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a b s t r a c t

A small virtual backbone which is modeled as the minimum connected dominating set
(CDS) problem has been proposed to alleviate the broadcasting storm for efficiency in
wireless ad hoc networks. In this paper, we consider a general fault tolerant CDS problem,
called an h-connected distance k-dominating set (HCKDS) to balance high efficiency and
fault tolerance, and study the upper bound for HCKDSwith a probabilisticmethod for small
h and improve the current best results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Wireless ad hoc and sensor networks composed of wireless nodes have been the focus of intense research in recent years
and are characterized by a lack of a fixed communication infrastructure. Thus all wireless nodes frequently flood control
messages to cause redundancies, contentions and collisions. A virtual backbone has been proposed as a alternative to the
fixed routing infrastructure so that local routing messages are exchanged between nodes in a virtual backbone instead of
being broadcast to all the nodes.
A connected dominating set (CDS) [1] is a natural candidate for a virtual backbone in wireless networks. A CDS is a

connected subset of the network nodes such that any node in the subset is either part of the CDS or has a neighbor in the
CDS. Previous studies have focused on finding aminimal CDS for higher efficiencies of the virtual backbone. Unfortunately, a
CDS is often vulnerable due to frequent node or link failures. Therefore, how to construct a fault tolerant CDS that continues
to function during node or link failures is an important research problem, which has not been studied sufficiently. Dai and
Wu [5] addressed the algorithmproblemof constructing a k-connected k-tuple dominating set.Weiping Shang et al. [13] and
My T. Thai et al. [14] introduced the algorithm problem of constructing a 2-connected k-tuple dominating set, respectively.
D. Rautenbach and L. Volkmann [12], V. Zverovich [16] considered the upper bounds for k-tuple dominating sets using a
probabilistic method, respectively.
A distance dominating set is also a variation of domination for higher efficiencies in wireless networks which was

introduced by Haynes, Hedetniemi and Slater in [6] and has been studied extensively by several authors to consider the
distance parameters in many situations and structures which give rise to graphs, see, for example, [6,7,9–11,15].
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In this paper, we assume that the networks are sufficiently dense such that the networks are connected. Consider a
combinatorial optimization problem which was formulated from finding an efficient fault tolerant virtual backbone as:
Given a graph G = (V , E) and two positive integers h and k, find a subset of vertices D ⊆ V with a minimum size that
satisfies: (i) each vertex u in V −D is k-dominated by at least one vertex v in D such that dG(u, v) ≤ k; (ii) D is h-connected.
Every subset D satisfying (i) is called a distance k-dominating set (KDS). Every subset D satisfying (i) and (ii) is called an
h-connected distance k-dominating set (HCKDS). The minimum cardinality among all HCKDS of G is called the h-connected
distance k-domination number of G and is denoted by γ hk (G).
Since computing aminimum CDS in G is NP-hard [6], and it is easy to reduce CDS to HCKDS for any fixed positive integers

h and k in polynomial time, the HCKDS problem is also NP-hard. Thus it is difficult to determine the value of γ hk (G) for any
given graph G. In this paper, we prove that for any 2-connected graph Gwith order n and minimum degree δ,

γ 2k (G) ≤ (1+ oδ(1)) n
ln[m(δ + 1)+ 1− t]
[m(δ + 1)+ 1− t]

,

where m = d k3e, t = 3d
k
3e − k. This generalizes the result of the upper bounds for γ

2
1 (G) ≤ (1 + oδ(1))n

ln(δ+1)
(δ+1) in [4] in

some sense. The method adopted here is a refinement of [4] and different with [13,14].
The rest of this paper is organized as follows: The proofs of our main results are in Section 3 and some lemmas are given

in Section 2.

2. Some lemmas

For every x ∈ V (G), the k-neighborhood Nk(x) of x is defined as Nk(x) = {y ∈ V (G) : dG(x, y) ≤ k, x 6= y}, and N1(x)
is usually called the neighborhood of x in G. A vertex which separates two other vertices of the same component is a cut-
vertex. A block of a graph G is a maximal subgraph without a cut-vertex. Thus, every block of a graph G is either a maximal
2-connected subgraph, or a bridge, or an isolated vertex. If G is not 2-connected, at least one block of G has exactly one
cut-vertex of G, thus we call such a block a leaf block.
A subset S ⊂ V (G) is called an (`, k)-dominating set of G if for every vertex u in G − S, there are ` distinct vertices

v1, v2, . . . , v` in S such that dG(u, vi) ≤ k and every shortest path Pi between u and vi satisfies V (Pi) ∩ S = {vi} for
i = 1, 2, . . . , `.

Lemma 2.1. Let G be a 2-connected graph, k a positive integer and S a (2, k)-dominating set of G. If |S| ≥ 3 and G[S] has λ
blocks, then

γ 2k (G) ≤ |S| + 2k(2k+ 3)(λ− 1).

Proof. It is clear from the definition that a (2, k)-dominating set is a k-dominating set. If λ = 1, then G[S] is 2-connected
since |S| ≥ 3, and so S is a 2-connected k-dominating set of G. Thus, γ 2k (G) ≤ |S|, and so the conclusion holds. Assume λ > 1
below.
LetSG be the set of (2, k)-dominating sets of G. For any S ∈ SG, we use ωS to denote the number of components of G[S]

and λS the number of blocks in G[S]. Then 1 ≤ ωS ≤ λS . Define a weight functionw onSG as follows

w(S) = (2k+ 2)ωS + λS .

Clearly,w(S) = 2k+ 3 if and only if ωS = λS = 1.
In order to prove the lemma, we only need to construct a (2, k)-dominating set D of G from a given S ∈ SG by adding

other 2k(2k+ 3)(λ− 1) vertices such that λD = 1. To the end, we only need to show the following claim.

Claim. For any S ∈ SG, ifλS > 1 then there exists a subset T ′ ⊂ V (G−S)with |T ′| ≤ 2k such thatw(S ′) = w(S∪T ′) ≤ w(S)−1,
where S ′ = S ∪ T ′.

In fact, if the claim is true, then after (2k + 2)ωS + λS − (2k + 3) times of applying the claim, we can find a subset
T ⊂ V (G− S)with

|T | ≤ 2k
[
(2k+ 2)ωS + λS − (2k+ 3)

]
≤ 2k(2k+ 3)(λS − 1)

such that

w(S ∪ T ) ≤ w(S)−
[
(2k+ 2)ωS + λS − (2k+ 3)

]
= 2k+ 3.

Thus, we have λS∪T = 1, and so S ∪ T is a 2-connected k-dominating set of G and

γ 2k (G) ≤ |S ∪ T | ≤ |S| + 2k(2k+ 3)(λS − 1).

We now prove the claim. For convenience, let ω = ωS and λ = λS . There are two cases to be considered.
Case 1 ω > 1.
Since ω > 1, we can choose two components of G[S], U and V , such that their distance dG(U, V ) = min{dG(u, v) : u ∈

U, v ∈ V } is as small as possible. Let u ∈ U and v ∈ V such that dG(u, v) = dG(U, V ), and let Puv be a shortest path between
u and v in G. Then, V (Puv)∩S = {u, v} and dG(u, v) ≥ 2. Moreover, dG(u, v) ≤ 2k+1, otherwise there is an internal vertex x
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in Puv whose k-neighbors Nk(x)∩ S = ∅, a contradiction to the hypothesis that S is a k-dominating set of G. This fact implies
|V (Puv)− {u, v}| ≤ 2k. Let S ′ = S ∪ V (Puv). Then |S ′| ≤ |S| + 2k.
If dG(u, v) = 2, then let x be the internal vertex in Puv and µ the number of components that contain neighbors of x in

G[S]. Then µ ≥ 2, ωS′ = ω − µ+ 1 and λS′ = λ+ µ. Thus

w(S ′) = (2k+ 2)ωS′ + λS′
= (2k+ 2)(ω − µ+ 1)+ λ+ µ
≤ (2k+ 2)ω + λ− 2k
< w(S)− 1.

For dG(u, v) ≥ 3, we claim ωS′ = ω − 1. Clearly, ωS′ ≤ ω − 1. We only need to prove ωS′ ≥ ω − 1. Assume to the
contrary ωS′ ≤ ω − 2. Then there exists another componentW different from U and V in G[S] such thatW , U and V are in
the same component of G[S ′]. Since S ′ = S ∪ V (Puv) and V (W ) ∩ V (Puv) = ∅, there is a vertex w inW that is adjacent to
some internal vertex x in Puv . Since dG(u, v) ≥ 3, either dG(u, x) ≥ 2 or dG(x, v) ≥ 2. If the former holds, then

dG(W , V ) ≤ dG(w, x)+ dG(x, v) < dG(u, x)+ dG(x, v) = dG(U, V );

if the latter holds, then

dG(U,W ) ≤ dG(u, x)+ dG(w, x) < dG(u, x)+ dG(x, v) = dG(U, V );

each of which contradicts the choice of U and V . Thus, ωS′ = ω − 1.
Noting λS′ ≤ λ+ 2k+ 1, we have

w(S ′) = (2k+ 2)ωS′ + λS′
≤ (2k+ 2)(ω − 1)+ (λ+ 2k+ 1)
= (2k+ 2)ω + λ− 1
= w(S)− 1.

Case 2 ω = 1.
If λ = 1, then we complete the proof. Otherwise, G has at least one leaf block which has exactly one cut-vertex. Let B be

the vertex set of some leaf block of G[S], and let b ∈ B be the unique cut-vertex of G[S].
Let u ∈ B− {b} and v ∈ S − B be two vertices whose distance in G− {b} is as small as possible and Puv denote a shortest

path between u and v in G − {b}, that is, V (Puv) ∩ S = {u, v}. Clearly, G − {b} is connected since G is 2-connected. Also,
dG−{b}(u, v) ≤ 2k + 1. Otherwise, there exists an internal vertex x in Puv whose k-neighbors Nk(x) ∩ (S − {b}) = ∅, a
contradiction to the hypothesis that S is a (2, k)-dominating set of G. Thus, |V (Puv)− {u, v}| ≤ 2k. Since ω = 1, there exists
a path P ′uv between u and v in G[S]. Then P

′
uv ∩ Puv = {u, v}, and P

′
uv ∪ Puv generates a cycle. Let S

′
= S ∪ V (Puv). Thus, we

have |S ′| ≤ |S| + 2k, ωS′ = 1, and λS′ ≤ λ− 1. It follows that

w(S ′) = (2k+ 2)ωS′ + λS′
≤ (2k+ 2)ω + λ− 1
= w(S)− 1.

The claim follows and the proof of the lemma is complete. �

Lemma 2.2. Let 0 < ε < k
3k−1 , δ ≥ 1, and G be a graph with n vertices. If at most εn vertices in G have degree less than δ, then

G has an induced subgraph with order at least
[
1− (4k− 1)ε

]
n and minimum degree greater than 2k−16k−2δ.

Proof. Let δ′ = 2k−1
6k−2 δ. For 0 < ε < k

3k−1 , if there are at most εn vertices in G with degree less than δ, then by
2|E(G)| =

∑
v∈V (G) deg(v), G has more than

1
2

(
1−

k
3k− 1

)
n δ = n δ′

edges. Since every graph with n vertices and ρn edges has a subgraph with minimum degree at least ρ (see, a result of p.
xvii in [2]), G has a subgraph with minimum degree greater than δ′.
Let F be the vertex set of a maximal subgraph of Gwith minimum degree greater than δ′, let f = |F | andW = V (G)− F .
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On one hand, by the maximality of F , every vertex inW has at most δ′ neighbors in F , and G[W ] has at most (n − f )δ′
edges, otherwise G[W ] contains a subgraph T with minimum degree greater than δ′ and F ∪ T ⊃ F , a contradiction to the
maximality of F .
On the other hand, since G[W ] contains at least n− f − εn vertices whose degrees in G are all at least δ. Hence, the sum

of the degrees in G[W ] is at least

(n− f − εn)(δ − δ′).

Hence, we have

2(n− f )δ′ ≥ (n− f − εn)
4k− 1
6k− 2

δ,

that is,

f ≥
[
1− (4k− 1)ε

]
n.

This completes the proof. �

The following lemma which belongs to Kouider and Lonc in [8] is also used in the proof of our results.

Lemma 2.3 (Kouider and Lonc [8]). Let G be a graph with order n and minimum degree δ. Then V (G) can be covered by at most
n/δ subgraphs such that each of them is a vertex, an edge or a cycle.

3. Main results

Let f (x) and g(x) be two functions. If f (x)/g(x) → 0 as x → ∞, we write f (x) = o(g(x)). So f (x) = o(1) signify that
f (x)→ 0 as x→∞. We write f (x) = O(g(x)) if there exists a positive constant c such that f (x) ≤ cg(x) for large enough
x. If G is a graph with n vertices and degrees d1 ≤ · · · ≤ dn, then the n-tuple (d1, . . . , dn) is called the degree sequence of G.
We use a probabilistic method to give an upper bound of γ 2k (G) in terms of the minimum degree δ = δ(G) below.
For an event A and for a random variable Z of an arbitrary probability space (Ω,F , P), P[A] and E[Z] denote the

probability of A, the expectation of Z , respectively.

Theorem 3.1. Let G be a 2-connected graph with order n and minimum degree δ. Then

γ 2k (G) ≤ (1+ oδ(1))n
ln[m(δ + 1)+ 1− t]
m(δ + 1)+ 1− t

, (1)

where m =
⌈ k
3

⌉
, t = 3

⌈ k
3

⌉
− k, and oδ(1) denotes a function in δ that tends to 0 as δ tends to∞.

Proof. Let 0 < ε < k
3k−1 be a fixed rational number and p = (1 + ε) ln qq , where q = m(δ + 1) + 1 − t , m =

⌈ k
3

⌉
and

t = 3
⌈ k
3

⌉
− k. Let us pick, randomly and independently, each vertex of V with probability p. Let X ⊂ V (G) be the set of

vertices picked. Let Y1 ⊂ V (G− X) such that Nk(Y1) ∩ X = ∅. For any v ∈ V (G− X − Y1), let PvX denote one shortest path
between v and X , and u denote the second-last vertex on PvX from v to X . Assuming an arbitrary ordering of the neighbors
of u from 1 to |N1(u)| and taking δ lexicographically smaller ones, if there are at most one of them belongs to X , then v ∈ Y2.
Therefore, from the choices of Y1 and Y2, X ∪ Y1 ∪ Y2 is a (2, k)-dominating set of G.
Let Q = G[X ∪ Y1 ∪ Y2], and let λ be the number of blocks of Q . By Lemma 2.1, there exists a 2-connected k-dominating

set of G by adding at most 2k(2k+ 3)(λ− 1) vertices to X ∪ Y1 ∪ Y2. Let |X | = α, |Y1| = β1 and |Y2| = β2. Thus

γ 2k (G) < α + β1 + β2 + 2k(2k+ 3)λ (2)

First, we establish an upper bound on λ. Let θ denote a positive integer such that θ − 1 is the exact term at the position
bεαc in the degree sequence of G[X].

Claim 1. λ < 4(3k−1)
2k−1

α
θ
+ 2(4k− 1)εα + 2(β1 + β2).

Proof of Claim 1. By the definition of θ , Lemmas 2.2 and 2.3, there exists a subset F ⊂ X such that |F | ≥
[
1− (4k− 1)ε

]
α

and δ(G[F ]) > 2k−1
6k−2θ , furthermore, F can be covered by atmost

6k−2
2k−1

|F |
θ
subgraphs ofG[F ] that are all blocks. Add the vertices

in (X − F) ∪ Y1 ∪ Y2 to the above covers for F , then we obtain a covering of V (Q ) using only blocks. Let ξ be the minimum
number of blocks to cover V (Q ), thus

ξ ≤
6k− 2
2k− 1

α

θ
+ (4k− 1)εα + β1 + β2.
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Since we can add at most ξ − 1 edges to connect the above ξ blocks, thus λ < 2ξ . Hence,

λ <
4(3k− 1)
2k− 1

α

θ
+ 2(4k− 1)εα + 2(β1 + β2). �

It follows from Claim 1 and (2) that

γ 2k (G) <
[
1+ 4k(2k+ 3)(4k− 1)ε

]
α +

[
1+ 4k(2k+ 3)

]
(β1 + β2)+

8k(2k+ 3)(3k− 1)
2k− 1

α

θ
(3)

and

E
[
γ 2k (G)

]
<
[
1+ 4k(2k+ 3)(4k− 1)ε

]
E[α] +

[
1+ 4k(2k+ 3)

]
E[β1 + β2] +

8k(2k+ 3)(3k− 1)
2k− 1

E
[α
θ

]
. (4)

We will prove the upper bounds for E[α], E[β1 + β2] and E
[
α
θ

]
, respectively.

Claim 2. E[α] = (1+ ε)n ln qq .

Proof of Claim 2. Since α can be written as a sum of n indicator random variables χv , where χv = 1 if v ∈ X and χv = 0
otherwise, it follows that the expectation of α satisfies E[α] = (1+ ε)n ln qq . �

To get the upper bound for E[β1 + β2], we first give two claims below.

Claim 3. dG(X, Y1) = k+ 1.

Proof of Claim 3. It is clear from the choice of Y1 that dG(X, Y1) ≥ k + 1. Let a ∈ X , b ∈ Y1 be two vertices such that
dG(a, b) = dG(X, Y1). Let P be any shortest path from a to b and let v be the second-last vertex on P . If dG(a, b) ≥ k+ 2, then
v has no k-neighbors in X . By definition of Y1, we get v ∈ Y1, thus dG(a, v) < dG(a, b) = dG(X, Y1), a contradiction. �

Claim 4. |Nk(v)| ≥ q for any v ∈ V (G− X).

Proof of Claim 4. Let v ∈ V (G− X) and Xi(v) = {u ∈ V (G) : dG(u, v) = i}.
If v ∈ Y1, then by Claim 3 and G is connected, we have Xi(v) 6= ∅ for i = 1, . . . , k. Clearly, |X1(v)| ≥ δ. For 2 ≤ i ≤ k− 2,

we have that |Xi(v)| + |Xi+1(v)| + |Xi+2(v)| ≥ δ + 1. In fact, for any u ∈ Xi+1(v), N1(u) ⊆ Xi(v) ∪ Xi+1(v) ∪ Xi+2(v), thus,
|Xi(v)| + |Xi+1(v)| − 1+ |Xi+2(v)| ≥ δ. So, we have

|Nk(v)| = |X1(v)| + |X2(v)| + · · · + |Xk(v)|

≥ δ +

⌊
k− 1
3

⌋
(δ + 1)+

(
k− 1− 3

⌊
k− 1
3

⌋)
= δ + (m− 1)(δ + 1)+ (2− t)
= m(δ + 1)+ 1− t.

Let v ∈ V (G) − (X ∪ Y1). Thus dG(v, X) ≤ k. If dG(v, X) = k or dG(v, Y1) ≥ k, using the same discussions as above we
get |Nk(v)| ≥ m(δ + 1) + 1 − t . Now suppose that dG(v, Y1) < k and dG(v, X) < k. Since dG(X, Y1) = k + 1, there must
exist a shortest path between a vertex a ∈ X and a vertex b ∈ Y1 through v such that dG(a, b) ≥ k + 1, dG(v, b) < k and
dG(a, v) < k. We only consider the worst case dG(a, b) = k + 1, and let Pab denote the shortest path from a to b passing
through v.
Let v1 and v2 be two neighbors of v on Pab from b to v and from a to v, respectively. Let dG(b, v1) = `1, dG(a, v2) = `2.

Thus, `1 + `2 = k− 1. By symmetry, we consider the following three cases.
If `1 ≡ 1(mod 3), `2 ≡ 1(mod 3), then k ≡ 0(mod 3), that is, k = 3m, t = 0.

|Nk(v)| ≥ δ +
(⌊

`1

3

⌋
+

⌊
`2

3

⌋)
(δ + 1)+ 2

= δ +
`1 + `2 − 2

3
(δ + 1)+ 2

= δ +
k− 3
3

(δ + 1)+ 2

= δ + (m− 1)(δ + 1)+ 2
= m(δ + 1)+ 1− t.
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If `1 ≡ 1(mod 3), `2 ≡ 2(mod 3), then k ≡ 1(mod 3), that is, k = 3m−2, t = 2. Notice `2 ≡ 2(mod 3) and dG(v, a) < k,
then N1(a) ⊆ Nk(v), thus |X`2−1(v2)| + |X`2(v2)| + |X`2+1(v2)| ≥ δ + 1. So we have

|Nk(v)| ≥ δ +
(⌊

`1

3

⌋
+

⌊
`2

3

⌋)
(δ + 1)+ 1+ (δ + 1)

= δ +
`1 − 1+ `2 − 2

3
(δ + 1)+ δ + 2

= δ +
k− 4
3

(δ + 1)+ δ + 2

= m(δ + 1)
> m(δ + 1)+ 1− t.

If `1 ≡ 2(mod 3), `2 ≡ 2(mod 3), then k ≡ 2(mod 3), that is, k = 3m − 1, t = 1. By the discussions as above, we also
get |X`1−1(v1)| + |X`1(v1)| + |X`1+1(v1)| ≥ δ + 1. Thus, we have,

|Nk(v)| ≥ δ +
(⌊

`1

3

⌋
+

⌊
`2

3

⌋)
(δ + 1)+ 2(δ + 1)

= δ +
`1 − 2+ `2 − 2

3
(δ + 1)+ 2δ + 2

= δ +
k− 5
3

(δ + 1)+ 2δ + 2

= m(δ + 1)+ δ + 1− t
> m(δ + 1)+ 1− t.

The Claim 4 follows. �

By Claim 4, we could prove the following claim.

Claim 5. E
[
β1 + β2

]
< o

( n
q

)
.

Proof of Claim 5. Let v be a vertex in G. By the total probability law, we have

P[v ∈ Y1 ∪ Y2] = P [v ∈ Y1 ∪ Y2|v ∈ V (G)− X] P [v ∈ V (G)− X] .

By the definition of Y1, we have P[v ∈ Y1|v ∈ V (G) − X] = (1 − p)|Nk(v)| =
(
δ

0

)
p0(1 − p)Nk(v)−0. For any v ∈ V (G) − X ,

let PvX denote one shortest path between v and X , and u denote the second-last vertex on PvX from v to X . Assuming an
arbitrary ordering of the neighbors of u from 1 to |N1(u)| and taking δ lexicographically smaller ones, by the definition
of Y2, P [v ∈ Y2|v ∈ V (G)− X)] <

(
δ

0

)
(1 − p)Nk(v) +

(
δ

1

)
p1(1 − p)Nk(v)−1. Since p = (1 + ε) ln qq ,

(
δ

i

)
< δi, the inequality

(1− x) < exp(−x) for x > 0, it follows that, for sufficiently large δ,

P [v ∈ Y1 ∪ Y2] < P[v ∈ Y1 ∪ Y2|v ∈ V (G)− X]

< 2
1∑
i=0

(
δ

i

)
pi(1− p)Nk(v)−i

≤ 2
1∑
i=0

(
δ

i

)
pi(1− p)q−i

< 2
1∑
i=0

(δp)i exp(−pq+ p)

< 4
(
(1+ ε)

ln q
m

)
exp(−pq) exp(p)

< 4
(
4k− 1
3k− 1

ln q
m

)
q−(1+ε) exp(p)

= O
(
q−(1+

3ε
4 )ln q

)
= o

(
1
q

)
.
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The second-last equality comes from the fact that for sufficiently large δ, exp(p) = q
1+ε
q = O

(
q
ε
4

)
. The last equality

comes from the fact that limδ→∞ q−
3ε
4 ln q = 0.

Since β1 + β2 can also be written as a sum of n indicator random variables χv , where χv = 1 if v ∈ Y1 ∪ Y2 and χv = 0
otherwise, it follows that the expectation of β1 + β2 satisfies E[β1 + β2] < no

(
1
q

)
= o

(
n
q

)
. �

Lastly, we only prove the upper bound for E
[
α
θ

]
. By conditional expectation, we have

E
[
α
θ

]
= E

[
α
θ

∣∣Λ1] P [Λ1]+ E [ αθ ∣∣Λ2] P [Λ2]+ E [ αθ ∣∣Λ3] P [Λ3]
in whichΛ1 denotes the event α > (3k + 1)np,Λ2 denotes the event α ≤ (3k + 1)np and θ ≤ b(ln q)

1
4 c, andΛ3 denotes

the event α ≤ (3k+ 1)np and θ > b(ln q)
1
4 c. Hence, we have

E
[
α
θ

]
< nP [α > (3k+ 1)np]+ (3k+ 1)npP

[
θ ≤ b(ln q)

1
4 c

]
+

3k+1

b(ln q)
1
4 c
np. (5)

In order to obtain the upper bound for E[ α
θ
], we will get the upper bounds for P [α > (3k+ 1)np] and P[θ ≤ b(ln q)

1
4 c],

respectively.

Claim 6. P [α > (3k+ 1)np] < 1
q2.25
.

Proof of Claim 6. Since E[α] = np, we use an inequality attributed to Chernoff in [3], that is, for any s ≥ 0,

P[α > E[α] + s] ≤ exp
{

−s2

2(E[α] + s
3 )

}
.

Take s = 3knp to this inequality and notice that k+ 1 ≤ 2k and n ≥ q, we have

P [α > (3k+ 1)np ] ≤ exp
(
−

9k2

2(k+ 1)
np
)

< exp
(
−
9k
4
(1+ ε) ln q

)
< exp

(
−
9k
4
ln q

)
= q−

9k
4

≤
1
q2.25

.

The Claim 6 follows. �

Claim 7. P
[
α < k

k+1np+
1
ε

]
<
exp

(
1

ε(k+1)

)
q

1
2(k+1)2

.

Proof of Claim 7. By using another inequality of Chernoff [3] and E[α] = np , that is, for any s ≥ 0,

P [α < E[α] − s] ≤ exp
(
−
s2

2E[α]

)
,

we have, for sufficiently large δ,

P
[
α <

k
k+ 1

np+
1
ε

]
= P

[
α − E [α] < −

(
1
k+ 1

np−
1
ε

)]

≤ exp

(
−

( 1
k+1np−

1
ε

)2
2np

)

< exp
(
−

1
2(k+ 1)2

np+
1

ε(k+ 1)

)
< exp

(
−

1
2(k+ 1)2

(1+ ε) ln q+
1

ε(k+ 1)

)
< exp

(
−

1
2(k+ 1)2

ln q+
1

ε(k+ 1)

)
= exp

(
1

ε(k+ 1)

)
q
−

1
2(k+1)2 . �
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Claim 8. P
[
θ ≤ b(ln q)

1
4 c

]
< k+1

kεq
1

2m+1
+
exp

(
1

ε(k+1)

)
q

1
2(k+1)2

.

Proof of Claim 8. For v ∈ V (G), take δ neighbors of v. Let degδG[X](v) denote the number of these δ neighbors in the induced
subgraph G[X]. By similar discussions with Claim 5, we have, for sufficiently large δ,

P
[
degδG[X](v) ≤ b(ln q)

1
4 c

]
≤

b(ln q)
1
4 c∑

i=0

(
δ

i

)
pi(1− p)δ−i

<

(ln q)
1
4∑

i=0

(δp)i exp
(
−p
(
δ − (ln q)

1
4
))

< 2 (ln q)
1
4

(
δ(1+ ε)

ln q
q

)(ln q) 14
exp(−pδ) exp

(
(ln q)

1
4 p
)

< 2 (ln q)
1
4

(
2
m
ln q

)(ln q) 14
q−

(1+ε)
2m+1 exp

(
(ln q)

1
4 p
)

= O

q−( 1
2m+1+

ε
4m+2 ) (ln q)

1
4

(
2
m
ln q

)(ln q) 14
= o

(
1

q
1

2m+1

)
<

1

q
1

2m+1
.

The second-last equality comes from the fact that exp
(
(ln q)

1
4 p
)
= O

(
q

ε
4m+2

)
which is derived by (ln q)

1
4 p =

O
(
ln q

ε
4m+2

)
. The last equality comes from the fact that

lim
δ→∞

(ln q)
1
4
( 2
m ln q

)(ln q) 14
q

ε
4m+2

= 0.

Since the event that a vertex v is picked into X is independent of the event that degδG[X](v) ≤ b(ln q)
1
4 c, we have

P[v ∈ X; degδG[X](v) < b(ln q)
1
4 c] = P [v ∈ X] · P[degδG[X](v) < b(ln q)

1
4 c]

< p
1

q
1

2m+1
.

Let ` denote the number of vertices in G[X] satisfying degδG[X](v) ≤ b(ln q)
1
4 c, then we have

E [`] < np
1

q
1

2m+1
.

By Markov’s inequality, that is, for any s > 0, P[` > s] < E[`]
s , it follows that

P
[
` >

εk
k+ 1

np
]
= P

[
` >

(
εk
k+ 1

q
1

2m+1

)
np

q
1

2m+1

]
<
k+ 1

εkq
1

2m+1
.

Let

τ = 1−
k+ 1

kεq
1

2m+1
− P

[
α <

k
k+ 1

np+
1
ε

]
.

Thus,

P
[
` ≤ ε

k
k+ 1

np, α ≥
k
k+ 1

np+
1
ε

]
≥ τ
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in which we notice that ` ≤ bεαc − 1. Thus, by the definitions of θ and `,

P
[
θ − 1 ≥ b(ln q)

1
4 c

]
= P

[
θ ≥

⌊
(ln q)

1
4

⌋
+ 1

]
≥ τ .

Finally, we have

P
[
θ ≤ b(ln q)

1
4 c

]
≤ 1− τ

=
k+ 1

kεq
1

2m+1
+ P

[
α <

k
k+ 1

np+
1
ε

]

<
k+ 1

kεq
1

2m+1
+

exp
(

1
ε(k+1)

)
q

1
2(k+1)2

as required. Here, the last inequality comes from Claim 7. �

From Claim 6, Claim 8 and (5), we find that

E
[α
θ

]
< nP [α > (3k+ 1)np]+ (3k+ 1)npP

[
θ ≤ b(ln q)

1
4 c

]
+
3k+ 1

b(ln q)
1
4 c

np

< n
1
q2.25
+ (3k+ 1)np

 k+ 1

kεq
1

2m+1
+

exp
(

1
ε(k+1)

)
q

1
2(k+1)2

+ 3k+ 1

b(ln q)
1
4 c

np

= n
ln q
q

 1
q1.25 ln q

+ (3k+ 1)(1+ ε)

 k+ 1

kεq
1

2m+1
+

exp
(

1
ε(k+1)

)
q

1
2(k+1)2

+ 3k+ 1

b(ln q)
1
4 c

(1+ ε)


= o

(
n
ln q
q

)
. (6)

Hence, by (3) and (6), Claims 2 and 5, for sufficiently large δ, we have

γ 2k (G) ≤ E
[
γ 2k (G)

]
<
[
1+ 4k(2k+ 3)(4k− 1)ε

]
E[α] +

[
1+ 4k(2k+ 3)

]
E[β1 + β2] +

8k(2k+ 3)(3k− 1)
2k− 1

E
[α
θ

]
<
[
1+ 4k(2k+ 3)(4k− 1)ε

]
(1+ ε)n

ln q
q
+
[
1+ 4k(2k+ 3)

]
o
(
n
q

)
+
8k(2k+ 3)(3k− 1)

2k− 1
o
(
n
ln q
q

)
<
(
1+ 32k2(2k+ 3)ε

)
n
ln q
q

= (1+ oδ(1)) n
ln q
q
.

Here, the second-last inequality comes from the facts,

lim
δ→∞

[
1+ 4k(2k+ 3)

]
o
( n
q

)
n ln q
q

= 0 and lim
δ→∞

8k(2k+3)(3k−1)
2k−1 o

(
n ln qq

)
n ln q
q

= 0.

Thus, for sufficiently large δ, we have[
1+ 4k(2k+ 3)

]
o
( n
q

)
n ln q
q

< ε and

8k(2k+3)(3k−1)
2k−1 o

(
n ln qq

)
n ln q
q

< ε.

This completes the proof of the theorem. �

Remarks: This paper gives probabilistic analysis of the upper bounds for 2-connected distance k-domination numbers
whose method adopted here is different with [13,14] and a refinement of [4]. For k = 1 in (1), we get γ 21 (G) <

(1+ oδ(1))n ln δδ , which is the result of Caro et al. in [4].
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