Fault-tolerant panconnectivity of augmented cubes*

Hailiang WANG, Jianwei WANG, Jun-Ming XU
Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

© Higher Education Press and Springer-Verlag 2009

Abstract

The augmented cube $A Q_{n}$ is a variation of the hypercube Q_{n}. This paper considers the panconnectivity of $A Q_{n}(n \geqslant 3)$ with at most $2 n-5$ faulty vertices and/or edges and shows that, for any two fault-free vertices u and v with distance d in $A Q_{n}$, there exist fault-free $u v$-paths of every length from $d+2$ to $2^{n}-f-1$, where f is the number of faulty vertices in $A Q_{n}$. The proof is based on an inductive construction.

Keywords Path, pancyclic, hamiltonian connected, panconnectivity, augmented cube, fault tolerance
MSC 05C38, 90B10

1 Introduction

It is well known that a topological structure of an interconnection network can be modeled by a connected graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network [19]. One of the central issues in evaluating a network is the embedding problem. A path or cycle structure is suitable for designing simple parallel algorithms with low communication cost.

A graph G of order n is l-pancyclic if G contains a cycle of length k for every k with $l \leqslant k \leqslant n$, and G is pancyclic if it is g-pancyclic, where g is the girth of G, the length of a shortest cycle in G. A graph is hamiltonian connected if for any pair of distinct vertices u and v, there exists a $u v$ hamiltonian path. A graph is panconnected if for any pair of distinct vertices u and v with distance d, there exists a $u v$-path of length l for every l with $d \leqslant l \leqslant n-1$.

[^0]Since some vertex and/or link faults may happen when a network is put in use, it is practically meaningful and important to consider faulty networks. A graph G is k-fault-tolerant pancyclic (resp. hamiltonian connected, panconnected) if $G-F$ remains pancyclic (resp. hamiltonian connected, panconnected) for any $F \subset V(G) \cup E(G)$ with $|F| \leqslant k$, and is k-vertex-fault-tolerant pancyclic (resp. hamiltonian connected, panconnected) if $G-F$ remains pancyclic (resp. panconnected) for any $F \subset V(G)$ with $|F| \leqslant k$, and k-edge-fault-tolerant pancyclic (resp. hamiltonian connected, panconnected) if $G-F$ remains pancyclic (resp. hamiltonian connected, panconnected) for any $F \subset E(G)$ with $|F| \leqslant k$.

In recent years, cycle embedding and path embedding, fault-tolerant cycle embedding and fault-tolerant path embedding in the hypercube and other networks have been widely investigated in the literature, as, for example, Refs. [1,4-6,9,11,13-17], which all appeared in Theoretical Computer Science. Almost all known results on this topic for the hypercube and its variations are stated in a survey article by Xu and Ma [20].

As a variation of the hypercube network Q_{n}, the augmented cube $A Q_{n}$, as proposed by Choudum and Sunitha $[2,3]$, is pancyclic for $n \geqslant 2$. Recently, this result has been generalized by several authors. Hsu et al. [7] showed that $A Q_{n}$ is $(2 n-3)$-fault-tolerant hamiltonian and $(2 n-4)$-fault-tolerant hamiltonian connected for $n \geqslant 4$. Ma et al. [10] showed that $A Q_{n}$ is panconnected for $n \geqslant 1$ and ($2 n-3$)-edge-fault-tolerant pancyclic for $n \geqslant 2$. Wang et al. [18] showed that $A Q_{n}$ is $(2 n-3)$-fault-tolerant pancyclic for $n \geqslant 4$. Recently, Ma et al. [12] have showed that the super connectivity is $4 n-8$ for $n \geqslant 6$ and the super edge-connectivity is $4 n-4$ for $n \geqslant 5$. In this paper, we improve these results by showing the following result.

Theorem 1.1 If $A Q_{n}(n \geqslant 3)$ contains at most $2 n-5$ faulty vertices and/or edges, then for any two distinct non-faulty vertices u and v with distance d in $A Q_{n}$, there exist fault-free uv-paths of length l for every l with $d+2 \leqslant l \leqslant 2^{n}-1-f$, where f is the number of faulty vertices in $A Q_{n}$.

The proof is based on an inductive construction of $A Q_{n}$ and given in Section 4. Section 2 gives the definition of the augmented cube and some propositions. Some lemmas are given in Section 3. In Section 5, we make a conclusion and suggest two questions to investigate further.

2 Definition and preliminaries

Let $G=(V, E)$ be a graph, where V is the vertex-set and E is the edge-set. For two distinct vertices u and v in G, a $u v$-path P of length k is a sequence of different vertices $\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, where $x_{0}=u, x_{k}=v$, and $x_{i-1} x_{i} \in E(G)$ for each $i=1,2, \ldots, k$, where k is the number of edges in P, called the length of P, denoted by $\varepsilon(P)=k$. The distance between them, denoted by $d_{G}(u, v)$, is the length of a shortest $u v$-path in G. Let $P=(u, \ldots, t, x, y, z, \ldots, v)$ be a $u v$-path of length at least two. An interior vertex x in P partitions P into
two sections. We use $P(u, x)$ to denote the subpath (u, \ldots, t, x) of P from u to x and use $P(y, v)$ to denote the subpath (y, z, \ldots, v) of P from y to v. Since $x y$ is an edge in P, we can write the path

$$
P=P(u, x)+x y+P(y, v)
$$

The n-dimensional augmented cube $A Q_{n}(n \geqslant 1)$, can be defined recursively as follows. $A Q_{1}$ is a complete graph K_{2} with the vertex set $\{0,1\}$. For $n \geqslant 2, A Q_{n}$ is obtained by taking two copies of the augmented cube $A Q_{n-1}$, denoted by $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$, and adding $2 \times 2^{n-1}$ edges between $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$ as follows.

Let

$$
\begin{aligned}
& V\left(A Q_{n}^{0}\right)=\left\{0 u_{n-1} \cdots u_{2} u_{1}: u_{i}=0 \text { or } 1, i=1,2, \ldots, n-1\right\} \\
& V\left(A Q_{n}^{1}\right)=\left\{1 v_{n-1} \cdots v_{2} v_{1}: v_{i}=0 \text { or } 1, i=1,2, \ldots, n-1\right\} .
\end{aligned}
$$

A vertex $u=0 u_{n-1} \cdots u_{2} u_{1}$ of $A Q_{n-1}^{0}$ is joined to a vertex $v=1 v_{n-1} \cdots v_{2} v_{1}$ of $A Q_{n-1}^{1}$ if and only if either
(1) $u_{i}=v_{i}$ for $1 \leqslant i \leqslant n-1$ (in this case $u v$ is called an n-dimensional hypercube edge, setting $v=u^{h_{n}}$ or $u=v^{h_{n}}$), or
(2) $u_{i}=\bar{v}_{i}$ for $1 \leqslant i \leqslant n-1$ (in this case $u v$ is called an n-dimensional complement edge, setting $v=u^{c_{n}}$ or $\left.u=v^{c_{n}}\right)$.

And an edge between $u=u_{n} u_{n-1} \cdots u_{2} u_{1}$ and $v=u_{n} u_{n-1} \cdots u_{2} \bar{u}_{1}\left(u_{i}=\right.$ 0 or $1,1 \leqslant i \leqslant n)$ is called a 1-dimensional complement edge, setting $v=u^{c_{1}}$ or $u=v^{c_{1}}$. For example, the graphs shown in Fig. 1 are augmented cubes $A Q_{1}, A Q_{2}$ and $A Q_{3}$.

Fig. 1 Three augmented cubes $A Q_{1}, A Q_{2}$ and $A Q_{3}$
Obviously, $A Q_{n}$ is a $(2 n-1)$-regular graph with 2^{n} vertices. It has been shown by Choudum and Sunitha $[2,3]$ that $A Q_{n}$ is vertex-symmetric, $(2 n-1)$ connected for $n \neq 3$ ($A Q_{3}$ is 4-connected), and has diameter $\lceil n / 2\rceil$ for $n \geqslant 1$. Some further properties of $A Q_{n}$ can be found in Refs. [12,21].

For the sake of simplicity, we use $d(x, y)$ to denote the distance between x and y in $A Q_{n}$, and write $L=A Q_{n-1}^{0}$ and $R=A Q_{n-1}^{1}$. For each vertex $v \in L$ (or R), let $N_{L}(v)\left(\right.$ or $\left.N_{R}(v)\right)$ denote the set of vertices adjacent to v in L (or R).

For a vertex u in $A Q_{n}$, we use u^{h} to denote $u^{h_{n}}$ and use u^{c} to denote $u^{c_{n}}$. Let $I_{n}=\left\{h_{2}, h_{3}, \ldots, h_{n}, c_{1}, c_{2}, \ldots, c_{n}\right\}$. If $P=\left(u, x_{1}, x_{2}, \ldots, x_{t}, v\right)$ is a
$u v$-path in $A Q_{n}$, we use P^{b} to denote the $u^{b} v^{b}$-path $\left(u^{b}, x_{1}^{b}, x_{2}^{b}, \ldots, x_{t}^{b}, v^{b}\right)$ in $A Q_{n}$ for any $b \in I_{n}$. If $S=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$ is a subset of vertices in $A Q_{n}$, we use S^{b} to denote the set of vertices $\left\{x_{1}^{b}, x_{2}^{b}, \ldots, x_{t}^{b}\right\}$ with $b \in I_{n}$.

The following two properties can be easily verified from the definition of $A Q_{n}$.
Proposition 2.1 If $u v$ is an edge in $A Q_{n}(n \geqslant 2)$, then so is $u^{b} v^{b}$ for any $b \in I_{n}$.

Proposition 2.2 Let u be a vertex in $A Q_{n}(n \geqslant 2)$. Then, for any i with $2 \leqslant i \leqslant n, u^{h_{i}}$ and $u^{c_{i}}$ are joined by an ($i-1$)-dimensional complement edge; $u^{c_{i}}$ and $u^{c_{i-1}}$ are joined by an i-dimensional hypercube edge; $u^{h_{i}}$ and $u^{c_{i-1}}$ are joined by an i-dimensional complement edge; otherwise, u^{a} and u^{b} are not adjacent for any two distinct $a, b \in I_{n}$.

By Propositions 2.1 and 2.2, we have the following property immediately.
Proposition 2.3 Let uv be an edge in $A Q_{n}(n \geqslant 2)$. If $u v$ is not an $(n-$ 1)-dimensional complement edge, then u^{h}, u^{c}, v^{h} and v^{c} are all distinct. Otherwise $u^{h}=v^{c}, u^{c}=v^{h}$.

Proposition 2.4 In $A Q_{n}(n \geqslant 3)$, for any vertex $u \in L$, let $S=N_{L}(u)$. Then

$$
S^{h}=N_{R}\left(u^{h}\right), \quad S^{c}=N_{R}\left(u^{c}\right), \quad\left|S^{h} \cap S^{c}\right|=2
$$

Proof Let $u=0 u_{n-1} \cdots u_{2} u_{1} \in L$. Then

$$
S=N_{L}(u)=\left\{u^{h_{i}}: 2 \leqslant i \leqslant n-1\right\} \cup\left\{u^{c_{j}}: 1 \leqslant j \leqslant n-1\right\},
$$

where

$$
\begin{align*}
u^{h_{i}}=0 u_{n-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1} \cdots u_{1}, & 2 \leqslant i \leqslant n-1, \\
u^{c_{j}}=0 u_{n-1} \cdots u_{j+1} \bar{u}_{j} \bar{u}_{j-1} \cdots \bar{u}_{1}, & 1 \leqslant j \leqslant n-1 . \tag{1}
\end{align*}
$$

Thus,

$$
S^{h}=\left\{\left(u^{h_{i}}\right)^{h}: 2 \leqslant i \leqslant n-1\right\} \cup\left\{\left(u^{c_{j}}\right)^{h}: 1 \leqslant j \leqslant n-1\right\},
$$

where

$$
\begin{array}{ll}
\left(u^{h_{i}}\right)^{h}=1 u_{n-1} \cdots u_{i+1} \bar{u}_{i} u_{i-1} \cdots u_{1}, & 2 \leqslant i \leqslant n-1, \\
\left(u^{c_{j}}\right)^{h}=1 u_{n-1} \cdots u_{j+1} \bar{u}_{j} \bar{u}_{j-1} \cdots \bar{u}_{1}, & 1 \leqslant j \leqslant n-1 ; \tag{2}
\end{array}
$$

and

$$
S^{c}=\left\{\left(u^{h_{i}}\right)^{c}: 2 \leqslant i \leqslant n-1\right\} \cup\left\{\left(u^{c_{j}}\right)^{c}: 1 \leqslant j \leqslant n-1\right\},
$$

where

$$
\begin{array}{ll}
\left(u^{h_{i}}\right)^{c}=1 \bar{u}_{n-1} \cdots \bar{u}_{i+1} u_{i} \bar{u}_{i-1} \cdots \bar{u}_{1}, & 2 \leqslant i \leqslant n-1 \tag{3}\\
\left(u^{c_{j}}\right)^{c}=1 \bar{u}_{n-1} \cdots \bar{u}_{j+1} u_{j} u_{j-1} \cdots u_{1}, & 1 \leqslant j \leqslant n-1 .
\end{array}
$$

Since

$$
u^{h}=1 u_{n-1} \cdots u_{2} u_{1} \in R, \quad u^{c}=1 \bar{u}_{n-1} \cdots \bar{u}_{1} \in R
$$

from (2) and (3), it is easy to verify that

$$
S^{h}=N_{R}\left(u^{h}\right), \quad S^{c}=N_{R}\left(u^{c}\right) .
$$

Also from (2) and (3), it is easy to see that only two vertices $\left(u^{h_{n-1}}\right)^{h}=$ $\left(u^{c_{n-2}}\right)^{c}$ and $\left(u^{c_{n-2}}\right)^{h}=\left(u^{h_{n-1}}\right)^{c}$ in $S^{h} \cap S^{c}$, which implies

$$
\left|S^{h} \cap S^{c}\right|=2
$$

For example, let $u=00000$ be a vertex in $A Q_{n}$. Then 7 vertices in S are

$$
\begin{gathered}
u^{h_{2}}=00010, \quad u^{h_{3}}=00100, \quad u^{h_{4}}=01000 \\
u^{c_{1}}=00001, \quad u^{c_{2}}=00011, \quad u^{c_{3}}=00111, \quad u^{c_{4}}=01111 .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
S^{h} & =\{10010,10100,11000,10001,10011,10111,11111\}, \\
S^{c} & =\{11101,11011,10111,1110,11100,11000,10000\}
\end{aligned}
$$

and so

$$
S^{h} \cap S^{c}=\{11000,10111\}
$$

Proposition 2.5 For any edge uv in $A Q_{n}(n \geqslant 3)$, there exist p internally disjoint uv-paths of length 3 , where $p=2 n-4$ if $v=u^{c_{i}}(2 \leqslant i \leqslant n-1)$, and $p=2 n-3$ otherwise.

Proof We prove the proposition by induction on $n \geqslant 3$. For $n=3$, it is easy to check that the conclusion holds. Now assume that the proposition holds for $n-1$.
Case $1 u v$ is not an n-dimensional (complement/hypercube) edge. Without loss of generality, assume that $u v$ is an edge in L.

If $v=u^{c_{j}}, 2 \leqslant j \leqslant n-2$, by the induction hypothesis, there exist $2 n-6$ internally disjoint $u v$-paths of length 3 in L. By Proposition $2.3, u^{h}, u^{c}, v^{h}$ and v^{c} are all distinct, then $u u^{h}+u^{h} v^{h}+v^{h} v$ and $u u^{c}+u^{c} v^{c}+v^{c} v$ are two internally disjoint $u v$-paths of length 3 . Thus, there exist $2 n-4$ internally disjoint $u v$-paths of length 3 in $A Q_{n}$.

If $v=u^{c_{1}}$ or $v=u^{h_{j}}, 2 \leqslant j \leqslant n-1$, by the induction hypothesis, there exist $2 n-5$ internally disjoint $u v$-paths of length 3 in L. For the same reason as the above, $u u^{h}+u^{h} v^{h}+v^{h} v$ and $u u^{c}+u^{c} v^{c}+v^{c} v$ are two internally disjoint $u v$-paths of length 3 . Thus, there exist $2 n-3$ internally disjoint $u v$-paths of length 3 in $A Q_{n}$.

If $v=u^{c_{n-1}}$, by the induction hypothesis, there exist $2 n-5$ internally disjoint $u v$-paths of length 3 in L. By Proposition 2.3, $u^{h}=v^{c}$ and $u^{c}=v^{h}$, then $u u^{h}+u^{h} v^{h}+v^{h} v$ and $u u^{c}+u^{c} v^{c}+v^{c} v$ are two internally joint $u v$-paths of length 3 . Thus, there exist $2 n-4$ internally disjoint $u v$-paths of length 3 in $A Q_{n}$.
Case $2 u v$ is an n-dimensional (complement/hypercube) edge. Without loss of generality, assume $u \in L$ and $v \in R$.

If $b \in I_{n-1}$, then $u^{b} v^{b}$ is an n-dimensional edge, and then $u u^{b}+u^{b} v^{b}+v^{b} v$ is a $u v$-path of length 3 . Since $\left|I_{n-1}\right|=2 n-3, u^{b} \in L, v^{b} \in R$, there exist at least $2 n-3$ internally $u v$-paths of length 3 . If $v=u^{h}$, we have $u^{c}=v^{c_{n-1}}$; if $v=u^{c}$, we have $u^{h}=v^{c_{n-1}}$. Since $c_{n-1} \in I_{n-1}$, there exist exactly $2 n-4$ internally $u v$-paths of length 3 in $A Q_{n}$.

By the induction principle, the proposition follows.
Proposition 2.6 Let u and v be any two distinct vertices in $A Q_{n}$. Then $d\left(u^{b}, v^{b}\right)=d(u, v)$ for any $b \in I_{n}$.

Proof Assume $d(u, v)=d_{1}$ and $d\left(u^{b}, v^{b}\right)=d_{2}$. There exist a $u v$-path P_{1} of length d_{1} and a $u^{b} v^{b}$-path P_{2} of length d_{2}. Assume that $P_{1}=\left(u, x_{1}, x_{2}, \ldots\right.$, $\left.x_{d_{1}-1}, v\right)$. Then $P_{1}^{b}=\left(u^{b}, x_{1}^{b}, x_{2}^{b}, \ldots, x_{d_{1}-1}^{b}, v^{b}\right)$ is a $u^{b} v^{b}$-path of length d_{1}. Then we know that $d_{2} \leqslant d_{1}$.

Assume that x and y are two distinct vertices in $A Q_{n}$. If $u=v^{b}$, then $u^{b}=$ v. Assume that $P_{2}=\left(u^{h}, y_{1}, y_{2}, \ldots, y_{d_{2}-1}, v^{h}\right)$. Then $P_{2}^{b}=\left(u, y_{1}^{b}, y_{2}^{b}, \ldots\right.$, $\left.y_{d_{2}-1}^{b}, v\right)$ is a $u v$-path of length d_{2}. Then we know that $d_{1} \leqslant d_{2}$. So $d_{1}=d_{2}$.

The proof is complete.
Proposition 2.7 (Choudum and Sunitha [2]) For any two distinct vertices $u \in L$ and $v \in R$ with distance d in $A Q_{n}(n \geqslant 2), d\left(u, v^{c}\right)=d-1$ or $d\left(u, v^{h}\right)=d-1$.

3 Some lemmas

Let F denote the set of faulty vertices and/or faulty edges in $A Q_{n}, f$ denote the number of faulty vertices in $A Q_{n}, F_{L}$ and F_{R} denote the set of faulty vertices and/or faulty edges in L and R, respectively, and f_{L} and f_{R} denote the number of faulty vertices in L and R, respectively. We have $f=f_{L}+f_{R}$. A subgraph of $A Q_{n}$ is fault-free if it contains no element in F.

Lemma 3.1 (Hsu, Chiang, Tan and Hsu [7]) $A Q_{n}(n \geqslant 2)$ is $(2 n-4)$-fault hamiltonian connected for $n \neq 3$, and $A Q_{3}$ is 1 -fault hamiltonian connected.

Lemma 3.2 (Wang, Ma and $\mathrm{Xu}[18]) A Q_{n}$ is $(2 n-3)$-fault-tolerant pancyclic for $n \geqslant 4$, and $A Q_{3}$ is 2 -fault-tolerant pancyclic.

Lemma 3.3 (Hsu, Chiang, Tan and Hsu [7]) For any four distinct vertices u, v, x, y in $A Q_{n}(n \geqslant 2)$, there exist a ux-path P_{1} and a vy-path P_{2} such that P_{1} and P_{2} are internally disjoint and $P_{1} \cup P_{2}$ contains all vertices of $A Q_{n}$.

Lemma 3.4 (Hsu, Lai, Tsai [8]) For any two distinct vertices u and v with distance $d \geqslant 2$ in $A Q_{n}(n \geqslant 3)$, there exist at least two internally disjoint uv-paths of length l for every l with $d \leqslant l \leqslant 2^{n-1}$ in $A Q_{n}$.

Lemma 3.5 In $A Q_{n}(n \geqslant 3)$, if $|F| \leqslant 2 n-5$, then for any two fault-free vertices $u \in L$ and $v \in R$ with $d(u, v)=1$, there exist two fault-free uv-paths of every length 3 and 4 , respectively.

Proof Let $u \in L$ and $v \in R$ with $d(u, v)=1$. Since $|F| \leqslant 2 n-5$, by Proposition 2.5, there exists a fault-free $u v$-path of length 3 in $A Q_{n}$.

We now show that there exists a fault-free uv-path of length 4 in $A Q_{n}$. Without loss of generality, assume that $\left|F_{L}\right| \leqslant\left|F_{R}\right|$ and $v=u^{h}$. Let $S=$ $N_{L}(u)$. Then $S^{h}=N_{R}(v)$ by Proposition 2.4, that is,

$$
S=N_{L}(u)=\left\{u^{h_{i}}: 2 \leqslant i \leqslant n-1\right\} \cup\left\{u^{c_{j}}: 1 \leqslant j \leqslant n-1\right\},
$$

where $u^{h_{i}}$ and $u^{c_{j}}$ are defined in (1). By the proof of Proposition 2.4, $\left(u^{h_{n-1}}\right)^{h}=\left(u^{c_{n-2}}\right)^{c}$ and $\left(u^{c_{n-2}}\right)^{h}=\left(u^{h_{n-1}}\right)^{c}$ are only two vertices in $S^{h} \cap S^{c}$. Let $T=S-\left\{u^{c_{n-2}}\right\}$. Then $T^{h} \cap T^{c}=\emptyset$.

For the sake of simplicity, let $T=\left\{x_{1}, x_{2}, \ldots, x_{2 n-4}\right\}$, where, $x_{1}=u^{c_{n-1}}$. Clearly, $P_{1}=\left(u, x_{1}, v\right)$ is a $u v$-path of length 2 in $A Q_{n}$. By Proposition 2.2, for each $i=2,3, \ldots, 2 n-4, x_{i}^{h}$ and x_{i}^{c} are joined by an $(n-1)$-dimensional complement edge, and so $P_{i}=\left(u, x_{i}, x_{i}^{c}, x_{i}^{h}, v\right)$ is a $u v$-path of length 4 in $A Q_{n}$. Since $T \subset L, T^{h}, T^{c} \subset R$, and $T^{h} \cap T^{c}=\emptyset$, the paths $P_{1}, P_{2}, \ldots, P_{2 n-4}$ are internally disjoint $u v$-paths, at least one of them is fault-free since $|F| \leqslant$ $2 n-5$.

If P_{i} is fault-free for some i with $2 \leqslant i \leqslant 2 n-4$, we are done. Otherwise, P_{1} is fault-free since $|F| \leqslant 2 n-5$.

Since $\left|F_{L}\right| \leqslant\left|F_{R}\right|$ by our hypothesis, $\left|F_{L}\right| \leqslant n-3 \leqslant 2(n-1)-4$ for $n \geqslant 3$. By Proposition 2.5 , there exists a fault-free $u x_{1}$-path P_{L} of length 3 in L. Clearly, $x_{1} v \notin F$ since $x_{1} v$ is not in P_{i} for each $i=2,3, \ldots, 2 n-4$. Then $P_{L}+x_{1} v$ is a fault-free $u v$-path of length 4 .

The lemma follows.
Lemma 3.6 If $A Q_{3}$ contains only one faulty element that is a vertex, then for any two distinct fault-free vertices u and v, there exists a fault-free uv-path of length l for every l with $2 \leqslant l \leqslant 6$.

Proof Since $A Q_{3}$ is vertex-symmetric, we can suppose that $w=000$ is a faulty vertex (see Fig. 2). Let u and v be two distinct vertices in $A Q_{3}-w$. We need to prove that $A Q_{3}-w$ contains a $u v$-path of length l for every l with $2 \leqslant l \leqslant 6$. Toward that end, assume that $L=A Q_{2}^{0}$ and $R=A Q_{2}^{1}$.

Fig. $2 A Q_{3}-\{000\}$
Case 1 Both u and v in $L-w$.
It is easy to see from Fig. 2 that $L-w$ contains a $u v$-path of length 2 since $L-w$ is a triangle. Since $u v$ is an edge in L, by Proposition 2.1, $u^{h} v^{h}$ is
an edge in R. Thus, $u u^{h}+u^{h} v^{h}+v^{h} v$ is a $u v$-path of length 3 in $A Q_{3}-w$. Let x be the vertex in $L-w$ different from u and v. For $4 \leqslant l \leqslant 6$, let $l_{1}=l-3$. Then $1 \leqslant l_{1} \leqslant 3$. Similarly, R contains a $u^{h} x^{h}$-path P_{R} of length l_{1}, and so the path $u u^{h}+P_{R}+x^{h} x+x v$ is a $u v$-path of length l in $A Q_{3}-w$.
Case 2 Both u and v in R.
For $2 \leqslant l \leqslant 3, R$ contains a $u v$-path of length l since R is a complete graph of order 4 . For $4 \leqslant l \leqslant 5$, let $l_{1}=l-3$. Then $1 \leqslant l_{1} \leqslant 2$. Assume that x and y are two other vertices in R different from u and v. Then at least two vertices in $\left\{v^{h}, v^{c}, x^{h}, x^{c}\right\}$ or $\left\{v^{h}, v^{c}, y^{h}, y^{c}\right\}$ are fault-free. Without loss of generality, assume that v^{h} and x^{h} are fault-free. Since L contains a $v^{h} x^{h}$-path P_{L} of length l_{1}, the path $u x+x x^{h}+P_{L}+v^{h} v$ is fault-free $u v$-path of length l, and $u y+y x+x x^{h}+P_{L}+v^{h} v$ is a fault-free $u v$-path of length 6 when the length of P_{L} is 2 .
Case $3 u \in L-w$ and $v \in R$.
For $2 \leqslant l \leqslant 4$, let $l_{1}=l-1$. Then $1 \leqslant l_{1} \leqslant 3$. Since at least one of u^{h} and u^{c} is not v, we can, without loss of generality, assume $u^{h} \neq v$. Since R contains a $u^{h} v$-path P_{R} of length $l_{1}, u u^{h}+P_{R}$ is a $u v$-path of length l in $A Q_{3}-w$. Let x and y be vertices in $L-w$ different from u and, without loss of generality, assume $x^{h} \neq v$. For $5 \leqslant l \leqslant 6$, let $l_{1}=l-3$. Then $2 \leqslant l_{1} \leqslant 3$. Since R contains an $x^{h} v$-path P_{R}^{\prime} of length $l_{1}, u y+y x+x x^{h}+P_{R}^{\prime}$ is a $u v$-path of length l in $A Q_{3}-w$.

The proof of the lemma is complete.
Lemma 3.7 Let w be any vertex in $A Q_{3}$. Then for any four distinct vertices u, v, x, y in $A Q_{3}-w$, there exist two disjoint either ux-path P_{1} and vy-path P_{2} or uy-path P_{3} and vx-path P_{4}, such that they contains all vertices of $A Q_{3}-w$.
Proof Since $A Q_{3}$ is vertex-symmetric, we can suppose that $w=000$ is a faulty vertex (see Fig. 2). $L-w$ is a completed graph of 3 vertices and R is a completed graph of 4 vertices.
Case $1 u, v, x, y \in R$. Without loss of generality, assume that v^{h} or y^{h} is fault. We know that $v y$ is an edge in R. And in $L-w$, there exists a hamiltonian path P_{L} between u^{h} and x^{h}. Let $P_{1}=u u^{h}+P_{L}+x^{h} x$ and $P_{2}=v y$. Then the lemma holds.
Case 2 Three of u, v, x, y are in R, one is in $L-w$. Without loss of generality, assume that $u, v, x \in R$ and $y \in L-w$. Let z_{1} and z_{2} be two vertices in $L-w$ different from y. Then one of z_{1}^{h} and z_{2}^{h} is not x, assume $z_{1}^{h} \neq x$.

If $z_{1}^{h}=u$, then in $R-\{u\}$ there exists a $v x$-path P_{R} of length 2. Let $P_{3}=u z_{2}+z_{2} z_{1}+z_{1} u$ and $P_{4}=P_{R}$. Then the lemma holds.

If $z_{1}^{h}=v$, then in $R-\{v\}$ there exists a $u x$-path P_{R}^{\prime} of length 2. Let $P_{1}=y z_{2}+z_{2} z_{1}+z_{1} v$ and $P_{4}=P_{R}^{\prime}$. Then the lemma holds.

If $z_{1}^{h} \neq u$ and $z_{1}^{h} \neq v, z_{1}^{h}$ is incident with v in R. Let $P_{1}=u x$ and $P_{2}=v z_{1}^{h}+z_{1}^{h} z_{1}+z_{1} z_{2}+z_{2} y$. Then the lemma holds.
Case 3 Two of u, v, x, y are in R, and two are in $L-w$.
Subcase 3.1 Both u and x are in the same part of R or $L-w$, and both v and y are in the other part. Without loss of generality, assume $u, x \in$
$R, v, y \in L-w$. Since R and $L-w$ are completed graphs, there exist a hamiltonian $u x$-path P_{R} in R and a hamiltonian $v y$-path P_{L} in $L-w$. Let $P_{1}=P_{R}$ and $P_{2}=P_{L}$. Then the lemma holds.
Subcase 3.2 Both u and y are in the same part of R or $L-w$, and both v and x are in the other part. Without loss of generality, assume $u, y \in$ $R, v, x \in L-w$. Since R and $L-w$ are completed graphs, there exist a hamiltonian $u y$-path P_{R} in R and a hamiltonian $v x$-path P_{L} in $L-w$. Let $P_{3}=P_{R}$ and $P_{4}=P_{L}$. Then the lemma holds.
Subcase 3.3 Both u and v are in the same part of R or $L-w$, and both x and y are in the other part. Without loss of generality, assume $u, v \in$ $L-w, x, y \in R$. Let z be a vertex in $L-w$ different from u and v. Then one of $u z$ and $v z$ is not a 2-dimensional complement edge. Assume that $u z$ is not a 2-dimensional complement edge. Then $u^{h}, z^{h}, u^{c}, z^{h}$ are 4 distinct vertices.

Assume that either u^{h} or u^{c} is in $\{x, y\}$, without loss of generality, say $u^{h}=x$. Since $u^{h}, z^{h}, u^{c}, z^{h}$ are 4 distinct vertices, one of z^{h} and z^{c} is not x and y, say $z^{h} \neq y$. Since $R-\{x\}$ is a completed graph, there exists a $z^{h} y$-path P_{R} of length 2 in $R-\{x\}$. Let $P_{1}=u x$ and $P_{2}=v z+z z^{h}+P_{R}$. Then the lemma holds.

Assume that neither u^{h} nor u^{c} is in $\{x, y\}$ below. Since $u^{h}, z^{h}, u^{c}, z^{h}$ are 4 distinct vertices, $\left\{z^{h}, z^{c}\right\}=\{x, y\}$, say $z^{h}=x$ and $z^{c}=y$. Since $u^{h} \neq x$, there exists a $u^{h} x$-path P_{R}^{\prime} of length 2 in $R-\{y\}$. Let $P_{1}=u u^{h}+P_{R}^{\prime}$ and $P_{2}=v z+z y$. Then the lemma holds.
Case 4 One of u, v, x, y is in R, three are in $L-w$. Without loss of generality, assume $u, v, x \in L-w$ and $y \in R$. One of v^{h} and v^{c} is not y, say $v^{h} \neq y$. There exists a hamiltonian $u^{h} x$-path P_{R} of length 3 in R. Let $P_{1}=u x$ and $P_{2}=v v^{h}+P_{R}$. Then the lemma holds.

The proof of the lemma is complete.
Lemma 3.8 If $A Q_{n}(n \geqslant 3)$ contains at most $2 n-5$ faulty vertices and no faulty edges, then for any two distinct fault-free vertices u and v with distance d, there exist fault-free uv-paths of length l for each $l=d+2, d+3$.
Proof We prove the lemma by induction on $n \geqslant 3$. The induction basis for $n=3$ holds by Lemma 3.6. Assume that the lemma holds for $n-1$ with $n \geqslant 4$. Without loss of generality, assume that

$$
\left|F_{L}\right|=f_{L} \leqslant\left|F_{R}\right|=f_{R}
$$

Then $f_{L} \leqslant n-3$. Let u and v be any two distinct fault-free vertices with distance d in $A Q_{n}$.
Case $1 \quad$ Both u and v are in $L-F$.
Since

$$
f_{L} \leqslant n-3 \leqslant 2(n-1)-5 \quad(n \geqslant 4)
$$

by the induction hypothesis, there exists a fault-free uv-path of length l for each $l=d+2, d+3$ in L, and so in $A Q_{n}$.
Case 2 Both u and v are in $R-F$.

If $f_{R} \leqslant 2 n-7$, then the conclusion holds by the induction hypothesis. Assume $f_{R} \geqslant 2 n-6$ below. Then $f_{L} \leqslant 1$.
Subcase 2.1 If $u v$ is not an $(n-1)$-dimensional complementary edge, then $u^{h} \neq v^{c}$ and $u^{c} \neq v^{h}$. Since at least one of $\left\{u^{h}, v^{h}\right\}$ and $\left\{u^{c}, v^{c}\right\}$ is fault-free, without loss of generality, assume that $\left\{u^{h}, v^{h}\right\}$ is fault-free.

If $d=1$, then, by Proposition 2.5 , there exists a fault-free $u v$-path of length 3. By Proposition 2.2 and $f_{L} \leqslant 1$, there exists a fault-free $u^{h} v^{h}$-path P_{L} of length 2. Then the path $u u^{h}+P_{L}+v v^{h}$ is a fault-free $u v$-path of length 4. If $d \geqslant 2$, then, since $d\left(u^{h}, v^{h}\right)=d$ and $f_{L} \leqslant 1$, by Lemma 3.4, there exist a fault-free $u^{h} v^{h}$-path P_{L}^{\prime} of length d and a fault-free $u^{h} v^{h}$-path $P_{L}^{\prime \prime}$ of length $d+1$ in L. Then the path $u u^{h}+P_{L}^{\prime}+v^{h} v$ is a fault-free $u v$-path of length $d+2$ and the path $u u^{h}+P_{L}^{\prime \prime}+v^{h} v$ is a fault-free $u v$-path of length $d+3$.
Subcase 2.2 If $u v$ is an $(n-1)$-dimensional complementary edge, then $u^{h}=v^{c}$ and $u^{c}=v^{h}$.

Since $|F| \leqslant 2 n-5$, there exists a fault-free $u v$-path of length 3 . We assume that this path is $u u^{b} v^{b} v$, where $b \in I_{n}$. Then $u^{b} v^{b}$ is an $(n-1)$-dimensional complementary edge.

If u^{h} and v^{h} are fault-free, then, by Lemma 3.4 and $\left|F_{L}\right| \leqslant 1$, there exists a fault-free $u^{h} v^{h}$-path P_{L} of length 2 . Then the path $u u^{h}+P_{L}+v v^{h}$ is a fault-free $u v$-path of length 4 . We assume that one of u^{h} and v^{h} is faulty below. Then we know that $u^{b} \in R$ and $v^{b} \in R$. Let $x=u^{b}$ and $y=v^{b}$. Since $x y$ is an $(n-1)$-dimensional edge, we know that $x^{h}=y^{c}$. Since one of u^{h} and v^{h} is faulty and $f_{R} \leqslant 1$, we know that x^{h} is fault-free. Then $u x x^{h} y v$ is a fault-free $u v$-path of length 4 .
Case $3 \quad u \in L-F$ and $v \in R-F$.
By Lemma 3.5, the lemma holds for $d=1$. Assume $d \geqslant 2$ below. By Proposition 2.7, $d\left(u, v^{h}\right)=d-1$ or $d\left(u, v^{c}\right)=d-1$. Without loss of generality, assume $d\left(u, v^{h}\right)=d-1$.

Subcase $3.1 \quad f_{R} \leqslant 2 n-7$.

When v^{h} or u^{h} is fault-free, without loss of generality, assume that v^{h} is fault-free. By the induction hypothesis, in L there exist fault-free $u v^{h}$-paths P_{L} of length $d+1$ and P_{L}^{\prime} of length $d+2$. Then $P_{L}+v^{h} v$ is a fault-free $u v$-path of length $d+2$ and $P_{L}^{\prime}+v^{h} v$ is a fault-free $u v$-path of length $d+3$. Assume that v^{h} and u^{h} are faulty below.

Let

$$
F=\left\{v^{h}, x_{1}, x_{2}, \ldots, x_{f_{L}-1}, u^{h}, y_{1}, y_{2}, \ldots, y_{f_{R}-1}\right\}
$$

where $x_{i} \in L, 1 \leqslant i \leqslant f_{L}-1$ and $y_{i} \in R, 1 \leqslant i \leqslant f_{R}-1$. Let

$$
\begin{gathered}
S=\left\{x_{i}: 1 \leqslant i \leqslant f_{L}-1\right\}, \quad T=\left\{y_{i}: \quad 1 \leqslant i \leqslant f_{R}-1\right\} \\
L^{\prime}=L-S-T^{h}
\end{gathered}
$$

Since

$$
|S|+|T|=f_{L}+f_{R}-2 \leqslant 2 n-7
$$

by the induction hypothesis, there exist $u v^{h}$-path T_{L} of length $d+1$ and T_{L}^{\prime} of length $d+2$ in L^{\prime}. We use x to denote the vertex incident with v^{h} in T_{L} and
use y to denote the vertex incident with v^{h} in T_{L}^{\prime}. Then $T_{L}(u, x)+x x^{h}+x^{h} v$ is a $u v$-path of length $d+2$ and $T_{L}^{\prime}(u, y)+y y^{h}+y^{h} v$ is a $u v$-path of length $d+3$. Since

$$
L^{\prime} \cap\left(S+T^{h}\right)=\emptyset,
$$

we know that $T_{L}(u, x), T_{L}^{\prime}(u, y), x^{h}$ and y^{h} are fault-free. So $T_{L}(u, x)+$ $x x^{h}+x^{h} v$ and $T_{L}^{\prime}(u, y)+y y^{h}+y^{h} v$ are fault-free.
Subcase $3.2 f_{R} \geqslant 2 n-6$, then $f_{L} \leqslant 1$. In R, there exist $2 n-3$ vertices incident with v. Since $|F| \leqslant 2 n-5$, there exists a fault-free vertex x incident with v in R, such that $x^{h} \neq u$, and x^{h} is fault-free. Since

$$
d\left(u, v^{h}\right)=d-1
$$

we know that

$$
d-2 \leqslant d\left(u, x^{h}\right) \leqslant d
$$

By Lemma 3.4, Proposition 2.2 and the induction hypothesis, there exist fault-free $u x^{h}$-paths P_{L} of length $d+1$ and P_{L}^{\prime} of length $d+2$. Then $P_{L}+$ $x^{h} x+x v$ is a fault-free $u v$-path of length $d+2$ and $P_{L}^{\prime}+x^{h} x+x v$ is a fault-free $u v$-path of length $d+3$.

The lemma follows.

4 Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. Start with the following lemma.

Lemma 4.1 If Theorem 1.1 holds for any subset $F \subset V\left(A Q_{n}\right)$ with $|F|=$ $2 n-5$, then Theorem 1.1 holds also for
(i) any subset $F^{\prime} \subset V\left(A Q_{n}\right)$ with $\left|F^{\prime}\right| \leqslant 2 n-5$, and
(ii) any subset $F^{\prime} \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ with $\left|F^{\prime}\right| \leqslant 2 n-5$.

Proof (i) Let $m=2 n-5-|F|$. Then $0 \leqslant m \leqslant 2 n-5$. We prove the lemma by induction on m. For $m=0$, i.e., $|F|=2 n-5$ for any subset $F \subset V\left(A Q_{n}\right)$, the induction basis holds by our hypothesis. Assume that the lemma holds for any m_{0} with $0 \leqslant m_{0}<2 n-5$, that is, Theorem 1.1 holds for any subset $F^{\prime} \subset V\left(A Q_{n}\right)$ with $\left|F^{\prime}\right|=2 n-5-m_{0}$.

Let $m=m_{0}+1$, and F be any subset of $V\left(A Q_{n}\right)$ with

$$
|F|=2 n-6-m_{0}<2 n-5
$$

Let u and v be arbitrary two distinct vertices in $A Q_{n}-F$ with distance $d=d_{A Q_{n}}(u, v)$, and let x be a vertex in $A Q_{n}-F$ different from u and v and $F^{\prime}=F \cup\{x\}$. Then

$$
\left|F^{\prime}\right|=2 n-5-m_{0} \leqslant 2 n-5
$$

that is,

$$
m_{0}=2 n-5-\left|F^{\prime}\right| \geqslant 0
$$

By the induction hypothesis, for every integer l with

$$
d+2 \leqslant l \leqslant 2^{n}-\left|F^{\prime}\right|-1
$$

there exists a $u v$-path of length l in $A Q_{n}-F^{\prime}$, so in $A Q_{n}-F$.
(ii) We now prove the second assertion by induction on k, where k is the number of faulty edges in any subset

$$
F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right) \quad(|F| \leqslant 2 n-5)
$$

The induction basis for $k=0$ holds by (i). Assume that the lemma holds for k with $0 \leqslant k<2 n-5$.

Assume that

$$
F \subset V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right) \quad\left(|F| \leqslant 2 n-5,\left|F \cap E\left(A Q_{n}\right)\right|=k+1\right)
$$

Let u and v be arbitrary two distinct vertices in $A Q_{n}-F$ with distance d in $A Q_{n}$. When $u v \in F$, let $F^{\prime}=F-\{u v\}$. Then $\left|F^{\prime}\right| \leqslant 2 n-6$ and F^{\prime} includes k edges. By the induction hypothesis, for any l with

$$
d+2 \leqslant l \leqslant 2^{n}-f-1
$$

there exists a $u v$-path P of length l in $A Q_{n}-F^{\prime}$. Clearly, P does not contain the edge $u v$. Thus, P is a $u v$-path P of length l in $A Q_{n}-F$.

Assume that $u v$ is fault-free below. Let $x y$ be an edge in F. Since $x y$ is not $u v$, we can assume that $x \neq u$ and $x \neq v$. Let

$$
F^{\prime \prime}=F-\{u v\} \cup\{x\} .
$$

Then

$$
\left|F^{\prime \prime}\right|=|F| \leqslant 2 n-5
$$

and $F^{\prime \prime}$ contains at most k edges. By the induction hypothesis, for every integer l with

$$
d+2 \leqslant l \leqslant 2^{n}-f-2
$$

there exists a $u v$-path P of length l in $A Q_{n}-F^{\prime \prime}$. Clearly, P does not contain x, and so P is in $A Q_{n}-F$. For $l=2^{n}-f-1$, by Lemma 3.1 and $|F| \leqslant 2 n-5$, there exists a fault-free $u v$-path of length l.

The proof of the lemma is complete.
We now give the proof of Theorem 1.1.
Proof of Theorem 1.1 By Lemma 4.1, we only need to prove the theorem when $|F|=2 n-5$ and all faulty elements are vertices.

Now, we prove the theorem by induction on $n \geqslant 3$. The induction basis for $n=3$ holds by Lemma 3.6. Assume that the theorem holds for any k
with $3 \leqslant k<n$. Let u and v be two distinct vertices in $A Q_{n}-F$. Since all faulty elements are vertices, we have

$$
|F|=f=f_{L}+f_{R}
$$

Without loss of generality, assume $f_{L} \leqslant f_{R}$. For $l=d+2$ and $d+3$, by Lemma 3.8, we are done. For $l=2^{n}-f-1$, by Lemma 3.1, we are done. Assume that

$$
d+4 \leqslant l \leqslant 2^{n}-f-2
$$

below.
Case $1 \quad f_{R} \leqslant 2 n-7$. In this case, n cannot be 4 .
Subcase 1.1 Both u and v are in either $L-F$ or $R-F$. Without loss of generality, assume $u, v \in L-F$.

For

$$
d+2 \leqslant l \leqslant 2^{n-1}-f_{L}-1,
$$

by the induction hypothesis, there exists a $u v$-path of length l in $L-F$. In particular, we use T_{L} to denote a $u v$-path of length $2^{n-1}-f_{L}-1$ and use T_{L}^{\prime} to denote a $u v$-path of length $2^{n-1}-f_{L}-2$. The path T_{L}^{\prime} (resp. T_{L}) contains $2^{n-1}-f_{L}-1$ (resp. $2^{n-1}-f_{L}$) vertices. We have

$$
\frac{2^{n-1}-f_{L}-1}{2} \geqslant 2 n-5-f_{L}+1=f_{R}+1 \quad(n \geqslant 5)
$$

and so there exists an edge $x y$ in T_{L}^{\prime} (resp. T_{L}) with $\left\{x x^{h}, y y^{h}, x^{h} y^{h}\right\}$ that are fault-free. Without loss of generality, assume that x is closer to u than y.

For $l=2^{n-1}-f_{L}$, the path $T_{L}^{\prime}(u, x)+x x^{h}+x^{h} y^{h}+y^{h} y+T_{L}^{\prime}(y, v)$ is a fault-free $u v$-path of length l.

For $l=2^{n-1}-f_{L}+1$, the path $T_{L}(u, x)+x x^{h}+x^{h} y^{h}+y^{h} y+T_{L}(y, v)$ is a fault-free $u v$-path of length l.

For

$$
2^{n-1}-f_{L}+2 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f_{L}+1
$$

Then

$$
3 \leqslant l_{1} \leqslant 2^{n-1}-f_{R}-1
$$

By the induction hypothesis, there exists an $x^{h} y^{h}$-path P_{R} of length l_{1} in $R-F$. Then the path $T_{L}^{\prime}(u, x)+x x^{h}+P_{R}+y^{h} y+T_{L}^{\prime}(y, v)$ is a fault-free $u v$-path of length $l\left(=l_{1}+2+2^{n-1}-f_{L}-2-1\right.$, see Fig. 3 (a)).
Subcase $1.2 u \in L-F$ and $v \in R-F$. By Proposition 2.7, without loss of generality, we can assume that $d\left(u, v^{h}\right)=d-1$.

For

$$
d+4 \leqslant l \leqslant 2^{n-1}-f_{L}+1
$$

let $l_{1}=l-2$. Then

$$
d+2 \leqslant l_{1} \leqslant 2^{n-1}-f_{L}-1
$$

Fig. 3 Illustrations for Case 1
Let $S=N_{R}(v)-\left\{u^{h}\right\}$. Since $\left|N_{R}(v)\right|=2 n-3$, we have $|S| \geqslant 2 n-4$. Since $|F|=2 n-5$, there exists a vertex x in S such that x and x^{h} are faultfree. Since $d\left(u, v^{h}\right)=d-1, d\left(u, x^{h}\right) \leqslant d$. By the induction hypothesis, there exists a fault-free $u x^{h}$-path P_{L} of length l_{1}. Then the path $P_{L}+x^{h} x+x v$ is a fault-free $u v$-path of length $l\left(=l_{1}+2\right.$, see Fig. 3 (b)).

Let T_{L}^{\prime} be a $u x^{h}$-path of length $2^{n-1}-f_{L}-2$ in L.
For

$$
2^{n-1}-f_{L}+2 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f_{L}+1
$$

Then

$$
3 \leqslant l_{1} \leqslant 2^{n-1}-f_{R}-1
$$

By the induction hypothesis, there exists a fault-free $v x$-path P_{R} of length l_{1} in R. Then the path $T_{L}^{\prime}+x^{h} x+P_{R}$ is a fault-free $u v$-path of length $l\left(=l_{1}+2^{n-1}-f_{L}-2+1\right.$, see Fig. $\left.3(\mathrm{c})\right)$.
Case $2 f_{R}=2 n-6$. In this case, $f_{L}=1$.
Subcase 2.1 Both u and v are in $L-F$.
In this subcase, we have

$$
\frac{2^{n-1}-f_{L}-1}{2} \geqslant 2 n-5-f_{L}+1=f_{R}+1
$$

For the same reason as Subcase 1.1, for

$$
d+4 \leqslant l \leqslant 2^{n-1}-f_{L}+1
$$

there exists a fault-free $u v$-path of length l in $A Q_{n}-F$.
When $n \geqslant 5$, for

$$
2^{n-1}-f_{R}+5 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f_{R}-2, \quad l_{2}=l-2^{n-1}+f_{R}-1
$$

Then

$$
3 \leqslant l_{1} \leqslant 2^{n-1}-f_{L}-4, \quad 4 \leqslant l_{2} \leqslant 2^{n-1}-f_{L}-3
$$

Let $S=N_{L}(v)-\{u\}$. Since $\left|N_{L}(v)\right|=2 n-3$, we have $|S| \geqslant 2 n-4$. Since $|F|=2 n-5$, there exists a vertex x in S such that x and x^{h} are fault-free. If u^{h} is fault-free then, since $u^{h} \neq x^{h}$, there exists an $x^{h} u^{h}$-path T_{R} of length $2^{n-1}-f_{R}-1$ in $R-F$ by Lemma 3.1. Since

$$
\left|F_{L}+\{u\}\right|=2 \leqslant 2 n-7 \quad(n \geqslant 5)
$$

by the induction hypothesis, there exists a $v x$-path P of length l_{2} in $L-$ $F-\{u\}$. The path $u u^{h}+T_{R}+x x^{h}+P$ is a fault-free $u v$-path of length $l\left(=1+2^{n-1}-f_{R}-1+1+l_{2}\right.$, see Fig. 4 (a)).

Fig. 4 Illustrations for Subcase 2.1
Assume that u^{h} is a faulty vertex below.
Let $T=N_{L}(u)-\{v, x\}$. Since $\left|N_{L}(u)\right|=2 n-3$, we have $|T| \geqslant 2 n-5$. Since $|F|=2 n-5$ and u^{h} is faulty, there exists a vertex y in T such that y and y^{h} are fault-free. By Lemma 3.1, there exists an $x^{h} y^{h}$-path T_{R}^{\prime} of length $2^{n-1}-f_{R}-1$ in $R-F$. Since

$$
\left|F_{L}+\{v, x\}\right|=3 \leqslant 2 n-7 \quad(n \geqslant 5),
$$

by the induction hypothesis, there exists a $u y$-path P^{\prime} of length l_{1} in $L-F-$ $\{v, x\}$. The path $P^{\prime}+y y^{h}+T_{R}^{\prime}+x^{h} x+x v$ is a fault-free $u v$-path of length $l\left(=l_{1}+1+2^{n-1}-f_{R}-1+2\right.$, see Fig. $\left.4(\mathrm{~b})\right)$.

Since

$$
\left(2^{n-1}-f_{R}+5\right)-\left(2^{n-1}-f_{L}+1\right)=f_{L}-f_{R}+4=11-2 n \leqslant 1 \quad(n \geqslant 5)
$$

we finish the proof of the theorem for this situation.
When $n=4$, for

$$
2^{n-1}-f_{L}+2 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f_{L}
$$

Then $2 \leqslant l_{1} \leqslant 4$. Let w be a faulty vertex in L.
Next, we prove that there exists a fault-free path P_{R} of length l_{1} with end-vertices x and y, such that there exists a vertex x^{\prime} incident with x and a vertex y^{\prime} incident with y in R, and $x^{\prime}, y^{\prime} \notin\{u, v, w\}, x^{\prime} \neq y^{\prime}$.

Assume that $A Q_{2}^{10}=L^{\prime}$ and $A Q_{2}^{11}=R^{\prime}$. Let w_{1}, x_{1}, y_{1} and z_{1} be four vertices in L^{\prime}, and assume that

$$
w_{2}=w_{1}^{h_{2}}, \quad x_{2}=x_{1}^{h_{2}}, \quad y_{2}=y_{1}^{h_{2}}, \quad z_{2}=z_{1}^{h_{2}}
$$

Then $w_{2}, x_{2}, y_{2}, z_{2} \in R^{\prime}$. Since there exist exactly two faulty vertices in R, two of $\left\{w_{1}, w_{2}\right\},\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{2}\right\},\left\{z_{1}, z_{2}\right\}$ are fault-free. Without loss of generality, we assume that both $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$ are fault-free.

And we know that two of $w_{1}, w_{2}, z_{1}, z_{2}$ are fault-free. We only need to consider two cases: a) both w_{1} and z_{1} are fault-free (see Fig. 5 (a)); b) both z_{1} and z_{2} are fault-free (see Fig. 5 (b)) (We omit some edges in the figure since they are not needed in our proof). The other cases can be considered similarly.

(a)

(b)

Fig. 5 Illustrations for the situation $n=4$ of Subcase 2.1
Since $x_{1} y_{1}$ is not a 2-dimensional complement edge and $x_{1}^{h}, x_{1}^{c}, y_{1}^{h}, y_{1}^{c}$ are 4 distinct vertices, any one of $x_{1}^{h}, x_{1}^{c}, y_{1}^{h}, y_{1}^{c}$ is not in $\{u, v, w\}$. Without loss of generality, assume that x_{1}^{h} is not in $\{u, v, w\}$.

In Fig. 5 (a), we enumerate some paths of length 2 with the end-vertex x_{1} : $x_{1} z_{1} y_{1}, x_{1} y_{1} w_{1}, x_{1} y_{1} z_{1}, x_{1} y_{1} y_{2}$. Since $y_{1}, w_{1}, z_{1}, y_{2}$ are all distinct, one of $y_{1}^{h}, z_{1}^{h}, w_{1}^{h}, y_{2}^{h}$ is not in $\{u, v, w\}$, say y^{\prime}. We use x^{\prime} to denote x_{1}^{h}.

Similarly, for the length 3 or 4 and the situation in Fig. 5 (b), there exists a fault-free path P_{R} of length l_{1} end with x and y, such that there exists a vertex x^{\prime} incident with x and a vertex y^{\prime} incident with y in R, and $x^{\prime}, y^{\prime} \notin\{u, v, w\}, x^{\prime} \neq y^{\prime}$.

Since $L \cong A Q_{3}$, by Lemma 3.7, there exist $u x^{\prime}$-path P_{1} and $v y^{\prime}$-path P_{2} such that P_{1} and P_{2} are disjoint and $P_{1} \cup P_{2}$ contains all vertices of $L-\{w\}$. Then path $P_{1}+x^{\prime} x+P_{R}+y y^{\prime}+P_{2}$ is a fault-free $u v$-path of length $l=l_{1}+2^{n-1}-f_{L}$.
Subcase 2.2 Both u and v are in $R-F$.
In this case, either u^{h} or u^{c} is fault-free. Without loss of generality, assume that u^{h} is fault-free. Let $S=N_{R}(v)-\{u\}$. Then $|S| \geqslant 2 n-4$. Since $|F|=2 n-5$, there exists a vertex x in S such that both x and x^{h} are fault-free. We know that

$$
d-1 \leqslant d\left(u^{h}, x^{h}\right) \leqslant d+1
$$

For $l=d+4$ or $d+5$, let $l_{1}=l-3$. Then $l_{1}=d+1$ or $d+2$. Since $f_{L}=1$, by Lemma 3.4, Proposition 2.2, and the induction hypothesis, there
exists a fault-free $u^{h} x^{h}$-path P_{L} of length l_{1}. Then $u u^{h}+P_{L}+x^{h} x+x v$ is a fault-free $u v$-path of length $l=l_{1}+3$.

For

$$
d+6 \leqslant l \leqslant 2^{n-1}-f_{L}+2,
$$

let $l_{1}=l-3$. Then

$$
d+3 \leqslant l_{1} \leqslant 2^{n-1}-f_{L}-1
$$

By the induction hypothesis, there exists a fault-free $u^{h} x^{h}$-path P_{L}^{\prime} of length l_{1}. Then $u u^{h}+P_{L}^{\prime}+x^{h} x+x v$ is a fault-free $u v$-path of length $l=l_{1}+3$.

For

$$
2^{n-1}-f_{R}+3 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f_{R}
$$

Then

$$
3 \leqslant l_{1} \leqslant 2^{n-1}-f_{L}-2
$$

When $n \geqslant 5$, by Lemma 3.1, there exists a $u v$-path T_{R} of length $2^{n-1}-$ $f_{R}-1$ in $R-F$. Since $f_{L}=1$, there exists an edge $x y$ in T_{R} such that x^{h} and y^{h} are fault-free. By the induction hypothesis and $d\left(x^{h}, y^{h}\right)=1$, there exists a fault-free $x^{h} y^{h}$-path P_{L}^{\prime} of length l_{1}. Without loss of generality, assume that x is closer to u than y. Then $T_{R}(u, x)+x x^{h}+P_{L}^{\prime}+y^{h} y+T_{R}(y, v)$ is a fault-free $u v$-path of length $l=\left(l_{1}+2^{n-1}-f_{R}\right)$.

When $n=4$, we have $f_{R}=2$ and $f_{L}=1$. By Lemma 3.2, there exists a hamiltonian cycle of length 6 in $R-F$. Then there exist two internally disjoint fault-free $u v$-path P_{1} and P_{2} in R, and then $\varepsilon\left(P_{1}\right)+\varepsilon\left(P_{2}\right)=6$. Without loss of generality, assume that $\varepsilon\left(P_{1}\right) \leqslant \varepsilon\left(P_{2}\right)$. Then $1 \leqslant \varepsilon\left(P_{1}\right) \leqslant 3$.
a) When $\varepsilon\left(P_{1}\right)=1, P_{2}$ is a hamiltonian $u v$-path of $R-F$. Since $f_{L} \leqslant 1$, there exists an edge $x^{\prime} y^{\prime}$ in P_{2} such that $x^{\prime h}$ and $y^{\prime h}$ are fault-free. Without loss of generality, assume that x is closer to u than y. Then let $P_{3}=P_{2}\left(u, x^{\prime}\right)$ and $P_{4}=P_{2}(v, y)$.
b) When $\varepsilon\left(P_{1}\right)=2$, let

$$
P_{1}=u x_{1}+x_{1} v, \quad P_{2}=u y_{1}+y_{1} y_{2}+y_{2} y_{3}+y_{3} v .
$$

Since $f_{L}=1, x_{1}^{h}$ or x_{1}^{c} is fault-free. Without loss of generality, assume that x_{1}^{h} is fault-free. And we know that y_{1}^{h} or y_{3}^{h} is fault-free. Without loss of generality, assume that y_{1}^{h} is fault-free. Let

$$
x^{\prime}=x_{1}, \quad y^{\prime}=y_{1}, \quad P_{3}=u x_{1}, \quad P_{4}=v y_{3}+y_{3} y_{2}+y_{2} y_{1}
$$

c) When $\varepsilon\left(P_{1}\right)=3$, let

$$
P_{1}=u x_{1}+x_{1} x_{2}+x_{2} v, \quad P_{2}=u y_{1}+y_{1} y_{2}+y_{2} v
$$

Since $f_{L}=1,\left\{x_{1}^{h}, y_{2}^{h}\right\}$ or $\left\{x_{2}^{h}, y_{1}^{h}\right\}$ is fault-free. Without loss of generality, assume that $\left\{x_{2}^{h}, y_{1}^{h}\right\}$ is fault-free. Let

$$
x^{\prime}=x_{2}, \quad y^{\prime}=y_{1}, \quad P_{3}=u x_{1}+x_{1} x_{2}, \quad P_{4}=v y_{2}+y_{2} y_{1} .
$$

Since $R \cong A Q_{3}$, by Lemma 3.6, there exists a fault-free $x^{\prime h} y^{\prime h}$-path P_{L}^{\prime} of length l_{1}. Then the path $P_{3}+x^{\prime} x^{\prime h}+P_{L}^{\prime}+y^{\prime h} y^{\prime}+P_{4}$ is a fault-free $u v$-path of length $l=\left(l_{1}+6\right)$.

Since $f_{L}=1$ and $f_{R}=2$, we finish the proof of the theorem for this subcase.
Subcase $2.3 u \in L-F$ and $v \in R-F$. By Proposition 2.7, we can assume $d\left(u, v^{h}\right)=d-1$.

Let $S=N_{R}(v)-\left\{u^{h}\right\}$. Then $|S| \geqslant 2 n-4$. Since $|F|=2 n-5$, there exists a vertex w_{1} in S such that w_{1} and w_{1}^{h} are fault-free. We know that

$$
d-2 \leqslant d\left(u, w_{1}^{h}\right) \leqslant d
$$

In the same sense, there exists a fault-free vertex w_{2} incident with u in L such that w_{2}^{h} is fault-free and $w_{2}^{h} \neq v$.

For

$$
d+4 \leqslant l \leqslant 2^{n-1}-f_{L}+1
$$

let $l_{1}=l-2$. Then

$$
d+2 \leqslant l_{1} \leqslant 2^{n-1}-f_{L}-1
$$

By the induction hypothesis, there exists a $u w_{1}^{h}$-path P_{L} of length l_{1} in $L-F$. Then $P_{L}+w_{1}^{h} w_{1}+w_{1} v$ is a fault-free $u v$-path of length $l=l_{1}+2$.

For

$$
2^{n-1}-f_{R}+3 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f_{R}, \quad l_{2}=l-2^{n-1}+f_{R}+1
$$

Then

$$
3 \leqslant l_{1} \leqslant 2^{n-1}-f_{L}-2, \quad 2 \leqslant l_{2} \leqslant 2^{n-1}-f_{L}-1
$$

When $n \geqslant 5$, by Lemma 3.1, there exists a fault-free $v w_{2}^{h}$-path T_{R} of length $2^{n-1}-f_{R}-1$ in R. By the induction hypothesis, there exists a $u w_{2}{ }^{-}$ path P_{L}^{\prime} of length l_{1} in $L-F$. Then $P_{L}^{\prime}+w_{2} w_{2}^{h}+T_{R}$ is a fault-free $u v$-path of length $l=l_{1}+1+2^{n-1}-f_{R}-1$.

When $n=4$, by Lemma 3.2, there exists a fault-free hamiltonian cycle C of length 6 in R. Let

$$
C=v x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} v
$$

Since $f_{L}=1$, one of x_{1}^{h}, x_{2}^{h} and x_{5}^{h} is fault-free, and not u. If x_{2}^{h} is fault-free and $x_{2}^{h} \neq u$, then let

$$
T_{R}^{\prime}=v x_{5}+x_{5} x_{4}+x_{4} x_{3}+x_{3} x_{2}
$$

Since $L \cong A Q_{3}$, by Lemma 3.6, there exists a fault-free $u x_{2}^{h}$-path P_{L}^{\prime} of length l_{2} in L. Then $P_{L}^{\prime}+x_{2}^{h} x_{2}+T_{L}^{\prime}$ is a fault-free $u v$-path of length $l=l_{1}+5$. If x_{1} or x_{5} is fault-free, and not u, then without loss of generality, assume that x_{1}^{h} is fault-free and $x_{1}^{h} \neq u$. Let

$$
T_{R}^{\prime \prime}=v x_{5}+x_{5} x_{4}+x_{4} x_{3}+x_{3} x_{2}+x_{2} x_{1}
$$

Since $L \cong A Q_{3}$, by Lemma 3.6, there exists a fault-free $u x_{1}$-path P_{L}^{\prime} of length l_{1}. Then $P_{L}^{\prime}+x_{1} x_{1}^{h}+T_{R}^{\prime \prime}$ is a fault-free $u v$-path of length $l=l_{1}+6$.

Since $f_{L}=1$ and $f_{R}=2 n-6$, we finish the proof of the theorem for this subcase.
Case $3 \quad\left|F_{R}\right|=2 n-5$. Then $L-F$ is a fault-free $(n-1)$-dimensional augmented cube.
Subcase 3.1 Both u and v are in L.
For $d+4 \leqslant l \leqslant 2^{n-1}-1$, by the induction hypothesis, there exists a $u v$-path of length l in L.

Since there exist $2^{n-1}-2 n+5(>5)$ fault-free vertices in R, there exists a fault-free vertex w such that $w \notin\left\{u^{h}, u^{c}, v^{h}, v^{c}\right\}$. By Lemma 3.3, there exist $u w^{h}$-path P_{1} and $v w^{c}$-path P_{2} such that P_{1} and P_{2} are internally disjoint and $P_{1} \cup P_{2}$ contains all vertices of L.

For $l=2^{n-1}$, the path $P_{1}+w^{h} w+w w^{c}+P_{2}$ is a fault-free $u v$-path of length l.

For

$$
2^{n-1}+1 \leqslant l \leqslant 2^{n}-f-2,
$$

let $l_{1}=l-2^{n-1}$. Then

$$
1 \leqslant l_{1} \leqslant 2^{n-1}-f-2
$$

Assume that w is a fault vertex in R. By Lemma 3.2, there exists a hamiltonian cycle C in $R-F+\{w\}$. Let

$$
C=w x_{1}+x_{1} x_{2}+\cdots+x_{t-1} x_{t}+x_{t} w
$$

where $t=2^{n-1}-f_{R}$. Then

$$
P_{1}=x_{1} x_{2}+\cdots+x_{l_{1}} x_{l_{1}+1}, \quad P_{2}=x_{t} x_{t-1}+\cdots+x_{t-l_{1}+1} x_{t-l_{1}}
$$

are two distinct paths of length l_{1}. So there exists a fault-free path P_{R} of length l_{1} such that P_{R} is not a path between u^{h} and v^{h}. Assume that P_{R} is the path between x and y. Then $x \notin\left\{u^{h}, v^{h}\right\}$ or $y \notin\left\{u^{h}, v^{h}\right\}$. Without loss of generality, assume $x \notin\left\{u^{h}, v^{h}\right\}$ below.

If $y=u^{h}$ or $y=v^{h}$, then without loss of generality, assume $y=u^{h}$. Since $x \neq v^{h}$, by Lemma 3.1, there exists a $x^{h} v$-path P_{L} of length $2^{n-1}-2$ in $L-\{u\}$. Then $P_{L}+x^{h} x+P_{R}+y u$ is a fault-free $u v$-path of length $l=l_{1}+2^{n-1}$.

If $y \neq u^{h}$ and $y \neq v^{h}$, by Lemma 3.3, there exist $u y^{h}$ path P_{3} and $v x^{h}-$ path P_{4} such that P_{3} and P_{4} are internally disjoint and $P_{3} \cup P_{4}$ contains all vertices of L. Then $P_{3}+y^{h} y+P_{R}+x x^{h}+P_{4}$ is a fault-free $u v$-path of length $l=l_{1}+2^{n-1}$.
Subcase 3.2 Both u and v are in $R-F$.
For

$$
d+4 \leqslant l \leqslant 2^{n-1}+1
$$

let $l_{1}=l-2$. Then

$$
d+2 \leqslant l_{1} \leqslant 2^{n-1}-1
$$

We know that $d\left(u^{h}, v^{h}\right)=d$. Then there exists a $u^{h} v^{h}$-path P_{L} of length l_{1}. Then $u u^{h}+P_{L}+v^{h} v$ is a fault-free $u v$-path of length $l=l_{1}+2$.

For

$$
2^{n-1}-f+4 \leqslant l \leqslant 2^{n}-f-2
$$

let

$$
l_{1}=l-2^{n-1}+f, \quad l_{2}=l-2^{n-1}+f+1 .
$$

Then

$$
4 \leqslant l_{1} \leqslant 2^{n-1}-2, \quad 5 \leqslant l_{2} \leqslant 2^{n-1}-1
$$

Assume that w is a faulty vertex in R.
When $n \geqslant 5$, by Lemma 3.1, there exists a hamiltonian $u v$-path T_{R} in $R-F+\{w\}$. Assume that x and y are two vertices incident with w in T_{R}. Without loss of generality, assume that x is closer to u than y. Since

$$
d\left(x^{h}, y^{h}\right)=d(x, y) \leqslant 2
$$

there exists an $x^{h} y^{h}$-path P_{L}^{\prime} of length l_{1}. Then $T_{R}(u, x)+x x^{h}+P_{L}^{\prime}+y^{h} y+$ $T_{R}(y, v)$ is a fault-free $u v$-path of length $l=l_{1}+2^{n-1}-f$.

When $n=4$, by Lemma 3.2, there exists a hamiltonian cycle C of length 6 in $R-F+\{w\}$. Let

$$
C=w x_{1}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+x_{4} x_{5}+x_{5} w
$$

If v is incident with u in C, then there exist two fault-free disjoint paths P_{1} and P_{2} in R, such that P_{1} ends with u and P_{2} ends with $v, P_{1} \cup P_{2}$ contains all vertices in $R-F$. Assume that the other end-vertex of P_{1} is x, and the other end-vertex of P_{2} is y. By Lemma 3.6, there exists a fault-free $x^{h} y^{h}$-path P_{L}^{\prime} of length l_{1}. Then $P_{1}+x x^{h}+P_{L}^{\prime}+y^{h} y+P_{2}$ is a fault-free $u v$-path of length $l=l_{1}+5$.

If v is not incident with u in C, then there exist two distinct fault-free vertices x and y, such that x is incident with u and y is incident with v. By Lemma 3.6, there exists a fault-free $x^{h} y^{h}$-path $P_{L}^{\prime \prime}$ of length l_{2}. Then the path $u x+x x^{h}+P_{L}^{\prime \prime}+y^{h} y+y v$ is a fault-free $u v$-path of length $l=l_{2}+4$.

Since $f_{R}=2 n-5$, we finish the proof of the theorem for this subcase.
Subcase $3.3 u \in L-F$ and $v \in R-F$. By Proposition 2.7, we can assume $d\left(u, v^{h}\right)=d-1$.

Let $S=N_{R}(v)-\left\{u^{h}\right\}$. Then $|S| \geqslant 2 n-4$. Since $|F|=2 n-5$, there exists a vertex w in S such that w and w^{h} are fault-free. We know that

$$
d-1 \leqslant d\left(u^{h}, w^{h}\right) \leqslant d+1
$$

For

$$
d+4 \leqslant l \leqslant 2^{n-1}+1
$$

let $l_{1}=l-2$. Then

$$
d+2 \leqslant l_{1} \leqslant 2^{n-1}-1
$$

There exists a $u w^{h}$-path P_{L} of length l_{1} in L. The path $P_{L}+w^{h} w+w v$ is a fault-free $u v$-path of length $l=l_{1}+2$.

For

$$
2^{n-1}+2 \leqslant l \leqslant 2^{n}-f-2,
$$

let $l_{1}=l-2^{n-1}$. Then

$$
2 \leqslant l_{1} \leqslant 2^{n-1}-f-2
$$

When $n \geqslant 5$, by Lemma 3.2, there exists a cycle C of length $2^{n-1}-f$ in $R-F$. Then there exists a vertex x in $R-F$ such that there exists a fault-free $v x$-path T_{R} of length l_{1}. And we have $x^{h} \neq u$ or $x^{c} \neq u$. Without loss of generality, assume $x^{h} \neq u$. By Lemma 3.1, there exists a $u x^{h}$-path T_{L} of length $2^{n-1}-1$ in L. The path $T_{L}+x^{h} x+T_{R}$ is a fault-free $u v$-path of length $l=l_{1}+2^{n-1}$.

When $n=4$, since

$$
f_{R}=2 n-5, \quad\left|N_{R}(v)\right|=2 n-3,
$$

there exists a fault-free $v y$-path P_{R} of length 2 in $R-F$ for some $y \in R-F$. We know that $y^{h} \neq u$ or $y^{c} \neq u$. Without loss of generality, assume $y^{h} \neq u$. By Lemma 3.6, there exists a $u y^{h}$-path T_{L} of length $2^{3}-1$. Then the path $T_{L}+y^{h} y+P_{R}$ is a fault-free $u v$-path of length $2^{3}+2$.

We know that there exist two disjoint edges $v x_{1}$ and $y_{1} z_{1}$ in $R-F$, such that x_{1}^{h} and z_{1}^{h} are not u. When $y_{1}^{h} \neq u$, by Lemma 3.3, there exist $u y_{1}^{h}$-path P_{1} and $x_{1}^{h} z_{1}^{h}$-path P_{2}, such that P_{1} and P_{2} are disjoint and $P_{1} \cup P_{2}$ contains all vertices in L. Then the path $P_{1}+y_{1}^{h} y_{1}+y_{1} z_{1}+z_{1} z_{1}^{h}+P_{2}+x_{1}^{h} x_{1}+x_{1} v$ is a fault-free $u v$-path of length $2^{3}+3$. When $y_{1}^{h}=u$, there exists an $x_{1}^{h} z_{1}^{h}$-path P_{3} of length 6 in $L-\{u\}$. Then the path $v x_{1}+x_{1} x_{1}^{h}+P_{3}+z_{1}^{h} z_{1}+z_{1} y_{1}+y_{1} u$ is a fault-free $u v$-path of length $2^{3}+3$.

The proof of the theorem is complete.

5 Conclusion and problems

The augmented cube $A Q_{n}$ is an important variation of the hypercube Q_{n}. In this paper, we have shown that if $A Q_{n}(n \geqslant 3)$ has at most $2 n-5$ faulty vertices and/or edges, then for any two fault-free vertices u and v with distance d in $A Q_{n}$, there exist fault-free $u v$-paths of every length from $d+2$ to $2^{n}-f-1$, where f is the number of faulty vertices in $A Q_{n}$. Our result is the best possible in the following sense.

Assume that $d(u, v)=1$ and $u=v^{c_{j}}$ for some i, where $2 \leqslant j \leqslant n$, by Proposition 2.2,

$$
S \cap T=\left\{u^{h_{j}}\left(=v^{c_{j-1}}\right), v^{h_{j}}\left(=u^{c_{j-1}}\right), u^{h_{j+1}}\left(=v^{c_{j+1}}\right), v^{h_{j+1}}\left(=u^{c_{j+1}}\right)\right\}
$$

Assume that

$$
u=v^{b}, \quad F=\left\{u^{h_{j}}, u^{h_{j+1}}\right\} .
$$

We know that

$$
|F|=2 \leqslant 2 n-5 \quad(n \geqslant 4)
$$

and then, there exists no $u v$-path of length 2 .
In $A Q_{n}$, if $|F|=2 n-4$, then there exist two distinct fault-free vertices u and v with distance d, such that there exists no fault-free $u v$-path of length l for some $l \in\left\{d+2, d+3, \ldots, 2^{n}-f-1\right\}$. We have an instance as follows.

Assume that

$$
u=u_{1} u_{2} u_{3} \cdots u_{n}, \quad v=u^{c_{n-1}}=u_{1} \bar{u}_{2} \bar{u}_{3} \cdots \bar{u}_{n}
$$

Then $u v$ is an edge in $A Q_{n}$. Let

$$
x=u^{c_{n-2}}=u_{1} u_{2} \bar{u}_{3} \cdots \bar{u}_{n}, \quad y=u^{h}=\bar{u}_{1} u_{2} u_{3} \cdots u_{n}
$$

and let S be the vertices adjacent to u and $F=S-\{v, x, y\}$. Since $v, x, y \in S$, we have

$$
|F|=2 n-1-3=2 n-4
$$

We can affirm that there are no fault-free $u v$-paths of length 3. Assume that

$$
A=A Q_{n-2}^{00}, \quad B=A Q_{n-2}^{01}, \quad C=A Q_{n-2}^{10}, \quad D=A Q_{n-2}^{11}
$$

Without loss of generality, assume $u \in A$ since $A Q_{n}$ is vertex-symmetric. Then

$$
v \in B, \quad x \in A, \quad y \in C
$$

We have

$$
\begin{gathered}
N(x) \cap V(C)=\left\{x^{h}=\bar{u}_{1} u_{2} \bar{u}_{3} \cdots \bar{u}_{n}\right\}, \\
N(x) \cap V(D)=\left\{x^{c}=\bar{u}_{1} \bar{u}_{2} u_{3} \cdots u_{n}\right\}, \\
N(x) \cap V(B)=\left\{v=x^{h_{n-1}}\right\} \quad\left(\text { since } x^{c_{n-1}}=u^{h_{n-1}}\right), \\
N(v) \cap V(C)=\left\{v^{c}=y=\bar{u}_{1} u_{2} u_{3} \cdots u_{n}\right\}, \\
N(v) \cap V(D)=\emptyset \quad\left(\text { since } v^{h}=u^{c} \text { is fault }\right), \quad N(v) \cap V(A)=\{u, x\} .
\end{gathered}
$$

So, there exist no $v x$-paths of length 2 except xuv. Similarly, there exist no $v y$-paths of length 2 except vuy. So, there exist no fault-free $u v$-paths of length 3.

However, these examples are valid only in the case $d=1$. Excluding this case, for $d \geqslant 2$ or $n \geqslant 4$, it is worthwhile to investigate the following questions suggested by the anonymous referees when they reviewed our manuscript.

First, it is known that $A Q_{n}$ is pancyclic for $n \geqslant 2$ [2] and panconnected for $n \geqslant 1$ [10]. There are several other generalized results. For example, $A Q_{n}$ is $(2 n-3)$-edge-fault-tolerant pancyclic for $n \geqslant 2$ [10], $(2 n-3)$-fault-tolerant pancyclic for $n \geqslant 4$ [18], $(2 n-3)$-fault-tolerant hamiltonian, and $(2 n-4)$ -fault-tolerant hamiltonian connected for $n \geqslant 4$ [7]. The first question is, is $A Q_{n}(2 n-4)$-fault-tolerant panconnected for some large $d \geqslant 2$ or $n \geqslant 4$?

Second, by definition, a graph is panconnected if, for any two vertices u and v, there exists a fault-free $u v$-path of length l which ranges from d to
$2^{n}-f-1$. However, our proof of Theorem 1.1 is not valid for the cases d and $d+1$. What study or comment can we make on these for $d>2$?

Acknowledgements The authors express their gratitude to the anonymous referees for their kind suggestions and useful comments on the original manuscript, which resulted in this final version. This work was supported by the National Natural Science Foundation of China (Grant No. 10671191).

References

1. Chen Y -Y, Duh D -R, Ye T -L, Fu J -S. Weak-vertex-pancyclicity of (n, k) star graphs. Theoretical Computer Science, 2008, 396(3): 191-199
2. Choudum A A, Sunitha V. Augmented cubes. Networks, 2002, 40(2): 71-84
3. Choudum S A, Sunitha V. Distance and short parallel paths in augmented cubes. Electronic Notes in Discrete Mathematics, 15(66) (electronic). Electron Notes Discrete Math, 15, Amsterdam: Elsevier, 2003
4. Fu J -S. Fault-free hamiltonian cycles in twisted cubes with conditional link faults. Theoretical Computer Science, 2008, 407(1-3): 318-329
5. Hsieh S -Y. Embedding longest fault-free paths onto star graphs with more vertex faults. Theoretical Computer Science, 2005, 337(1-3): 370-378
6. Hsieh S -Y, Chen G-H, Ho C-W. Longest fault-free paths in star graphs with vertex faults. Theoretical Computer Science, 2001, 262: 215-227
7. Hsu H -C, Chiang L -C, Tan J J M, Hsu L -H. Fault hamiltonicity of augmented cubes. Parallel Computing, 2005, 31(1): 131-145
8. Hsu H -C, Lai P -L, Tsai C -H. Geodesic pancyclicity and balanced pancyclicity of augmented cubes. Information Processing Letters, 2007, 101: 227-232
9. Lin C -K, Huang H-M, Hsu L -H. The super connectivity of the pancake graphs and the super laceability of the star graphs. Theoretical Computer Science, 2005, 339(2-3): 257-271
10. Ma M -J, Liu G -Z, Xu J -M. Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes. Parallel Computing, 2007, 33(1): 36-42
11. Ma M -J, Liu G -Z, Xu J -M. Fault-tolerant embedding of paths in crossed cubes. Theoretical Computer Science, 2008, 407(1-3): 110-116
12. Ma M -J, Liu G -Z, Xu J -M. The super connectivity of augmented cubes. Information Processing Letters, 2008, 106(2): 59-63
13. Park J -H, Chwa K -Y. Recursive circulants and their embeddings among hypercubes. Theoretical Computer Science, 2000, 244: 35-62
14. Park J H, Kim H C, Lim H S. Panconnectivity and pancyclicity of hypercube-like interconnection networks with faulty elements. Theoretical Computer Science, 2007, 377(1-3): 170-180
15. Tsai C H, Linear array and ring embeddings in conditional faulty hypercubes. Theoretical Computer Science, 2004, 314(3): 431-443
16. Tsai P -Y, Fu J -S, Chen G-H. Edge-fault-tolerant Hamiltonicity of pancake graphs under the conditional fault model. Theoretical Computer Science, 2008, 409(3): 450-460
17. Tsai P -Y, Fu J -S, Chen G -H. Fault-free longest paths in star networks with conditional link faults. Theoretical Computer Science, 2009, 410(8-10): 766-775
18. Wang $\mathrm{W}-\mathrm{W}, \mathrm{Ma} \mathrm{M}-\mathrm{J}, \mathrm{Xu} \mathrm{J}-\mathrm{M}$. Fault-tolerant pancyclicity of augmented cubes. Information Processing Letters, 2007, 103(2): 52-56
19. Xu J -M. Topological Structure and Analysis of Interconnection Networks. Dordrecht/Boston/London: Kluwer Academic Publishers, 2001
20. Xu J -M, Ma M -J. A survey on cycle and path embedding in some networks. Front Math China, 2009, 4(2): 217-252
21. Xu M, Xu J-M. The forwarding indices of augmented cubes. Information Processing Letters, 2007, 101(5): 185-189

[^0]: * Received April 14, 2009; accepted July 13, 2009

