Bounded edge-connectivity and edge-persistence of Cartesian product of graphs ${ }^{\star}$

You Lu, Jun-Ming Xu*, Xin-Min Hou
Department of Mathematics, University of Science and Technology of China, Hefei, 230026, China

A R TICLE INFO

Article history:
Received 15 January 2008
Received in revised form 24 June 2009
Accepted 22 July 2009
Available online 11 August 2009

Keywords:

Diameter
Bounded edge-connectivity
Edge-persistence
Cartesian product
Paths
Cycles
Hypercubes

Abstract

The bounded edge-connectivity $\lambda_{k}(G)$ of a connected graph G with respect to $k(\geq d(G))$ is the minimum number of edges in G whose deletion from G results in a subgraph with diameter larger than k and the edge-persistence $D^{+}(G)$ is defined as $\lambda_{d(G)}(G)$, where $d(G)$ is the diameter of G. This paper considers the Cartesian product $G_{1} \times G_{2}$, shows $\lambda_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \geq \lambda_{k_{1}}\left(G_{1}\right)+\lambda_{k_{2}}\left(G_{2}\right)$ for $k_{1} \geq 2$ and $k_{2} \geq 2$, and determines the exact values of $D^{+}(G)$ for $G=C_{n} \times P_{m}, C_{n} \times C_{m}, Q_{n} \times P_{m}$ and $Q_{n} \times C_{m}$.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We follow [24] for graph-theoretical terminology and notation not defined here. Throughout this paper, a graph $G=$ (V, E) always means a connected and simple graph (without loops and multiple edges), where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set. It is well known that the underlying topology of an interconnection network can be modeled by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network.

Let x and y be two distinct vertices in a graph $G=(V, E)$. The distance $d_{G}(x, y)$ between x and y is the number of edges in the shortest $x y$-path, and the diameter of G is $d(G)=\max \left\{d_{G}(x, y): x, y \in V(G)\right\}$. It is quite natural that, when an interconnection network is modeled by a graph G, the diameter $d(G)$ directly depicts transmission delay of the network if the store-forward time of messages is the same at every vertex. Thus, the diameter is often taken as a measure of efficiency, which is an important parameter to measure the performance of an interconnection network. In order to improve or increase the efficiency of message transmission we need to minimize the diameter of the graph. This is the reason why this concept has received considerable attention in the literature. Many famous graph-theoreticians were interested in this topics, such as Erdős, Rényi, and Sós in [8-10], Alon, Gyárfás, and Ruszinkó [1], Harary [12], Chung [6,7], and so on. The interested reader is referred to the survey paper [3] for early results.

Since some link faults may happen when a network is put into use, it is practically meaningful and important to consider faulty networks. In other words, the removal of some edges in a graph may result in increasing of diameter of the remaining graph, which motivated Chung and Garey [7] to propose the following concept. The edge-fault-tolerant diameter $D_{t}(G)$ of a t-edge-connected graph G is defined as

$$
D_{t}(G)=\max \{d(G-F): F \subset E(G),|F|<t\}
$$

[^0]On the other hand, in a real-time system, the message delay must be limited within a given period since any message obtained beyond the bound may be worthless. A natural question is how many faulty links at most can synchronously happen in the network to ensure message delay within the effective bounds. In the language of graph theory, this problem can be stated as follows. At most how many edges can be removed from a graph to ensure no increase of diameter of the remaining graph. In the literature, this question is called the "edge-deletion problem". However, this problem is quite difficult in general, since it has been proved to be NP-complete by Schoone, Bodlaender and van Leeuwen [20].

To investigate further this problem mentioned above, Exoo [11], motivated from Boesch et al. [4], proposed a measure of network vulnerability, called the edge-persistence. The edge-persistence $D^{+}(G)$ of a graph G is the minimum number of edges whose deletion from G increases the diameter of G. For example, $D^{+}\left(P_{m}\right)=D^{+}\left(C_{n}\right)=1$, where P_{m} is a path of order m and C_{n} is a cycle of length n. Motivated by Lovász, Neumann-Lara and Plummer [14], Xu [23] generalized this concept to more general case, called the bounded edge-connectivity.

For any positive integer k and $x, y \in V(G)$, the $x y$-bounded edge-connectivity $\lambda_{k}(G ; x, y)$ with respect to k is the minimum number of edges in G whose deletion destroys all xy-paths of length at most k. The bounded edge-connectivity of G with respect to k is defined as

$$
\lambda_{k}(G)=\min \left\{\lambda_{k}(G ; x, y): x, y \in V(G)\right\}
$$

Clearly, $\lambda_{k}(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G. If $k \leq d(G)-1$, then $\lambda_{k}(G)=0$. Thus, we assume that $k \geq d(G)$ in this paper. Specially, $\lambda_{1}(G)=1$ if and only if $G=K_{m}$ is a complete graph of order $m \geq 2$. It is also clear that $\lambda_{k}(G)=D^{+}(G)$ if $k=d(G)$, and $\lambda_{n-1}(G)=\lambda(G)$, the classical edge-connectivity of G, if $n=|V(G)|$. Thus, the bounded edge-connectivity is a generalization of both the edge-persistence and the classical edge-connectivity.

In [23], Xu established the relationships between $\lambda_{k}(G)$ and $D_{t}(G)$ as follows. For any connected graph G,
(a) $\lambda_{k}(G)=t \Leftrightarrow D_{t}(G) \leq k<D_{t+1}(G)$ if G is $(t+1)$-edge-connected, or
(b) $D_{t}(G)=k \Leftrightarrow \lambda_{k-1}(G)<t \leq \lambda_{k}(G)$ if G is t-edge-connected.

The three parameters $\lambda_{k}(G), D_{t}(G)$ and $D^{+}(G)$ can be viewed as important measures of the vulnerability of communication networks modeled as graphs and, thus, have received much research attention in the past years, see, for example, $[4,5,7,11$, 12,15-18,20-23,25].

We consider the Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2}. For graphs G_{1} and G_{2}, the Cartesian product $G_{1} \times G_{2}$ is the graph with vertex-set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge-set $E\left(G_{1} \times G_{2}\right)=\left\{\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \mid x_{1}=y_{1}\right.$ and $x_{2} y_{2} \in E\left(G_{2}\right)$ or $x_{2}=y_{2}$ and $\left.x_{1} y_{1} \in E\left(G_{1}\right)\right\}$.

It is well known that the Cartesian product is an important research topic in graph theory (see, e.g., [13]). It is also well known that, for designing large-scale interconnection networks, the Cartesian product is an important method to obtain large graphs from smaller ones, with a number of parameters that can be easily calculated from the corresponding parameters for those small initial graphs. The Cartesian product preserves many nice properties such as regularity, existence of Hamilton cycles and Euler circuits, and transitivity of the initial graphs (see, e.g., [23]). In fact, many well-known networks can be constructed by the Cartesian products of some simple graphs. For example, the n-dimensional hypercube Q_{n} is the Cartesian product of n complete graphs of order 2, a torus is the Cartesian product of two cycles, and a mesh is the Cartesian product of two paths.

What we are interested in is the bounded edge-connectivity and edge-persistence of the Cartesian product of graphs. Graham and Harary [12] showed $D^{+}\left(Q_{n}\right)=n-1$; Sung and Wang [21] investigated $D^{+}\left(C_{m} \times C_{n}\right)$, etc., and conjectured $D^{+}\left(G_{1} \times G_{2}\right) \geq \max \left\{D^{+}\left(G_{1}\right), D^{+}\left(G_{2}\right)\right\}+1$.

In this paper, we first establish a lower bound of λ_{k} for the Cartesian product $G_{1} \times G_{2}$, that is, $\lambda_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \geq$ $\lambda_{k_{1}}\left(G_{1}\right)+\lambda_{k_{2}}\left(G_{2}\right)$ for $k_{i} \geq 2, i=1,2$. As an immediate consequence, we obtain $D^{+}\left(G_{1} \times G_{2}\right) \geq D^{+}\left(G_{1}\right)+D^{+}\left(G_{2}\right)$ if $d\left(G_{i}\right) \geq 2$ for $i=1,2$. This lower bound is tight, and gives an affirmative answer to the above-mentioned conjecture of Sung and Wang if the diameters of both G_{1} and G_{2} are at least two. Then we determine $D^{+}\left(C_{n} \times P_{m}\right)=1$ for $n=3$ and 2 for $n \geq 4 ; D^{+}\left(C_{n} \times C_{m}\right)=2$ if $n=3$ or $m=3$ or both n and m are odd, 3 otherwise. Lastly, we determine $D^{+}\left(Q_{n} \times P_{m}\right)=n$ for $n \geq 2$ and $m \geq 2 ; D^{+}\left(Q_{n} \times C_{m}\right)=n$ for $m=3, n+1$ for $m \geq 4$. These results correct some inaccurate results on $D^{+}\left(C_{n} \times C_{m}\right)$ in [21].

The rest of the paper is organized as follows. In Section 2 we establish the lower bound of $\lambda_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right)$. The results on $D^{+}\left(G_{1} \times G_{2}\right)$ for some P_{n}, C_{n} and Q_{n} are presented in Section 3. The conclusions and remarks are in Section 4.

2. Bounded edge-connectivity

For a vertex $x \in V\left(G_{1}\right)$ and a subgraph $H \subseteq G_{2}$, we use $x H$ to denote the subgraph of $G_{1} \times G_{2}$ induced by $\{x\} \times V(H)$. Similarly, for a vertex $y \in V\left(G_{2}\right)$, a subgraph $H \subseteq G_{1}, H y$ denotes the subgraph of $G_{1} \times G_{2}$ induced by $V(H) \times\{y\}$. For a path $P=x_{1} \cdots x_{i} \cdots x_{j} \cdots x_{n}$ in $G, P\left(x_{i}, x_{j}\right)$ denotes the section $x_{i} \cdots x_{j}$ of P. For the sake of convenience, we will denoted P as

$$
P=x_{1} \xrightarrow{P\left(x_{1}, x_{i}\right)} x_{i} \xrightarrow{P\left(x_{i}, x_{j}\right)} x_{j} \xrightarrow{P\left(x_{j}, x_{n}\right)} x_{n}
$$

The symbol $\varepsilon(P)$ denotes the length of P, which is the number of edges in P.
Now, we state our main result in this paper.

Theorem 1. For any connected graphs G_{1} and G_{2}, if $k_{i} \geq 2$ for $i=1$, 2, then

$$
\lambda_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \geq \lambda_{k_{1}}\left(G_{1}\right)+\lambda_{k_{2}}\left(G_{2}\right)
$$

Proof. Let $G=G_{1} \times G_{2}, \lambda_{k_{i}}\left(G_{i}\right)=n_{i}$ for $i=1,2$. Without loss of generality, assume that $n_{1} \geq n_{2}$. Then $n_{1} \geq n_{2} \geq 1$ since $k_{i} \geq d\left(G_{i}\right)$ for $i=1,2$. To prove the theorem, we only need to show that $d(G-F) \leq k_{1}+k_{2}$ for any subset $F \subset E(G)$ with $|F| \leq n_{1}+n_{2}-1$. To this end, we only need to show that for any two vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in V(G)$ there is an $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path L of length $\varepsilon(L) \leq k_{1}+k_{2}$ in $G-F$. For any $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$, let

$$
\begin{aligned}
& F_{1}(v)=E\left(G_{1} v\right) \cap F, \quad F_{2}(u)=E\left(u G_{2}\right) \cap F \\
& S_{1}=\left\{x y \in E\left(G_{1}\right): x, y \in V\left(G_{1}\right), \exists r \in V\left(G_{2}\right) \text { such that }(x, r)(y, r) \in F\right\} .
\end{aligned}
$$

We consider the following three cases:
Case 1. $x_{1} \neq y_{1}, x_{2} \neq y_{2}$.
Subcase 1.1. $\left|F_{1}(v)\right| \geq n_{1}$ for some $v \in V\left(G_{2}\right)$.
In this subcase, $\left|F_{1}(u)\right| \leq n_{2}-1$ for any $u \in V\left(G_{2}-v\right)$ and $\left|F_{2}(w)\right| \leq n_{2}-1$ for any $w \in V\left(G_{1}\right)$ since $|F| \leq n_{1}+n_{2}-1$ and $n_{1} \geq n_{2}$. Since x_{2} and y_{2} are two distinct vertices of G_{2}, at least one of x_{2} and y_{2} is not v. So we can, without loss of generality, assume that $y_{2} \neq v$. Then $\left|F_{1}\left(y_{2}\right)\right| \leq n_{2}-1 \leq n_{1}-1$.

Since $G_{1} y_{2} \cong G_{1}, x_{1} G_{2} \cong G_{2}$ and $\lambda_{k_{1}}\left(G_{1}\right)=n_{1}, \lambda_{k_{2}}\left(G_{2}\right)=n_{2}$, there exist an $\left(x_{1}, y_{2}\right)\left(y_{1}, y_{2}\right)$-path P_{1} in $G_{1} y_{2}-F_{1}\left(y_{2}\right)$ such that $\varepsilon\left(P_{1}\right) \leq k_{1}$ and an $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-path P_{2} in $x_{1} G_{2}-F_{2}\left(x_{1}\right)$ such that $\varepsilon\left(P_{2}\right) \leq k_{2}$. Thus, the path

$$
L_{1}=\left(x_{1}, x_{2}\right) \xrightarrow{P_{2}}\left(x_{1}, y_{2}\right) \xrightarrow{P_{1}}\left(y_{1}, y_{2}\right)
$$

is an $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path in $G-F$ and $\varepsilon\left(L_{1}\right)=\varepsilon\left(P_{1}\right)+\varepsilon\left(P_{2}\right) \leq k_{1}+k_{2}$.
Subcase 1.2. $\left|F_{1}(v)\right| \leq n_{1}-1$ for any $v \in V\left(G_{2}\right)$.
If $\left|F_{2}\left(x_{1}\right)\right| \leq n_{2}-1$ or $\left|F_{2}\left(y_{1}\right)\right| \leq n_{2}-1$, without loss of generality, assume that $\left|F_{2}\left(x_{1}\right)\right| \leq n_{2}-1$, then there exists an $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-path P_{3} in $x_{1} G_{2}-F_{2}\left(x_{1}\right)$ such that $\varepsilon\left(P_{3}\right) \leq k_{2}$. By $\left|F_{1}\left(y_{2}\right)\right| \leq n_{1}-1$, there exists an $\left(x_{1}, y_{2}\right)\left(y_{1}, y_{2}\right)$-path P_{4} in $G_{1} y_{2}-F_{1}\left(y_{2}\right)$ such that $\varepsilon\left(P_{4}\right) \leq k_{1}$. Thus, the path

$$
L_{2}=\left(x_{1}, x_{2}\right) \xrightarrow{P_{3}}\left(x_{1}, y_{2}\right) \xrightarrow{P_{4}}\left(y_{1}, y_{2}\right)
$$

is an $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path in $G-F$ and $\varepsilon\left(L_{2}\right)=\varepsilon\left(P_{4}\right)+\varepsilon\left(P_{3}\right) \leq k_{1}+k_{2}$.
Now assume that $\left|F_{2}\left(x_{1}\right)\right| \geq n_{2}$ and $\left|F_{2}\left(y_{1}\right)\right| \geq n_{2}$. Then $\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \geq 2 n_{2}$. Let M be the set of interior vertices of all $x_{1} y_{1}$-paths of length at most k_{1} in $G_{1}^{\prime}=G_{1}-S_{1}$.

If $M=\emptyset$, then any $x_{1} y_{1}$-path in G_{1}^{\prime} is either a single edge $x_{1} y_{1}$ or of length at least $k_{1}+1$. Since

$$
\begin{aligned}
\left|S_{1}\right| & \leq \sum_{v \in V\left(G_{2}\right)}\left|F_{1}(v)\right|=|F|-\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \\
& \leq n_{1}-n_{2}-1 \leq \lambda_{k_{1}}\left(G_{1}\right)-2,
\end{aligned}
$$

$G_{1}^{\prime}-x_{1} y_{1}$ is connected and any $x_{1} y_{1}$-path in $G_{1}^{\prime}-x_{1} y_{1}$ is of length at least $k_{1}+1$ by the definition of $\lambda_{k_{1}}\left(G_{1}\right)$, which implies that $d_{G_{1}^{\prime}-x_{1} y_{1}}\left(x_{1}, y_{1}\right) \geq k_{1}+1$. Hence $\lambda_{k_{1}}\left(G_{1}\right) \leq\left|S_{1}\right|+1 \leq \lambda_{k_{1}}\left(G_{1}\right)-1$, a contradiction.

Thus, $M \neq \emptyset$. Assume that $\left|F_{2}(u)\right| \geq n_{2}$ for any $u \in M$. Then

$$
\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \geq 2 n_{2}+\sum_{u \in M}\left|F_{2}(u)\right| \geq(|M|+2) n_{2}
$$

and so

$$
\begin{aligned}
\left|S_{1}\right| & \leq|F|-\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \leq n_{1}+n_{2}-1-(|M|+2) n_{2} \\
& =n_{1}-(|M|+1) n_{2}-1 .
\end{aligned}
$$

This fact and $\lambda_{k_{1}}\left(G_{1}\right)=n_{1}$ imply that at least $(|M|+1) n_{2}+1$ edges must be deleted from G_{1}^{\prime} to increase diameter of G_{1}^{\prime} to (at least) $k_{1}+1$.

On the other hand, by the definition of M, there are at most $|M|+1$ edges incident to x_{1} in the induced subgraph $G_{1}^{\prime}\left[M \cup\left\{x_{1}, y_{1}\right\}\right]$ of G_{1}^{\prime} whose deletion results in no $x_{1} y_{1}$-paths of length at most k_{1} in G_{1}^{\prime}. That is, we can delete $|M|+1$ edges from G_{1}^{\prime} whose diameter can be increased to (at least) $k_{1}+1$, a contradiction.

Thus, $\left|F_{2}(u)\right| \leq n_{2}-1$ for some $u \in M$. There exist an $x_{1} y_{1}$-path P_{5} of length at most k_{1} in $G_{1}-S_{1}$ with $u \in M$ and an (u, x_{2}) (u, y_{2})-path P_{6} with length at most k_{2} in $u G_{2}-F_{2}(u)$. Thus, the path

$$
L_{3}=\left(x_{1}, x_{2}\right) \xrightarrow{P_{5}\left(x_{1}, u\right) x_{2}}\left(u, x_{2}\right) \xrightarrow{P_{6}}\left(u, y_{2}\right) \xrightarrow{P_{5}\left(u, y_{1}\right) y_{2}}\left(y_{1}, y_{2}\right)
$$

is an $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$-path in $G-F$ with length $\varepsilon\left(L_{3}\right)=\varepsilon\left(P_{5}\right)+\varepsilon\left(P_{6}\right) \leq k_{1}+k_{2}$.
Case 2. $x_{1} \neq y_{1}, x_{2}=y_{2}$.

Subcase 2.1. If $\left|F_{1}\left(x_{2}\right)\right| \leq n_{1}-1$, then by $\lambda_{k_{1}}\left(G_{1}\right)=n_{1}$ and $G_{1} x_{2} \cong G_{1}$, there exists an $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path of length at most $k_{1}\left(<k_{1}+k_{2}\right)$ in the subgraph $G_{1} x_{2}-F_{1}\left(x_{2}\right)$ of $G-F$.

Subcase 2.2. If $\left|F_{1}\left(x_{2}\right)\right| \geq n_{1}$, then $\left|F-F_{1}\left(x_{2}\right)\right| \leq n_{2}-1$. Furthermore, there must exist two vertices $\left(x_{1}, y\right),\left(y_{1}, y\right) \in V(G)$ such that $\left(x_{1}, x_{2}\right)\left(x_{1}, y\right),\left(y_{1}, y\right)\left(y_{1}, y_{2}\right) \in E(G-F)$ since $\lambda_{k_{2}}\left(G_{2}\right)=n_{2} \leq \delta\left(G_{2}\right)$.

By $\left|F_{1}(y)\right| \leq\left|F-F_{1}\left(x_{2}\right)\right| \leq n_{2}-1 \leq n_{1}-1$ and $G_{1} y \cong G$, there is an $\left(x_{1}, y\right)\left(y_{1}, y\right)$-path P_{7} of length at most k_{1} in the subgraph $G_{1} y-F_{1}(y)$ of $G-F$. Thus, by $k_{2} \geq 2$, the path

$$
L_{4}=\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}, y\right) \xrightarrow{P_{7}}\left(y_{1}, y\right) \rightarrow\left(y_{1}, y_{2}\right)
$$

is an $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path in $G-F$ and $\varepsilon\left(L_{4}\right) \leq k_{1}+2 \leq k_{1}+k_{2}$.
Case 3. $x_{1}=y_{1}, x_{2} \neq y_{2}$
Subcase 3.1. If $\left|F_{2}\left(x_{1}\right)\right| \leq n_{2}-1$, then by $\lambda_{k_{2}}\left(G_{2}\right)=n_{2}$ and $x_{1} G_{2} \cong G_{2}$, there exists an $\left(x_{1}, x_{2}\right)-\left(y_{1}, y_{2}\right)$-path of length at most $k_{2}\left(<k_{1}+k_{2}\right)$ in the subgraph $x_{1} G_{2}-F_{2}\left(x_{1}\right)$ of $G-F$.

Subcase 3.2. If $\left|F_{2}\left(x_{1}\right)\right| \geq n_{2}$, then let $\left|N_{G_{1}^{\prime}}\left(x_{1}\right)\right|=\delta_{G_{1}^{\prime}}\left(x_{1}\right)=\delta_{1}^{\prime}$.
We claim that $\delta_{1}^{\prime} \geq 1$. Otherwise,

$$
\left|S_{1}\right| \geq \delta_{G_{1}}\left(x_{1}\right) \geq \delta\left(G_{1}\right) \geq \lambda_{k_{1}}\left(G_{1}\right)=n_{1},
$$

and so

$$
\begin{aligned}
n_{1}+n_{2} & \leq\left|S_{1}\right|+\left|F_{2}\left(x_{1}\right)\right| \leq \sum_{v \in V\left(G_{2}\right)}\left|F_{1}(v)\right|+\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \\
& =|F|=n_{1}+n_{2}-1
\end{aligned}
$$

a contradiction.
Assume that $\left|F_{2}(u)\right| \geq n_{2}$ for any $u \in N_{G_{1}^{\prime}}\left(x_{1}\right)$. Then

$$
\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \geq\left|F_{2}\left(x_{1}\right)\right|+\sum_{u \in N_{G_{1}^{\prime}}\left(x_{1}\right)}\left|F_{2}(u)\right| \geq n_{2}+\delta_{1}^{\prime} n_{2}=\left(\delta_{1}^{\prime}+1\right) n_{2}
$$

and

$$
\left|S_{1}\right| \leq \sum_{v \in V\left(G_{2}\right)}\left|F_{1}(v)\right|=n_{1}+n_{2}-1-\sum_{u \in V\left(G_{1}\right)}\left|F_{2}(u)\right| \leq n_{1}-\delta_{1}^{\prime} n_{2}-1 .
$$

Thus, we deduce a contradiction as follows.

$$
\begin{aligned}
\delta_{1}^{\prime} & =\delta_{G_{1}^{\prime}}\left(x_{1}\right) \geq \lambda_{k_{1}}\left(G_{1}^{\prime}\right) \geq \lambda_{k_{1}}(G)-\left|S_{1}\right| \\
& \geq n_{1}-\left(n_{1}-\delta_{1}^{\prime} n_{2}-1\right)=\delta_{1}^{\prime} n_{2}+1 .
\end{aligned}
$$

Therefore, $\left|F_{2}(u)\right| \leq n_{2}-1$ for some $u \in N_{G_{1}^{\prime}}\left(x_{1}\right)$. Since $\lambda_{k_{2}}\left(G_{2}\right)=n_{2}$ and $u G_{2} \cong G_{2}$, there exists an $\left(u, x_{2}\right)\left(u, y_{2}\right)$-path P_{8} of length at most k_{2} in the subgraph $u G_{2}-F_{2}(u)$ of $G-F$. Thus, the path

$$
L_{5}=\left(x_{1}, x_{2}\right) \rightarrow\left(u, x_{2}\right) \xrightarrow{P_{8}}\left(u, y_{2}\right) \rightarrow\left(y_{1}, y_{2}\right)
$$

is an $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path in $G-F$, and by $k_{1} \geq 2$,

$$
\varepsilon\left(L_{5}\right)=\varepsilon\left(P_{8}\right)+2 \leq k_{1}+k_{2} .
$$

The proof is complete.
As an immediate consequence of Theorem 1, we obtain a lower bound of the edge-persistence of the Cartesian products of two graphs.

Corollary 2. $D^{+}\left(G_{1} \times G_{2}\right) \geq D^{+}\left(G_{1}\right)+D^{+}\left(G_{2}\right)$ if $d\left(G_{1}\right) \geq 2$ and $d\left(G_{2}\right) \geq 2$.

3. Edge-persistence

In this section, by Corollary 2 we determine the edge-persistence of the Cartesian products of some simple graphs, such as a path P_{m}, a cycle C_{m} and a hypercube Q_{n}. These examples show that the lower bound given in Corollary 2 is the best possible.

Lemma 3 (Theorem 2.3 .3 in [23]). Let $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in V\left(G_{1} \times G_{2}\right)$. Then $d_{G_{1} \times G_{2}}(x, y)=d_{G_{1}}\left(x_{1}, y_{1}\right)+d_{G_{2}}\left(x_{2}, y_{2}\right)$ and, hence, $d\left(G_{1} \times G_{2}\right)=d\left(G_{1}\right)+d\left(G_{2}\right)$.

Theorem 4. For any $n \geq 3$ and $m \geq 2$,

$$
D^{+}\left(C_{n} \times P_{m}\right)= \begin{cases}1 & \text { for } n=3 \\ 2 & \text { for } n \geq 4\end{cases}
$$

Proof. Since $d\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $d\left(P_{m}\right)=m-1$, we have $d\left(C_{n} \times P_{m}\right)=\left\lfloor\frac{n}{2}\right\rfloor+m-1$ by Lemma 3 . Let $V\left(C_{n}\right)=\{0,1,2, \ldots, n-1\}$ and $V\left(P_{m}\right)=\{0,1,2, \ldots, m-1\}$.

For $n=3$, let $e=(0,0)(0,1) \in E\left(C_{3} \times P_{m}\right)$, and $T=C_{3} \times P_{m}-e$. Then

$$
d(T) \geq d_{T}((0,0),(0, m-1))=2+m-1=m+1>m=d\left(C_{3} \times P_{m}\right)
$$

So $D^{+}\left(C_{3} \times P_{m}\right) \leq 1$. On the other hand, $D^{+}\left(C_{3} \times P_{m}\right) \geq 1$ clearly. Thus, $D^{+}\left(C_{3} \times P_{m}\right)=1$.
Now we show that $D^{+}\left(C_{n} \times P_{m}\right)=2$ for $n \geq 4$. It is also easy to verify $D^{+}\left(C_{n} \times P_{2}\right)=2$. So assume that $n \geq 4$ and $m \geq 3$ below. By Corollary 2, we have

$$
D^{+}\left(C_{n} \times P_{m}\right) \geq D^{+}\left(C_{n}\right)+D^{+}\left(P_{m}\right) \geq 2
$$

Let $G=C_{n} \times P_{m}, G^{\prime}=G-\{(0,0)(0,1),(0,0)(1,0)\}, u=(0,0), w=(n-1,0)$ and $v=\left(\left\lfloor\frac{n}{2}\right\rfloor-1, m-1\right)$. Then by Lemma 3,

$$
\begin{aligned}
d\left(G^{\prime}\right) & \geq d_{G^{\prime}}(u, v)=1+d_{G^{\prime}}(w, v) \geq 1+d_{G}(w, v) \\
& =1+[1+(\lfloor n / 2\rfloor-1)]+(m-1) \\
& =\lfloor n / 2\rfloor+m=1+d(G)
\end{aligned}
$$

Hence $D^{+}\left(C_{n} \times P_{m}\right) \leq 2$, and so $D^{+}\left(C_{n} \times P_{m}\right)=2$.
Theorem 5. For $n \geq 3$ and $m \geq 3$,

$$
D^{+}\left(C_{n} \times C_{m}\right)= \begin{cases}2 & \text { if } n=3 \text { or } m=3 \text { or both } n \text { and } m \text { are odd } \\ 3 & \text { otherwise }\end{cases}
$$

Proof. Let $V\left(C_{n}\right)=\{0,1, \ldots, n-1\}$ and $V\left(C_{m}\right)=\{0,1, \ldots, m-1\}, G=C_{n} \times C_{m}$. It is sufficient to prove that the theorem holds for $n \geq 4$ and $m \geq 4$.

Case 1. Both n and m are odd. On the one hand, by Corollary 2, we have

$$
D^{+}(G) \geq D^{+}\left(C_{n}\right)+D^{+}\left(C_{m}\right)=2
$$

On the other hand, since n and m are odd, $d_{C_{n}}\left(n-1,\left\lfloor\frac{n}{2}\right\rfloor\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $d_{C_{m}}\left(m-1,\left\lfloor\frac{m}{2}\right\rfloor\right)=\left\lfloor\frac{m}{2}\right\rfloor$. Let $e_{1}=(0,0)(0,1)$ and $e_{2}=(0,0)(1,0)$ be two edges in $G, G^{\prime}=G-\left\{e_{1}, e_{2}\right\}$ and $u=(0,0), v=\left(\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{m}{2}\right\rfloor\right)$. Then, by Lemma 3,

$$
\begin{aligned}
d\left(G^{\prime}\right) & \geq d_{G^{\prime}}(u, v) \\
& =1+\min \left\{d_{G^{\prime}}((0, m-1), v), d_{G^{\prime}}((n-1,0), v)\right\} \\
& \geq 1+\min \left\{d_{G}((0, m-1), v), d_{G}((n-1,0), v)\right\} \\
& =1+\min \left\{\lfloor n / 2\rfloor+d_{C_{m}}(m-1,\lfloor m / 2\rfloor), d_{C_{n}}(n-1,\lfloor n / 2\rfloor)+\lfloor m / 2\rfloor\right\} \\
& =1+\lfloor n / 2\rfloor+\lfloor m / 2\rfloor \\
& =1+d(G),
\end{aligned}
$$

which implies $D^{+}(G) \leq 2$. Thus, $D^{+}(G)=2$.
Case 2. At most one of m and n is odd.
We first prove that $D^{+}(G) \geq 3$. It is sufficient to show that there are at least three edge-disjoint $u v$-paths of length at most $d(G)$ between any two distinct vertices u and v in G, which implies that at least three edges must be removed from G to increase the diameter.

Notice that G is vertex-transitive since C_{n} is vertex-transitive. Without loss of generality, let $u=(0,0), v=(x, y) \in V(G)$ and $x \leq\left\lfloor\frac{n}{2}\right\rfloor, y \leq\left\lfloor\frac{m}{2}\right\rfloor$.

If $x=0$ or $y=0$, without loss of generality, say $y=0$, then $x \neq 0$, that is $v=(x, 0)$. Three internally vertex-disjoint $u v$-paths are constructed as follows.

$$
\begin{aligned}
& P_{1}=(0,0)(1,0) \cdots(x, 0) \\
& P_{2}=(0,0)(0,1)(1,1) \cdots(x, 1)(x, 0) \\
& P_{3}=(0,0)(0, m-1)(1, m-1) \cdots(x, m-1)(x, 0) .
\end{aligned}
$$

Clearly, $\varepsilon\left(P_{1}\right)=x \leq\left\lfloor\frac{n}{2}\right\rfloor, \varepsilon\left(P_{2}\right)=\varepsilon\left(P_{3}\right)=2+x \leq 2+\left\lfloor\frac{n}{2}\right\rfloor$. Thus, these paths are of length at most $\left\lfloor\frac{n}{2}\right\rfloor+2 \leq\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor=$ $d(G)$ for $m \geq 4$.

If $x \neq 0$ and $y \neq 0$, then there exist four internally vertex-disjoint $u v$-paths as follows.

$$
\begin{aligned}
& P_{4}=(0,0)(0,1) \cdots(0, y)(1, y) \cdots(x, y), \\
& P_{5}=(0,0)(1,0) \cdots(x, 0)(x, 1) \cdots(x, y), \\
& P_{6}=(0,0)(0, m-1) \cdots(0, y+1)(1, y+1) \cdots(x, y+1)(x, y), \\
& P_{7}=(0,0)(n-1,0) \cdots(x+1,0)(x+1,1) \cdots(x+1, y)(x, y) .
\end{aligned}
$$

Clearly,

$$
\begin{aligned}
& \varepsilon\left(P_{4}\right)=\varepsilon\left(P_{5}\right)=x+y \leq\lfloor n / 2\rfloor+\lfloor m / 2\rfloor=d(G), \\
& \varepsilon\left(P_{6}\right)=m-y+x, \quad \varepsilon\left(P_{7}\right)=n-x+y .
\end{aligned}
$$

Since $\varepsilon\left(P_{6}\right)+\varepsilon\left(P_{7}\right)=n+m$ and at most one of n and m is odd, there is at least one of $\varepsilon\left(P_{6}\right)$ and $\varepsilon\left(P_{7}\right)$, without loss of generality, say $\varepsilon\left(P_{6}\right)$, such that

$$
\varepsilon\left(P_{6}\right) \leq\lfloor(n+m) / 2\rfloor=\lfloor n / 2\rfloor+\lfloor m / 2\rfloor=d(G)
$$

Thus, we have $D^{+}(G) \geq 3$.
Now, we prove $D^{+}(G) \leq 3$. To the end, we only need to find three edges e_{1}, e_{2}, e_{3} in G such that $d\left(G-\left\{e_{1}, e_{2}, e_{3}\right\}\right)>d(G)$. Let $e_{1}=(0,0)(0,1), e_{2}=(0,0)(1,0), e_{3}=(0,0)(0, n-1), u=(0,0), v=\left(\left\lfloor\frac{n}{2}\right\rfloor,\left\lfloor\frac{m}{2}\right\rfloor\right)$ and $G^{\prime \prime}=G-\left\{e_{1}, e_{2}, e_{3}\right\}$. Since, by Lemma 3 ,

$$
\begin{aligned}
d_{G^{\prime \prime}}((n-1,0), v) & \geq d_{G}((n-1,0), v) \\
& =d_{C_{n}}(n-1,\lfloor n / 2\rfloor)+d_{C_{m}}(0,\lfloor m / 2\rfloor) \\
& =\lfloor n / 2\rfloor+\lfloor m / 2\rfloor=d(G)
\end{aligned}
$$

we have

$$
d\left(G^{\prime \prime}\right) \geq d_{G^{\prime \prime}}(u, v)=1+d_{G^{\prime \prime}}((n-1,0), v) \geq 1+d(G)
$$

Thus, $D^{+}(G) \leq 3$, and so $D^{+}(G)=3$. The theorem follows.
We now consider the Cartesian products of n-dimensional hypercube Q_{n} and a path P_{m} or a cycle C_{m}.
The n-dimensional hypercube Q_{n} has the vertex-set $V=\left\{x_{1} x_{2} \cdots x_{n}: x_{i} \in\{0,1\}, i=1,2, \ldots, n\right\}$, and two vertices x and y are linked by an edge if and only if they differ exactly in one coordinate. The n-dimensional hypercube Q_{n} can also be defined as the Cartesian product $K_{2} \times K_{2} \times \cdots \times K_{2}$ of n identical complete graph K_{2}. The hypercube has many excellent features, and, thus becomes the first choice for the topological structure of parallel processing and computing systems, and have been much studied in network theory, see, for example, [23].

Lemma 6 ([2,19,23]). Let x and y be two vertices in Q_{n} and $d_{Q_{n}}(x, y)=d$. Then exist a d-dimensional subcube in Q_{n} in which there are d internally disjoint $x y$-paths of length d. Moreover, there exist n internally disjoint $x y$-paths such that d of which are of length d, otherwise of length $d+2$.

Lemma 7 ([12]). $D^{+}\left(Q_{n}\right)=n-1$.
Theorem 8. $D^{+}\left(Q_{n} \times P_{m}\right)=n$ for $n \geq 2$ and $m \geq 2$.
Proof. If $m=2$, then $Q_{n} \times P_{2}=Q_{n+1}$. Thus, $D^{+}\left(Q_{n} \times P_{2}\right)=D^{+}\left(Q_{n+1}\right)=n$ by Lemma 7 .
Assume that $n \geq 2$ and $m \geq 3$ below. Then $d\left(Q_{n}\right) \geq 2$ and $d\left(P_{m}\right) \geq 2$. By Corollary 2 and Lemma 7,

$$
D^{+}\left(Q_{n} \times P_{m}\right) \geq D^{+}\left(Q_{n}\right)+D^{+}\left(P_{m}\right)=n-1+1=n
$$

To complete the proof of the theorem, we only need to prove $D^{+}\left(Q_{n} \times P_{m}\right) \leq n$. To this end, we only need to find a set F of n edges in $Q_{n} \times P_{m}$ such that $d\left(Q_{n} \times P_{m}-F\right)>d\left(Q_{n} \times P_{m}\right)$.

Let $\{0,1, \ldots, m-1\}$ be the vertex-set of $P_{m}, u=(00 \cdots 0,0), u_{1}=(10 \cdots 0,0), u_{2}=(01 \cdots 0,0), \ldots, u_{n}=$ $(00 \cdots 1,0), u_{n+1}=(00 \cdots 0,1), v=(01 \cdots 1, m-1)$ be $n+3$ vertices and $F=\left\{u u_{2}, \ldots, u u_{n}, u u_{n+1}\right\}$ be a set of edges in $Q_{n} \times P_{m}$. By Lemma 3, the distance between u and v in $Q_{n} \times P_{m}-F$ is

$$
\begin{aligned}
d_{\mathrm{Q}_{n} \times P_{m}-F}(u, v) & =1+d_{\mathrm{Q}_{n} \times P_{m}-F}\left(u_{1}, v\right) \geq 1+d_{\mathrm{Q}_{n} \times P_{m}}\left(u_{1}, v\right) \\
& =1+n+m-1=1+d\left(Q_{n} \times P_{m}\right)
\end{aligned}
$$

This fact shows that $D^{+}\left(Q_{n} \times P_{m}\right) \leq n$. The theorem follows.
Theorem 9. For any $n \geq 1$ and $m \geq 3$,

$$
D^{+}\left(Q_{n} \times C_{m}\right)= \begin{cases}n & \text { for } m=3 \\ n+1 & \text { for } m \geq 4\end{cases}
$$

Proof. If $n=1$ then, by Theorem 4, we have

$$
D^{+}\left(Q_{1} \times C_{m}\right)=D^{+}\left(P_{2} \times C_{m}\right)= \begin{cases}1 & \text { for } m=3 \\ 2 & \text { for } m \geq 4\end{cases}
$$

If $n=2$ then, by Theorem 5 , we have

$$
D^{+}\left(Q_{2} \times C_{m}\right)=D^{+}\left(C_{4} \times C_{m}\right)= \begin{cases}2 & \text { for } m=3 \\ 3 & \text { for } m \geq 4\end{cases}
$$

Assume that $n \geq 3$ below. For the sake of convenience, let $x_{0}=(0 \cdots 0)$ be a vertex in Q_{n}, x_{i} be the neighbor of x_{0} whose i th position is 1 for $i=1,2, \ldots, n, V\left(C_{m}\right)=\{0,1, \ldots, m-1\}$. Let $G=Q_{n} \times C_{m}$. We first show

$$
D^{+}(G) \geq \begin{cases}n & \text { for } m=3 \tag{3.1}\\ n+1 & \text { for } m \geq 4\end{cases}
$$

To prove this inequality, it is sufficient to find a set \mathscr{P} of at least n for $m=3$ or at least $n+1$ for $m \geq 4$ internally vertex-disjoint $u v$-paths of length at most $d(G)$ for any two vertices u and v in G.

Let u and v be any two distinct vertices in G. By vertex-transitivity of Q_{n}, C_{m} and G, without loss of generality, we can choose $u=\left(x_{0}, 0\right)$ and $v=(x, y)$, where $x \in V\left(Q_{n}\right)$ and $y \leq\left\lfloor\frac{m}{2}\right\rfloor$.

If $x=x_{0}$, then $y \neq 0$. Then a set $\mathscr{P}=\left\{P_{0}, P_{1}, \ldots, P_{n}\right\}$ of $n+1$ internally vertex-disjoint $u v$-paths in G can be constructed as follows.

$$
\begin{aligned}
& P_{0}=u\left(x_{0}, 1\right)\left(x_{0}, 2\right) \ldots\left(x_{0}, y-1\right) v, \\
& P_{1}=u\left(x_{1}, 0\right)\left(x_{1}, 1\right) \ldots\left(x_{1}, y\right) v, \\
& P_{2}=u\left(x_{2}, 0\right)\left(x_{2}, 1\right) \ldots\left(x_{2}, y\right) v, \\
& \vdots \\
& P_{n}=u\left(x_{n}, 0\right)\left(x_{n}, 1\right) \ldots\left(x_{n}, y\right) v .
\end{aligned}
$$

It is easy to check that their length is at most $y+2 \leq\left\lfloor\frac{m}{2}\right\rfloor+2 \leq d(G)$ by Lemma 3.
If $y=0$, then $x \neq x_{0}$. By Lemma 6 , there are n internally vertex-disjoint $x_{0} x$-paths $L_{1}, L_{2}, \ldots, L_{n}$ in Q_{n}, where

$$
\varepsilon\left(L_{1}\right) \leq n, \ldots, \varepsilon\left(L_{n-1}\right) \leq n, \varepsilon\left(L_{n}\right) \leq n+1
$$

Let

$$
L_{0}=u(0 \cdots 0,1) \xrightarrow{L_{1} 1}(x, 1) v .
$$

Then $\varepsilon\left(L_{0}\right) \leq n+2$. Hence for $m=3, L_{1} 0, \ldots, L_{n} 0$ are n internally vertex-disjoint $u v$-paths of length at most $d(G)$ in G and for $m \geq 4, L_{0}, L_{1} 0, \ldots, L_{n} 0$ are $n+1$ internally vertex-disjoint $u v$-paths of length at most $d(G)$ in G.

Now assume that $x \neq x_{0}$ and $y \neq 0$. By Lemma 6, there are n internally vertex-disjoint $x_{0} x$-paths in Q_{n} denoted by

$$
\begin{aligned}
& T_{1}=x_{0} x_{1} \cdots x \\
& T_{2}=x_{0} x_{2} \cdots x \\
& \vdots \\
& T_{n}=x_{0} x_{n} \cdots x
\end{aligned}
$$

satisfying

$$
\begin{aligned}
& \varepsilon\left(T_{1}\right) \begin{cases}=n+1 & \text { if } d_{Q_{n}}\left(x_{0}, x\right)=n-1, \\
\leq n & \text { if } d_{Q_{n}}\left(x_{0}, x\right) \neq n-1,\end{cases} \\
& \varepsilon\left(T_{i}\right) \leq n, \quad i=2, \ldots, n-1, \\
& \varepsilon\left(T_{n}\right)=d_{Q_{n}}\left(x_{0}, x\right) .
\end{aligned}
$$

Construct $n+2$ internally vertex-disjoint $u v$-paths in G as follows.

$$
\begin{aligned}
& W_{1}=u\left(x_{1}, 0\right) \cdots\left(x_{1}, y\right) \xrightarrow{T_{1}\left(x_{1}, x\right) y} v, \\
& W_{2}=u\left(x_{2}, 0\right) \cdots\left(x_{2}, y\right) \xrightarrow{T_{2}\left(x_{2}, x\right) y} v,
\end{aligned}
$$

$$
W_{n-1}=u\left(x_{n-1}, 0\right) \cdots\left(x_{n-1}, y\right) \xrightarrow{T_{n-1}\left(x_{n-1}, x\right) y} v
$$

$$
W_{n}=u\left(x_{0}, 1\right) \cdots\left(x_{0}, y\right) \xrightarrow{T_{n} y} v
$$

$$
W_{n+1}=u \xrightarrow{T_{n} 0}(x, 0)(x, 1) \cdots(x, y-1) v,
$$

$$
W_{n+2}=u\left(x_{0}, m-1\right) \cdots\left(x_{0}, y+1\right) \xrightarrow{T_{n}(y+1)}(x, y+1) v
$$

Clearly,

$$
\begin{aligned}
& \varepsilon\left(W_{1}\right)=(1+y)+\left(\varepsilon\left(T_{1}\right)-1\right)=\varepsilon\left(T_{1}\right)+y \\
& \varepsilon\left(W_{i}\right)=\varepsilon\left(T_{i}\right)+y \leq n+\lfloor m / 2\rfloor=d(G), \quad i=2, \ldots, n \\
& \varepsilon\left(W_{n+1}\right)=\varepsilon\left(T_{n}\right)+y \leq d(G), \\
& \varepsilon\left(W_{n+2}\right)=(m-y-1)+\varepsilon\left(T_{n}\right)+1=(m-y)+\varepsilon\left(T_{n}\right)
\end{aligned}
$$

If $d_{Q_{n}}\left(x_{0}, x\right) \neq n-1$ or $d_{Q_{n}}\left(x_{0}, x\right)=n-1$ and $y \leq\left\lfloor\frac{m}{2}\right\rfloor-1$, then $\varepsilon\left(W_{1}\right) \leq d(G)$ and so $W_{1}, W_{2}, \ldots, W_{n+1}$ are $n+1$ internally vertex-disjoint $u v$-paths of length at most $d(G)$ in G.

If $d_{Q_{n}}\left(x_{0}, x\right)=n-1$ and $y=\left\lfloor\frac{m}{2}\right\rfloor$, then

$$
\begin{aligned}
\varepsilon\left(W_{n+2}\right) & =(m-y)+\varepsilon\left(T_{n}\right)=(m-\lfloor m / 2\rfloor)+d_{Q_{n}}\left(x_{0}, x\right) \\
& =\lceil m / 2\rceil+(n-1) \leq d(G),
\end{aligned}
$$

and so $W_{2}, W_{3}, \ldots, W_{n+2}$ are $n+1$ internally vertex-disjoint $u v$-paths of length at most $d(G)$ in G.
Thus, the inequality (3.1) follows. We now show that

$$
D^{+}(G) \leq \begin{cases}n & \text { for } m=3 \tag{3.2}\\ n+1 & \text { for } m \geq 4\end{cases}
$$

To prove this inequality, it is sufficient to find a set $F \subset E(G)$ with $|F|=n$ if $m=3$ or $n+1$ if $m \geq 4$ such that $d(G-F)>d(G)$.

For $m \geq 4$, let

$$
F=\left\{u\left(x_{2}, 0\right), u\left(x_{3}, 0\right), \ldots, u\left(x_{n}, 0\right), u\left(x_{0}, 1\right), u\left(x_{0}, m-1\right)\right\} .
$$

Then $F \subset E(G)$ and $|F|=n+1$. Let $w=\left(01 \cdots 1,\left\lfloor\frac{m}{2}\right\rfloor\right)$. Then, by Lemma 3, we have

$$
\begin{aligned}
d(G-F) & \geq d_{G-F}(u, w)=1+d_{G-F}\left(\left(x_{1}, 0\right), w\right) \\
& \geq 1+d_{G}\left(\left(x_{1}, 0\right), w\right) \\
& =1+n+\lfloor m / 2\rfloor \\
& >d(G)
\end{aligned}
$$

For $m=3$, let $F=\left\{u\left(x_{1}, 0\right), u\left(x_{2}, 0\right), \ldots, u\left(x_{n}, 0\right)\right\}$ and $w=(1 \cdots 1,0)$. Then, by Lemma 3, we have

$$
\begin{aligned}
d(G-F) & \geq d_{G-F}(u, w)=1+\min \left\{d_{G-F}\left(\left(x_{0}, 1\right), w\right), d_{G-F}\left(\left(x_{0}, 2\right), w\right)\right\} \\
& \geq 1+\min \left\{d_{G}\left(\left(x_{0}, 1\right), w\right), d_{G}\left(\left(x_{0}, 2\right), w\right)\right\} \\
& =1+n+1 \\
& >d(G)
\end{aligned}
$$

Thus, the inequality (3.2) holds, and so the theorem follows.

4. Conclusions and remarks

The bounded edge-connectivity λ_{k} is a generalization of both the edge-persistence D^{+}and the classical edge-connectivity λ. The graph-theoretical parameters λ_{k} and D^{+}provide two important measurements for fault tolerance of interconnection networks. We are interested in the two parameters for the Cartesian product of graphs since it is an important method for designing interconnection networks. We establish lower bounds of λ_{k} and D^{+}for the Cartesian product $G_{1} \times G_{2}$, that is, $\lambda_{k_{1}+k_{2}}\left(G_{1} \times G_{2}\right) \geq \lambda_{k_{1}}\left(G_{1}\right)+\lambda_{k_{2}}\left(G_{2}\right)$ for $k_{1} \geq 2$ and $k_{2} \geq 2$ and $D^{+}\left(G_{1} \times G_{2}\right) \geq D^{+}\left(G_{1}\right)+D^{+}\left(G_{2}\right)$ if $d\left(G_{i}\right) \geq 2$ for $i=1$, 2 , and determine $D^{+}\left(C_{n} \times P_{m}\right)=1$ for $n=3$ and 2 for $n \geq 4 ; D^{+}\left(C_{n} \times C_{m}\right)=2$ if $n=3$ or $m=3$ or both n and m are odd, 3 otherwise; $D^{+}\left(Q_{n} \times P_{m}\right)=n$ for $n \geq 2$ and $m \geq 2 ; D^{+}\left(Q_{n} \times C_{m}\right)=n$ for $m=3, n+1$ for $m \geq 4$. These examples show that the obtained lower bounds of λ_{k} and D^{+}for the Cartesian product $G_{1} \times G_{2}$ are tight.

We have also taken notice of a paper of Sung and Wang [21], in which the authors announced the following results without proofs:
$D^{+}\left(C_{n} \times P_{m}\right)=2$ if n is odd, and 3 if n is even; $D^{+}\left(C_{n} \times C_{m}\right)=2$ if both n and m are odd, 3 if one of n and m is odd, and 4 if both n and m are even; $D^{+}\left(Q_{n} \times C_{m}\right)=n+2$ if m is even, and $n+1$ if m is odd.

However, these values are not correct by our results. Also, Sung and Wang proposed a conjecture: $D^{+}\left(G_{1} \times G_{2}\right) \geq$ $\max \left\{D^{+}\left(G_{1}\right), D^{+}\left(G_{2}\right)\right\}+1$.

If $d\left(G_{1}\right) \geq 2$ and $d\left(G_{2}\right) \geq 2$, then, by Corollary 2 , we have

$$
D^{+}(G) \geq D^{+}\left(G_{1}\right)+D^{+}\left(G_{2}\right) \geq \max \left\{D^{+}\left(G_{1}\right), D^{+}\left(G_{2}\right)\right\}+1
$$

That is, the conjecture is true for $d\left(G_{1}\right) \geq 2$ and $d\left(G_{2}\right) \geq 2$. However, the result in Theorem 4 for $n=3$ shows that the conjecture may be incorrect for $d\left(G_{1}\right)=1$ or $d\left(G_{2}\right)=1$.

References

[1] N. Alon, A. Gyárfás, M. Ruszinkó, Decreasing the diameter of bounded degree graphs, Journal of Graph Theory 35 (3) (2000) $161-172$.
[2] J.R. Armstrong, F.G. Gray, Fault diagnosis in a boolean n-cube array of microprocessors, IEEE Transactions on Computers 30 (8) (1981) $587-590$.
[3] J.C. Bermond, B. Bollobás, The diameter of graphs-a survey, Congresses Numerantium 32 (1981) 3-27.
[4] F.T. Boesch, F. Harary, J.A. Kabell, Graphs as models of communication network vulnerability: Connectivity and persistence, Networks 11(1981)57-63.
[5] L. Caccetta, Vulnerability of communication networks, Networks 14 (1984) 141-146.
[6] F.R.K. Chung, Diameters of graphs: Old problems and new results, Congresses Numerantium 60 (1987) 295-317.
[7] F.R.K. Chung, M.R. Garey, Diameter bounds for altered graphs, Journal of Graph Theory 8 (4) (1984) 511-534.
[8] P. Erdős, A. Gyárfás, M. Ruszinkó, How to decrease the diameter of triangle-free graphs, Combinatorica 18 (1998) 493-501.
[9] P. Erdős, A. Rényi, On a problem in the theory of graphs, Publ. Math. Inst. Hungar Acad. Sci. 7 (1962) 623-641 (in Hungarian).
[10] P. Erdős, A. Rényi, V.T. Sós, On a problem of graph theory, Studia Scientarium Mathematicarum Hungar 1 (1966) 215-235.
[11] G. Exoo, On a measure of communication network vulnerability, Networks 12 (1982) 405-409.
[12] N. Graham, F. Harary, Changing and unchanging the diameter of a hypercube, Discrete Applied Mathematics 37/38 (1992) 265-274.
[13] W. Imrich, S. Klavžar, Product Graphs, John Wiley and Sons, New York, 2000.
[14] L. Lovász, V. Neumann-Lara, M.D. Plummer, Mengerian theorems for paths of bounded length, Periodica Mathematica Hungarica 9 (1978) $269-276$.
[15] L. Niepel, D. Šafǎriková, On a generalization of Menger's theorem, Acta Mathematics. Universitatis Comenianae, 42/43, 1983, pp. 275-283.
[16] C. Peyrat, Diameter vulnerability of graphs, Discrete Applied Mathematics 9 (1984) 245-250.
[17] J. Plesnik, Note on diametrically critical graphs, in: Recent Advances in Graph Theory (Proceedings of the 2nd Czechoslovak Symposium, Prague, 1974), Academia, Prague, 1975, pp. 455-465.
[18] L. Pyber, Z. Tuza, Menger-type theorems with restrictions on path lengths, Discrete Mathematics 120 (1993) 161-174.
[19] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Transactions on Computers 37 (7) (1988) 867-872.
[20] A.A. Schoone, H.L. Bodlaender, J. van Leeuwen, Diameter increase caused by edge deletion, Journal of Graph Theory 11 (3) (1987) $409-427$.
[21] T.-Y. Sung, J.-J. Wang, Changing the diameter of graph products, in: J. Wang (Ed.), COCOON 2001, in: LNCS, vol. 2108, Springer-Verlag, Berlin, Heidelberg, 2001, pp. 390-394.
[22] Y.-F. Tao, J.-M. Xu, On bounded paths in some networks, OR Transactions 7 (1) (2003) 59-64.
[23] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[24] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.
[25] H.-X. Ye, C. Yang, J.-M. Xu, Diameter vulnerability of graphs by edge deletion, Discrete Mathematics 309 (4) (2009) 1001-1006.

[^0]: The work was supported by NNSF of China (No. 10671191, 10701068).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

