · · · = qp = q > 1. For a given p, a

sequence (i1 · · · ip) on {0, 1, . . . , d− 1} and j ∈ {1, 2, . . . , q}, let

D(j)(i1···ip) = {(x11 · · · x1q) · · · (xp1 . . . xpq) : xk1 = · · · xkj = ik, k = 1, . . . , p}.

It is not difficult to verify that

D(i1,...,ip) =

{
D(1)(i1,...,ip) − D

(2)
(i1,...,ip)

+ D(3)(i1,...,ip) − · · · + D
(q)
(i1,...,ip)

if q is odd;
D(1)(i1,...,ip) − D

(2)
(i1,...,ip)

+ D(3)(i1,...,ip) − · · · + D
(q−1)
(i1,...,ip)

if q is even,

is a dominating set in Gwith |D| = dυ(G)/(dp + 1)e. Hence we can determine γ (G).

Lemma 5.1 ([9]). Let G = EB(d, n; q1, . . . , qp) with q1 = · · · = qp = q and n = pq. Then

γ (G) =
{
(dn + 1)/(dp + 1) if q is odd;
(dn + dp)/(dp + 1) if q is even.

Theorem 5.2. Let G = EB(d, n; q1, . . . , qp) with q1 = · · · = qp = q and n = pq. Then

r(G) =
{
dp if q is odd;
1 if q is even.

Proof. First assume that q is odd. Let X be a set of γ (G) − 1 vertices. Then |N[X]| 6 (γ (G) − 1)(dp + 1) = dn − dp. Let
D′ = D(i1,...,ip)−D

(q)
(i1,...,ip)

. Note that |N+[D(q)(i1,...,ip)]| = d
p as a result of loops. Hence |N[D′]| = dn− dp and r(G) = η(G) = dp

by Lemma 2.2.
Now assume that q is even. Let X be a set of γ (G) − 1 vertices. Then |N[X]| 6 (γ (G) − 1)(dp + 1) = dn − 1. Let

D′ = D(i1,...,ip)−D
(q)
(i1,...,ip)

. Note that N+[D(q)(i1,...,ip)] = D
(q−1)
(i1,...,ip)

⊂ D′. Hence |N+[D′]| = |N+[D]| − 1 = dn− 1. By Lemma 2.2,
r(G) = η(G) = 1. �
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Since EB(d, n; n) = B(d, n), we immediately obtain the reinforcement numbers of de Bruijn digraphs if we let p = 1 in
Theorem 5.2.

Corollary 5.3.

r(B(d, n)) =
{
d if n is odd;
1 if n is even.

Next we consider the Kautz digraph K(d, n), which has vertex-set and edge-set as follows.{
V = {x1 · · · xn : xi ∈ {0, 1, . . . , d}, xi 6= xi+1, i = 1, . . . , n− 1}, and
E = {(x1x2 · · · xn, x2 · · · xnα) : α ∈ {0, 1, . . . , d}, α 6= xn}.

K(d, n) has dn−1(d+ 1) vertices, dυ(d+ 1) edges, and is d-regular.
M. Imase andM. Itoh [10] proposed a generalization of Kautz digraphs, called the generalized Kautz digraph. It is denoted

by GK(d, n) and has vertex-set and edge-set as follows.{
V = {0, 1, . . . , n− 1}, and
E = {(x, y) : y ≡ −dx− i ( mod n), 0 < i 6 d}.

GK(d, n) is a d-regular digraph with n vertices.

Lemma 5.4 ([12]). For any positive integers d and n, γ (GK(d, n)) = d nd+1e.

Theorem 5.5. For any positive integers d and n, let n = p(d+ 1)+ q where 1 6 q 6 d+ 1. Then r(GK(d, n)) = q.

Proof. Let G = GK(d, n) and n = p(d+ 1)+ qwhere 1 6 q 6 d+ 1. Then γ (G) = p+ 1. Since every vertex dominates at
most d+ 1 vertices in G, then η(G) 6 n− p(d+ 1) = q.
On the other hand, D′ = {0, 1, . . . , p− 1} satisfies |D′| = γ (G)− 1 and |N+[D′]| = n− q. Hence r(G) = η(G) = q. �

Corollary 5.6. For any positive integers d and n, r(K(d, n)) = d+ 1.

6. Conclusions

Using the results in Section 4 we can determine the reinforcement numbers for regular graphs with an E-set. The E-set
has close relations to the perfect error-correcting codes and received much attention. There are many important classes of
networks for which it is known exactly which graphs in each class have E-sets. These classes include hypercubes, cube-
connected cycles, circulant graphs, tori, and so on [4,8,14,16]. In [8] we used these characterizations to determine the
bondage number b(G), which was first introduced by Fink et al. [6] as theminimum number of edges whose removal results
in a graph with larger domination number. It is also easy to use those characterizations to determine r(G).
Motivated by the note that the bondage number and the reinforcement number are two parallel parameters, we give a

comparison of them. Fink et al. [6] conjectured that b(G) 6 ∆(G)+1, which was disproved later, while r(G) 6 υ(G)/γ (G) 6
∆(G)+ 1 is an immediate consequence of Corollary 3.2. For a planar graph G, it was proved that b(G) 6 8 and conjectured
that b(G) 6 7; furthermore, no planar graph with b(G) > 6 has been constructed yet (see, for example, [3,7,11]). However,
Corollary 2.13 shows that r(G) can be any positive integer. For a tree T , Fink et al. [6] show that b(T ) = 1 or 2, while r(T )
can be arbitrarily large by Corollary 2.13. But for a vertex-transitive digraph G, we showed in [8] that b(G) > dυ(G)/γ (G)e,
while r(G) 6 bυ(G)/γ (G)c 6 b(G).
We conclude this paper with some problems.

Problem 1. Prove or disprove that there exists an orientation H for any undirected graph G such that r(H) = r(G).

Problem 2. Determine whether or not the upper bound in Theorem 4.3 is tight for any positive integers ` and γ .

Problem 3. Investigate the relationship between b(G) and r(G) for special families of graphs.
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