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Abstract The augmented cube AQ, is a variation of the hypercube Q.
This paper considers the panconnectivity of AQ,, (n > 3) with at most 2n—5
faulty vertices and/or edges and shows that, for any two fault-free vertices u
and v with distance d in AQ,,, there exist fault-free uv-paths of every length
from d + 2 to 2™ — f — 1, where f is the number of faulty vertices in AQ,,.
The proof is based on an inductive construction.
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1 Introduction

It is well known that a topological structure of an interconnection network
can be modeled by a connected graph G = (V, E), where V is the set of
processors and F is the set of communication links in the network [19]. One
of the central issues in evaluating a network is the embedding problem. A
path or cycle structure is suitable for designing simple parallel algorithms
with low communication cost.

A graph G of order n is [-pancyclic if G contains a cycle of length k for
every k with | < k < n, and G is pancyclic if it is g-pancyclic, where g is
the girth of G, the length of a shortest cycle in G. A graph is hamiltonian
connected if for any pair of distinct vertices u and v, there exists a wuw-
hamiltonian path. A graph is panconnected if for any pair of distinct vertices
u and v with distance d, there exists a uv-path of length [ for every [ with
d<l<n—1.
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Since some vertex and/or link faults may happen when a network is
put in use, it is practically meaningful and important to consider faulty
networks. A graph G is k-fault-tolerant pancyclic (resp. hamiltonian
connected, panconnected) if G — F remains pancyclic (resp. hamiltonian
connected, panconnected) for any F C V(G) U E(G) with |F| < k, and is
k-vertex-fault-tolerant pancyclic (resp. hamiltonian connected, panconnected)
if G — F remains pancyclic (resp. panconnected) for any F' C V(G) with
|F| < k, and k-edge-fault-tolerant pancyclic (resp. hamiltonian connected,
panconnected) if G — F remains pancyclic (resp. hamiltonian connected,
panconnected) for any F' C E(G) with |F| < k.

In recent years, cycle embedding and path embedding, fault-tolerant cycle
embedding and fault-tolerant path embedding in the hypercube and other
networks have been widely investigated in the literature, as, for example,
Refs. [1,4-6,9,11,13-17], which all appeared in Theoretical Computer Science.
Almost all known results on this topic for the hypercube and its variations
are stated in a survey article by Xu and Ma [20].

As a variation of the hypercube network @,,, the augmented cube AQ,,, as
proposed by Choudum and Sunitha [2,3], is pancyclic for n > 2. Recently, this
result has been generalized by several authors. Hsu et al. [7] showed that AQ,,
is (2n — 3)-fault-tolerant hamiltonian and (2n — 4)-fault-tolerant hamiltonian
connected for n > 4. Ma et al. [10] showed that AQ,, is panconnected for
n > 1 and (2n — 3)-edge-fault-tolerant pancyclic for n > 2. Wang et al. [18§]
showed that AQ,, is (2n — 3)-fault-tolerant pancyclic for n > 4. Recently, Ma
et al. [12] have showed that the super connectivity is 4n — 8 for n > 6 and
the super edge-connectivity is 4n — 4 for n > 5. In this paper, we improve
these results by showing the following result.

Theorem 1.1 If AQ, (n > 3) contains at most 2n — 5 faulty vertices
and/or edges, then for any two distinct non-faulty vertices u and v with
distance d in AQ.,, there exist fault-free uv-paths of length | for every | with
d+2 <1 <2 —1— f, where [ is the number of faulty vertices in AQ.,.

The proof is based on an inductive construction of AQ, and given in
Section 4. Section 2 gives the definition of the augmented cube and some
propositions. Some lemmas are given in Section 3. In Section 5, we make a
conclusion and suggest two questions to investigate further.

2 Definition and preliminaries

Let G = (V, E) be a graph, where V is the vertex-set and F is the edge-set.
For two distinct vertices v and v in G, a uv-path P of length k is a sequence of
different vertices (zg,x1,...,x), where z9 = u, x; = v, and z;_1z; € E(G)
foreach i =1,2,...,k, where k is the number of edges in P, called the length
of P, denoted by £(P) = k. The distance between them, denoted by dg(u,v),
is the length of a shortest wv-path in G. Let P = (u,...,t,x,y,2,...,v) be
a uv-path of length at least two. An interior vertex z in P partitions P into
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two sections. We use P(u,x) to denote the subpath (u,...,t,2) of P from
u to x and use P(y,v) to denote the subpath (y, z,...,v) of P from y to v.
Since xy is an edge in P, we can write the path

P =P(u,z) +zy + P(y,v).

The n-dimensional augmented cube AQ, (n > 1), can be defined
recursively as follows. AQ; is a complete graph K, with the vertex set
{0,1}. For n > 2, AQ), is obtained by taking two copies of the augmented
cube AQ,_1, denoted by AQ" | and AQ! ,, and adding 2 x 2"~ ! edges
between AQY ; and AQL , as follows.

Let

V(AQ%) ={0up—1---ugus: u;=0o0rl, i=1,2,...,n—1},

V(AQL) = {1vy_1---vov1: v;=0o0r 1, i=1,2,...,n—1}.

A vertex u = Oup—1 - - uguy of AQY_, is joined to a vertex v = lv,_1 - - vavy
of AQL _, if and only if either

(1) w; =v; for 1 <i<n—1 (in this case uv is called an n-dimensional
hypercube edge, setting v = u’» or u = v"*), or

(2) u; =7m; for 1 < i< n—1 (in this case uv is called an n-dimensional
complement edge, setting v = u» or u = v°").

And an edge between u = uptp—1 - uguy and v = UpUp_1 -+ uTy (u; =
Oorl, 1 <i<n)iscalled a 1-dimensional complement edge, setting v = u°
or u = v°. For example, the graphs shown in Fig. 1 are augmented cubes

AQl, AQQ and AQg

00 10 000 010 100 110

01 11 001 011 101 111
1 AQ2 AQs

‘QP—‘.—.O

Fig. 1 Three augmented cubes AQ1, AQ2 and AQ3

Obviously, AQ,, is a (2n — 1)-regular graph with 2™ vertices. It has been
shown by Choudum and Sunitha [2,3] that AQ,, is vertex-symmetric, (2n—1)-
connected for n # 3 (AQs3 is 4-connected), and has diameter [n/2] for n > 1.
Some further properties of AQ,, can be found in Refs. [12,21].

For the sake of simplicity, we use d(z,y) to denote the distance between
r and y in AQ,, and write L = AQ" , and R = AQL _,. For each vertex
v € L (or R), let Np(v) (or Nr(v)) denote the set of vertices adjacent to v
in L (or R).

For a vertex u in AQ,, we use u” to denote u"* and use u® to denote
un. Let I, = {ha,hs,..., hn,c1,¢2,...,cn}. U P = (u,x1,22,...,24,0) is a



700 Hailiang WANG et al.

uv-path in AQ,,, we use P’ to denote the u’v’-path (u® 2%, 25,... 2 v®) in
AQ, forany b € I,,. If S = {x1,29,...,2+} is a subset of vertices in AQ,,, we
use S° to denote the set of vertices {z%,25,..., 2%} with b € I,.

The following two properties can be easily verified from the definition of
AQ,.

Proposition 2.1 If uv is an edge in AQ,, (n > 2), then so is u®v® for any
bel,.

Proposition 2.2 Let u be a vertex in AQ,, (n > 2). Then, for any i with
2 <i<n, u" andu® are joined by an (i—1)-dimensional complement edge;
u® and u“-' are joined by an i-dimensional hypercube edge; u and u¢i-1
are joined by an i-dimensional complement edge; otherwise, u® and u® are
not adjacent for any two distinct a,b € I,.

By Propositions 2.1 and 2.2, we have the following property immediately.

Proposition 2.3 Let uv be an edge in AQ, (n > 2). If wv is not an (n —
1)-dimensional complement edge, then u", u¢, v" and v¢ are all distinct.

Otherwise u" = v¢, u® = v".

Proposition 2.4 In AQ, (n > 3), for any vertex uw € L, let S = Np(u).
Then
Sh = Np(u"), S°= Ng(u®), |S"nS=2.

Proof Let u=0u,_1---usu; € L. Then

S=Np(u)={u": 2<i<n—-1}U{u9: 1<j<n—1},

where
Uhi :Ounfl"'ui+1ﬂiui71"'uly 2<'L<?’L*17 (1)
u = Oup—y - Ui W1 -, 1<j<n—1L
Thus,
Sh={@"): 2<i<n—1}U{@H)": 1< <n—1},
where
(uhi)h:1un—1"'ui+1az‘ui—1"'ul, 2<i<n—1, (2)
(W) = Lupoy - uja Wy W, 1<j<n—1
and
§¢={(")*: 2<i<n -1 U{@): 1<j<n—1},
where
(uhi)C: 1ﬂn71...ﬂi+1uiﬂi71...ﬂl, 2 gignil, (3)
(u)* = 1Up—1 - Wyprujuj—1 w1, 1<j<n—1
Since

u =1up_q---usus € R, u® =14, 1---W € R,
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from (2) and (3), it is easy to verify that
Sh:NR(Uh), SC:NR(UC).

Also from (2) and (3), it is easy to see that only two vertices (ufn-1)" =
(u¢=2)¢ and (u®—2)" = (uh»-1)¢ in S NS¢, which implies

|S" NS¢ = 2. O
For example, let u = 00000 be a vertex in AQ,,. Then 7 vertices in S are
u? = 00010, «"* =00100, w = 01000,

u® = 00001, w® =00011, u® =00111, wu® =01111.

Thus,
S = {10010, 10100, 11000, 10001,10011, 10111, 11111},

S¢ = {11101,11011,10111, 11110, 11100, 11000, 10000},

and so
Sh NS¢ = {11000,10111}.

Proposition 2.5 For any edge uv in AQ,, (n = 3), there exist p internally
disjoint uv-paths of length 3, where p = 2n —4 if v = u% (2 < i < n—1),
and p = 2n — 3 otherwise.

Proof We prove the proposition by induction on n > 3. For n = 3, it is easy
to check that the conclusion holds. Now assume that the proposition holds
for n — 1.

Case 1 wwisnot an n-dimensional (complement/hypercube) edge. Without
loss of generality, assume that uv is an edge in L.

Ifv=u%, 2<j<n-—2, by the induction hypothesis, there exist 2n — 6
internally disjoint uv-paths of length 3 in L. By Proposition 2.3, u”, u¢, v"
and v¢ are all distinct, then wu™ 4+ uo® + v"v and wu® + u®v® + vev are two
internally disjoint wv-paths of length 3. Thus, there exist 2n — 4 internally
disjoint wv-paths of length 3 in AQ,.

If v =u or v =u", 2<j<n—1, by the induction hypothesis, there
exist 2n — b internally disjoint uv-paths of length 3 in L. For the same reason
as the above, uu™ +uv" +v"v and wu®+uv® +v°v are two internally disjoint
uv-paths of length 3. Thus, there exist 2n — 3 internally disjoint uv-paths of
length 3 in AQ,.

If v = w1, by the induction hypothesis, there exist 2n — 5 internally
disjoint uwv-paths of length 3 in L. By Proposition 2.3, u" = v¢ and u® = v",
then uu” + uv" +v"v and vu® + uv® + v°v are two internally joint wv-paths
of length 3. Thus, there exist 2n — 4 internally disjoint uv-paths of length 3
in AQ,.

Case 2 wv is an n-dimensional (complement/hypercube) edge. Without
loss of generality, assume u € L and v € R.
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If b € I,,_1, then ubv? is an n-dimensional edge, and then uu® 4 ubv® +v%v
is a uv-path of length 3. Since |I,,_1| = 2n — 3, u® € L, v* € R, there exist
at least 2n — 3 internally uv-paths of length 3. If v = u”, we have u¢ = v°r-1;
if v = u°, we have u" = v, Since ¢,,_; € I,,_1, there exist exactly 2n — 4
internally uv-paths of length 3 in AQ,,.

By the induction principle, the proposition follows. O

Proposition 2.6 Let u and v be any two distinct vertices in AQ.,,. Then
d(u®,v?) = d(u,v) for any b € I,,.

Proof Assume d(u,v) = dy and d(u®,v®) = dy. There exist a uv-path P; of
length d; and a ubv’-path P, of length dy. Assume that Py = (u, x1, 22, . . .,
Tgq,-1,v). Then P? = (ub,xl{,xg,...,xglfl,vb) is a uPvb-path of length d;.
Then we know that dy < d;.

Assume that = and y are two distinct vertices in AQ,,. If u = v°, then u? =
v. Assume that P, = (u",y1,92,...,%a,—1,0"). Then PY = (u,3%, 45, ...
ygz_l, v) is a uv-path of length dy. Then we know that dy < da. So dy = da.

The proof is complete. O

)

Proposition 2.7 (Choudum and Sunitha [2]) For any two distinct vertices
u € L and v € R with distance d in AQ, (n > 2), d(u,v®) = d—1 or
d(u,v") =d — 1.

3 Some lemmas

Let F denote the set of faulty vertices and/or faulty edges in AQ,,, f denote
the number of faulty vertices in AQ,, F; and Fr denote the set of faulty
vertices and/or faulty edges in L and R, respectively, and f1, and fr denote
the number of faulty vertices in L and R, respectively. We have f = f; + fg.
A subgraph of AQ,, is fault-free if it contains no element in F.

Lemma 3.1 (Hsu, Chiang, Tan and Hsu [7]) AQ, (n > 2) is (2n —4)-fault
hamiltonian connected for n # 3, and AQs is 1-fault hamiltonian connected.

Lemma 3.2 (Wang, Ma and Xu [18]) AQ, is (2n — 3)-fault-tolerant
pancyclic for n > 4, and AQ3 is 2-fault-tolerant pancyclic.

Lemma 3.3 (Hsu, Chiang, Tan and Hsu [7]) For any four distinct vertices
u,v,z,y in AQy (n = 2), there exist a ux-path Py and a vy-path Py such that
Py and Py are internally disjoint and Py U Py contains all vertices of AQy,.

Lemma 3.4 (Hsu, Lai, Tsai [8]) For any two distinct vertices u and v with
distance d > 2 in AQ, (n > 3), there exist at least two internally disjoint
wv-paths of length | for every | with d <1< 2" ! in AQ,.

Lemma 3.5 In AQ, (n > 3), if |F| < 2n — 5, then for any two fault-free
vertices u € L and v € R with d(u,v) = 1, there exist two fault-free uv-paths
of every length 3 and 4, respectively.
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Proof Let u € L and v € R with d(u,v) = 1. Since |F| < 2n — 5, by
Proposition 2.5, there exists a fault-free uv-path of length 3 in AQ,,.

We now show that there exists a fault-free uv-path of length 4 in AQ,,.
Without loss of generality, assume that |Fr| < |Fg| and v = u”. Let S =
Ni(u). Then S" = Ngp(v) by Proposition 2.4, that is,

S=Np(u)={u": 2<i<n—-1}Uu{u“: 1<j<n—1},
where u" and u® are defined in (1). By the proof of Proposition 2.4,
(uhn-1)h = (un-2)¢ and (u¢-2)" = (u»-1)¢ are only two vertices in SN .Se.
Let T = S — {u¢-2}. Then T" NT¢ = 0.

For the sake of simplicity, let T' = {21, x2, ..., 22,4}, where, z1 = ur-1.
Clearly, P, = (u,x1,v) is a uv-path of length 2 in AQ,,. By Proposition 2.2,
for each i = 2,3,...,2n — 4, z! and z¢ are joined by an (n — 1)-dimensional
complement edge, and so P; = (u,z;,z¢, 2" v) is a uv-path of length 4 in
AQ,.SinceT C L, T",T¢ C R, and T"NT*° = (), the paths Py, P,, ..., Py, _4
are internally disjoint uv-paths, at least one of them is fault-free since |F| <
2n — 5.

If P; is fault-free for some i with 2 < ¢ < 2n — 4, we are done. Otherwise,
Py is fault-free since |F| < 2n — 5.

Since |Fr| < |Fr| by our hypothesis, |Fr] < n—3 < 2(n—1) — 4 for
n > 3. By Proposition 2.5, there exists a fault-free ux;-path Pr of length 3

in L. Clearly, z1v ¢ F since z1v is not in P; for each i = 2,3,...,2n — 4.
Then Pp, + xyv is a fault-free uv-path of length 4.
The lemma, follows. O

Lemma 3.6 If AQ3 contains only one faulty element that is a vertex, then
for any two distinct fault-free vertices u and v, there exists a fault-free uv-path
of length [ for every l with 2 <1 < 6.

Proof Since AQj3 is vertex-symmetric, we can suppose that w = 000 is a
faulty vertex (see Fig. 2). Let u and v be two distinct vertices in AQ3 — w.
We need to prove that AQ3 — w contains a uv-path of length [ for every [
with 2 < I < 6. Toward that end, assume that L = AQJ and R = AQ3.

Fig. 2 AQs — {000}

Case 1 Both v and v in L — w.

It is easy to see from Fig. 2 that L — w contains a uv-path of length 2

since L —w is a triangle. Since uv is an edge in L, by Proposition 2.1, u"o" is
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an edge in R. Thus, uu” +uv" +v"v is a uv-path of length 3 in AQ3 —w. Let
x be the vertex in L — w different from u and v. For 4 <1< 6, let [y =1— 3.
Then 1 < I; < 3. Similarly, R contains a u"2"-path Pg of length [1, and so
the path wu” + Pgr + 22 + 2v is a uv-path of length [ in AQ3 — w.

Case 2 Both v and v in R.

For 2 < I < 3, R contains a uv-path of length [ since R is a complete
graph of order 4. For 4 <1 < 5,let [y =1 — 3. Then 1 < /3 < 2. Assume
that x and y are two other vertices in R different from u and v. Then at
least two vertices in {v",v¢, 2", 2¢} or {v", v°, y" y°} are fault-free. Without
loss of generality, assume that v and z” are fault-free. Since L contains a
vhal-path Py of length [y, the path ux + za” + Pp +v"v is fault-free uv-path
of length I, and uy + yx + xa" + Py + v"v is a fault-free uv-path of length 6
when the length of Py, is 2.

Case3 uwueL—wandveR.

For 2 <1<4,letl; =1—1. Then 1 < I3 < 3. Since at least one of u”
and u¢ is not v, we can, without loss of generality, assume u" # v. Since R
contains a u"v-path Pr of length [;, uu® 4+ Pg is a wv-path of length [ in
AQ3 —w. Let x and y be vertices in L — w different from u and, without loss
of generality, assume ah #v. For 5 <1 <6,letl; =1—3. Then 2 < 1; < 3.
Since R contains an z"v-path Py, of length [y, wy+yx+azh + Py, is a uv-path
of length [ in AQs — w.

The proof of the lemma is complete. O

Lemma 3.7 Let w be any vertex in AQ3. Then for any four distinct vertices
u, v, 2,y in AQs—w, there exist two disjoint either ux-path Py and vy-path Py
or uy-path Ps and vx-path Py, such that they contains all vertices of AQs—w.

Proof Since AQs is vertex-symmetric, we can suppose that w = 000 is a
faulty vertex (see Fig. 2). L — w is a completed graph of 3 vertices and R is
a completed graph of 4 vertices.

Case 1 u,v,z,y € R. Without loss of generality, assume that v or y"
is fault. We know that vy is an edge in R. And in L — w, there exists a
hamiltonian path Pp between u” and z*. Let P, = uu” + Pp + 2"z and
P> = vy. Then the lemma holds.

Case 2 Three of u,v, z,y arein R, one is in L—w. Without loss of generality,
assume that u,v,z € Rand y € L —w. Let 21 and 25 be two vertices in L —w
different from y. Then one of 2! and 2% is not z, assume 2} # .

If 2! = u, then in R — {u} there exists a vz-path Pg of length 2. Let
P3 = uzg + 2021 + z1u and Py = Pgr. Then the lemma holds.

If 2! = v, then in R — {v} there exists a uz-path Pj of length 2. Let
Py =yzo+ 2921 + z1v and Py = lez- Then the lemma holds.

If 2! # wand 2 # v, 20 is incident with v in R. Let P, = ux and
Py = vzf + z?zl + 2129 + z2y. Then the lemma holds.

Case 3 Two of u,v,x,y are in R, and two are in L — w.

Subcase 3.1 Both u and = are in the same part of R or L — w, and both
v and y are in the other part. Without loss of generality, assume u,x €
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R, v,y € L —w. Since R and L — w are completed graphs, there exist a
hamiltonian uz-path Pr in R and a hamiltonian vy-path Pr, in L — w. Let
P, = Pr and P, = Py,.. Then the lemma holds.

Subcase 3.2 Both u and y are in the same part of R or L — w, and both
v and x are in the other part. Without loss of generality, assume u,y €
R, v,x € L — w. Since R and L — w are completed graphs, there exist a
hamiltonian uy-path Pr in R and a hamiltonian vz-path Pr, in L — w. Let
P3; = Pr and P, = Pr,. Then the lemma holds.

Subcase 3.3 Both u and v are in the same part of R or L — w, and both
x and y are in the other part. Without loss of generality, assume u,v €
L—w, z,y € R. Let z be a vertex in L — w different from v and v. Then one
of uz and vz is not a 2-dimensional complement edge. Assume that uz is not
a 2-dimensional complement edge. Then u”, 2 u¢, 2" are 4 distinct vertices.

Assume that either u” or u¢ is in {x,y}, without loss of generality, say
u" = x. Since u”, 2" u¢, 2" are 4 distinct vertices, one of 2" and z¢ is not x
and y, say 2" # y. Since R—{z} is a completed graph, there exists a z"y-path
Pg of length 2 in R — {z}. Let P = uz and P> = vz + 22" + Pr. Then the
lemma holds.

Assume that neither u” nor u¢ is in {z,y} below. Since ul, 2w, 2" are
4 distinct vertices, {z", 2¢} = {x,y}, say 2" = x and 2¢ = y. Since u" # =,
there exists a u"a-path Pj of length 2 in R — {y}. Let P, = uu" 4+ P} and
P, = vz + zy. Then the lemma holds.
Case4 Oneofu,v,x,yisin R, three are in L—w. Without loss of generality,
assume u, v,z € L —w and y € R. One of v" and v° is not y, say v" # y.
There exists a hamiltonian u"2-path Pg of length 3 in R. Let P, = ux and
P, = v + Pg. Then the lemma holds.

The proof of the lemma is complete. O

Lemma 3.8 If AQ, (n = 3) contains at most 2n —5 faulty vertices and no
faulty edges, then for any two distinct fault-free vertices u and v with distance
d, there exist fault-free uv-paths of length | for each | =d+ 2, d + 3.

Proof We prove the lemma by induction on n > 3. The induction basis for
n = 3 holds by Lemma 3.6. Assume that the lemma holds for n — 1 with
n > 4. Without loss of generality, assume that

|Fr| = fr <|Fr| = fr.
Then fr, < n— 3. Let v and v be any two distinct fault-free vertices with

distance d in AQ,,.

Case 1 Both v and v are in L — F.
Since
fr<n—=3<2n—-1)-5 (n>4),
by the induction hypothesis, there exists a fault-free uv-path of length [ for
eachl =d+2,d+3in L, and so in AQ,.
Case 2 Both v and v are in R — F.
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If fr < 2n — 7, then the conclusion holds by the induction hypothesis.
Assume fr > 2n — 6 below. Then f; < 1.

Subcase 2.1 If uv is not an (n — 1)-dimensional complementary edge, then
u” # v° and u® # v". Since at least one of {u”,v"} and {u, v} is fault-free,
without loss of generality, assume that {u”, v"} is fault-free.

If d = 1, then, by Proposition 2.5, there exists a fault-free uv-path of
length 3. By Proposition 2.2 and f; < 1, there exists a fault-free u"v"-path
P;, of length 2. Then the path uu”+ Pr +vo" is a fault-free uv-path of length
4. If d > 2, then, since d(u",v") = d and f;, < 1, by Lemma 3.4, there exist
a fault-free uv"-path P} of length d and a fault-free u"v"-path P}’ of length
d+1in L. Then the path uwu” + P, + v is a fault-free uv-path of length
d + 2 and the path uu" 4+ P} + v is a fault-free uv-path of length d + 3.

Subcase 2.2 If uv is an (n — 1)-dimensional complementary edge, then
u = ¢ and u® = v".

Since | F| < 2n—>5, there exists a fault-free uv-path of length 3. We assume
that this path is uu’vbv, where b € I,,. Then uv® is an (n — 1)-dimensional
complementary edge.

If 4" and v" are fault-free, then, by Lemma 3.4 and |Fy| < 1, there exists
a fault-free u"v"-path Py, of length 2. Then the path uu + Pr, + vol is a
fault-free uv-path of length 4. We assume that one of u” and v" is faulty
below. Then we know that u® € R and v* € R. Let = = u® and y = v®. Since
ry is an (n — 1)-dimensional edge, we know that 2" = y°. Since one of u”
and v" is faulty and fr < 1, we know that z" is fault-free. Then uza"yv is
a fault-free uv-path of length 4.

Case3 uwelL—-FandveR—F.

By Lemma 3.5, the lemma holds for d = 1. Assume d > 2 below. By
Proposition 2.7, d(u,v") = d—1 or d(u,v®) = d—1. Without loss of generality,
assume d(u,v") =d — 1.

Subcase 3.1 fr <2n-T.

When v" or u” is fault-free, without loss of generality, assume that v" is
fault-free. By the induction hypothesis, in L there exist fault-free uv™-paths
Pp, of length d + 1 and Pj of length d + 2. Then Pp, + v"v is a fault-free
uv-path of length d + 2 and P} + v"v is a fault-free uv-path of length d + 3.
Assume that v and u” are faulty below.

Let

F={v" z1,20,... ,fo,l,uh,yl,yg, e Yfr—1}s
where z; € L, 1 <i< fr—landy, € R, 1 <i< fr—1. Let
S={z;: 1<i< fr—1}, T={y: 1<i<fr—1}
L'=L-S-T1T"
Since
IS|+[T|=fo+fr—2<2n-7,

by the induction hypothesis, there exist uv-path T, of length d 4 1 and T
of length d+2 in L’. We use x to denote the vertex incident with v in T, and
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use y to denote the vertex incident with v in T} . Then Ty, (u, z) + za" + zhv
is a uv-path of length d + 2 and T7 (u,y) + yy" + y"v is a uv-path of length
d + 3. Since

L'n(S+1" =0,

we know that T (u,z), T} (u,y), =" and y" are fault-free. So T (u,x) +
zz" + Mo and Ty (u,y) + yy" + yho are fault-free.

Subcase 3.2 fr > 2n — 6, then f;, < 1. In R, there exist 2n — 3 vertices
incident with v. Since |F| < 2n — 5, there exists a fault-free vertex z incident
with v in R, such that 2 # u, and z” is fault-free. Since

d(u,o")y =d -1,

we know that
d—2<d(u,z") <d.

By Lemma 3.4, Proposition 2.2 and the induction hypothesis, there exist
fault-free ua”-paths Pp, of length d + 1 and P} of length d + 2. Then Pp, +
zhz+ v is a fault-free uv-path of length d+2 and P} +azz+ v is a fault-free
uv-path of length d + 3.

The lemma follows. (]

4 Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. Start with the following
lemma.

Lemma 4.1 If Theorem 1.1 holds for any subset F C V(AQ,,) with |F| =
2n — b5, then Theorem 1.1 holds also for

(i) any subset F' C V(AQ,,) with |F'| < 2n —5, and

(i) any subset F' C V(AQ,)U E(AQ.) with |F'| < 2n — 5.

Proof (i) Let m =2n—5—|F|. Then 0 < m < 2n—5. We prove the lemma
by induction on m. For m = 0, i.e., |F| = 2n—5 for any subset ' C V(AQ,),
the induction basis holds by our hypothesis. Assume that the lemma holds
for any mg with 0 < mg < 2n — 5, that is, Theorem 1.1 holds for any subset
F' Cc V(AQ,) with |F'| = 2n — 5 — my.

Let m = mo + 1, and F be any subset of V(AQ,,) with

|F| =2n—6—mo<2n—25.
Let w and v be arbitrary two distinct vertices in AQ,, — F with distance
d=dagq, (u,v), and let z be a vertex in AQ,, — F different from v and v and

F'= FU{z}. Then

|F'| =2n—5—mg < 2n — 5,



708 Hailiang WANG et al.

that is,
mo=2n—>5—|F'| > 0.

By the induction hypothesis, for every integer [ with
d+2<1<2" - |F'| -1,

there exists a uv-path of length [ in AQ,, — F’, so in AQ,, — F.

(ii) We now prove the second assertion by induction on k, where k is the
number of faulty edges in any subset

F CV(AQ,) UE(AQ,) (IF|<2n—5)

The induction basis for £ = 0 holds by (i). Assume that the lemma holds for
kwith 0 <k <2n—5.
Assume that

Let u and v be arbitrary two distinct vertices in AQ,, — F' with distance d in
AQ,. When wv € F, let F/ = F — {uv}. Then |F’| < 2n — 6 and F’ includes
k edges. By the induction hypothesis, for any [ with

d+2<1<2" — f—1,

there exists a uv-path P of length [ in AQ,, — F”. Clearly, P does not contain
the edge wv. Thus, P is a uv-path P of length [ in AQ,, — F.

Assume that wv is fault-free below. Let xy be an edge in F. Since xy is
not wv, we can assume that r # v and = # v. Let

F"=F — {uww} U {z}.

Then
|F"| = |F| <2n -5

and F” contains at most k edges. By the induction hypothesis, for every
integer [ with
d+2<I<2" - f-2,

there exists a uv-path P of length [ in AQ,, — F". Clearly, P does not contain
x,and so Pisin AQ, —F. For | =2"— f—1, by Lemma 3.1 and |F| < 2n—35,
there exists a fault-free uv-path of length [.

The proof of the lemma is complete. O

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1 By Lemma 4.1, we only need to prove the theorem
when |F| = 2n — 5 and all faulty elements are vertices.

Now, we prove the theorem by induction on n > 3. The induction basis
for n = 3 holds by Lemma 3.6. Assume that the theorem holds for any k
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with 3 < k& < n. Let u and v be two distinct vertices in AQ, — F. Since all
faulty elements are vertices, we have

|F| = f=fo+ fr

Without loss of generality, assume fr, < fr. For Il = d+ 2 and d + 3, by
Lemma 3.8, we are done. For [ = 2™ — f — 1, by Lemma 3.1, we are done.

Assume that
d+4<I<2" - f-2

below.

Case 1 fr < 2n — 7. In this case, n cannot be 4.

Subcase 1.1 Both v and v are in either L — F or R — F. Without loss of
generality, assume u,v € L — F.
For
d+2<1<2" —f —1,

by the induction hypothesis, there exists a uv-path of length [ in L — F. In
particular, we use 77, to denote a uv-path of length 2"~ — f; —1 and use 77}
to denote a uv-path of length 2"~ — f; — 2. The path T (resp. T1) contains
2n=t — f; — 1 (resp. 2"~ ! — fr) vertices. We have

271 fr 1

5 22n—5—fr+1=fr+1 (n=5),

and so there exists an edge zy in T} (resp. Tt) with {xz" yy", 2"y"} that
are fault-free. Without loss of generality, assume that x is closer to u than y.

For [ = 2"~1 — fy, the path T} (u,z) + zz" + 2"y + yhy + T} (y,v) is a
fault-free uv-path of length [.

For | = 2! — fr + 1, the path Ty (u,z) + za" + 2 y" + yy + Tr(y,v)
is a fault-free uv-path of length [.

For

2"t~ fr42<I<2" — -2,

let
Lh=1-2""14f+1.

Then
3<h <2V — fr—1.

By the induction hypothesis, there exists an a2"y"-path Pgr of length I; in
R — F. Then the path T} (u,x) + zz" + Pr + y"y + T} (y,v) is a fault-free
uv-path of length [ (=13 +2+2""1 — f —2— 1, see Fig. 3 (a)).
Subcase 1.2 u € L — F and v € R — F. By Proposition 2.7, without loss
of generality, we can assume that d(u,v") = d — 1.
For
d+4<i<2" — fr 41,

let 1 =1 — 2. Then
d+2<l; <2t — fr — 1.
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¥ P T!
L
7/ - Pr
Tr U U

(a) (b) (c)

Fig. 3 Illustrations for Case 1

Let S = Ng(v) — {u"}. Since |[Ng(v)| = 2n — 3, we have |S| > 2n — 4.
Since |F| = 2n — 5, there exists a vertex z in S such that = and z" are fault-
free. Since d(u,v") =d — 1, d(u, ") < d. By the induction hypothesis, there
exists a fault-free ua"-path Py, of length [;. Then the path Pp + 2l 4 zv is
a fault-free uv-path of length I (=11 + 2, see Fig. 3 (b)).

Let Ty be a uz"-path of length 2"~! — f; — 2 in L.

For

"l fr2<I<2"— f -2,
let
Lh=1-2""14fL +1.
Then
3<h <2 = fr— 1.

By the induction hypothesis, there exists a fault-free va-path Pr of length
l1 in R. Then the path T} + 2"z + Pg is a fault-free uv-path of length
(=l +2" 1 — fr —2+1, see Fig. 3 (c)).
Case 2 fr =2n — 6. In this case, fr = 1.

Subcase 2.1 Both v and v are in L — F.
In this subcase, we have

2n—1 _fL_l

5 > —5—fL+1=fr+1.

For the same reason as Subcase 1.1, for
d+4<1<2v = fr +1,

there exists a fault-free uv-path of length [ in AQ,, — F.
When n > 5, for

2l 5 <I<2" — f —2,

let
h=1-2""14fr—2 lo=1-2""14fp—1

Then
3K <2 —fr—4, A<l <2~ fr -3
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Let S = Np(v) —{u}. Since |Np(v)| = 2n — 3, we have |S| > 2n —4. Since
|F| = 2n — 5, there exists a vertex = in S such that  and 2" are fault-free.
If u” is fault-free then, since u” # 2", there exists an 2"u"-path Tx of length
2"l _ fp —1in R — F by Lemma 3.1. Since

|Fr +{u}|=2<2n—-T7 (n=5),

by the induction hypothesis, there exists a vz-path P of length I in L —
F — {u}. The path uu" 4+ Tr + zz" + P is a fault-free uv-path of length
I(=1+2""1 — fr— 1+ 1+, see Fig. 4 (a)).

I
u u' <“
h ,
P’ SN
P N Yy
ST 3”

xr
I 2
v v

(a) (b)

Fig. 4 Illustrations for Subcase 2.1

Assume that u” is a faulty vertex below.

Let T = Np(u) — {v,2}. Since |Np(u)| = 2n — 3, we have |T| > 2n — 5.
Since |F| = 2n — 5 and u” is faulty, there exists a vertex y in 7' such that y
and y" are fault-free. By Lemma 3.1, there exists an zy"-path T}, of length
9n=1 _ fp—1in R — F. Since

|Fr +{v,2}|=3<2n—=T7 (n>=5),

by the induction hypothesis, there exists a uy-path P’ of length I in L — F —
{v,z}. The path P’ + yy" + Tp + 2"z + zv is a fault-free uv-path of length
l(=lh+1+2"1 — fr—1+2, see Fig. 4 (b)).

Since

@t~ fp+5) — Q" —fo ) =fr—fr+d=11-2n<1 (n=5),

we finish the proof of the theorem for this situation.
When n = 4, for

ol frr2<I<2V—f—2,
let
Lh=1-2""14/f.

Then 2 < I; < 4. Let w be a faulty vertex in L.

Next, we prove that there exists a fault-free path Pr of length [; with
end-vertices x and y, such that there exists a vertex x’ incident with x and
a vertex y’ incident with y in R, and 2/, y’" ¢ {u,v,w}, o’ #y'.
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Assume that AQL® = L’ and AQL' = R'. Let wy, 21, y1 and 21 be four
vertices in L/, and assume that

Wy = wi”, Ty = :17}1”, Yy = yfz, 29 = z{bz.
Then wo, x2,y2, 22 € R’. Since there exist exactly two faulty vertices in R,
two of {wy,wa}, {x1,22}, {y1,y2}, {21,22} are fault-free. Without loss of
generality, we assume that both {x1, 22} and {y1,y2} are fault-free.

And we know that two of wy,ws, 21, 29 are fault-free. We only need to
consider two cases: a) both w; and z; are fault-free (see Fig. 5 (a)); b) both
z1 and zo are fault-free (see Fig. 5 (b)) (We omit some edges in the figure
since they are not needed in our proof). The other cases can be considered
similarly.

(a) (b)

Fig. 5 Illustrations for the situation n = 4 of Subcase 2.1

Since x1y; is not a 2-dimensional complement edge and z%, 2§, y}, y§ are
4 distinct vertices, any one of z%, ¢,y y§ is not in {u,v,w}. Without loss
of generality, assume that z? is not in {u,v,w}.

In Fig. 5 (a), we enumerate some paths of length 2 with the end-vertex
T1: T121Y1, T1Y1W1, T1Y121, T1Y1Ye. Since yi,ws, 21, y2 are all distinct, one
of y, 2l wh yb is not in {u,v,w}, say y’. We use 2’ to denote z/.

Similarly, for the length 3 or 4 and the situation in Fig. 5 (b), there
exists a fault-free path Pr of length [; end with = and y, such that there
exists a vertex z’ incident with & and a vertex y’ incident with y in R, and
'y ¢ {u,v,w}, 2 #y

Since L = AQs3, by Lemma 3.7, there exist uz’-path P; and vy’-path
P, such that P, and P, are disjoint and P; U P> contains all vertices of
L —{w}. Then path P, + 2’z + Pg +yy' + P is a fault-free uv-path of length
I=10 +2" 1 - fr.

Subcase 2.2 Both u and v are in R — F.

In this case, either u" or u® is fault-free. Without loss of generality,
assume that u” is fault-free. Let S = Ng(v) — {u}. Then |S| > 2n — 4.
Since |F| = 2n — 5, there exists a vertex z in S such that both x and z" are
fault-free. We know that

d—1<dw, 2") <d+1.

Forl=d+4ord+5,letly =1—3. Thenly =d+ 1 or d+ 2. Since
fr =1, by Lemma 3.4, Proposition 2.2, and the induction hypothesis, there
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exists a fault-free uz"-path Pr, of length [;. Then wul + Pp + 2"x 4+ xv is a
fault-free uv-path of length [ =1; + 3.
For
d+6<1<2" — fr +2,

let [1 =1 — 3. Then
d+3<h <2 — fr -1

By the induction hypothesis, there exists a fault-free uz"-path P; of length
{1. Then uu” + P + 2"z + 2v is a fault-free uv-path of length [ =1; + 3.
For
2"l fr+3<I<2t — f-2,

let
Lh=1-2""14 fn.

Then
3<h <2 — 2.

When n > 5, by Lemma 3.1, there exists a uv-path Tr of length 27! —
fr—1in R—F. Since f;, = 1, there exists an edge xy in Tk such that 2" and
y" are fault-free. By the induction hypothesis and d(z",y") = 1, there exists
a fault-free xy"-path P, of length I;. Without loss of generality, assume
that z is closer to u than y. Then Tg(u,x) + zz" + P + y"y + Tr(y,v) is a
fault-free uv-path of length [ = (I; + 2"~ — fg).

When n = 4, we have fr = 2 and f;, = 1. By Lemma 3.2, there exists a
hamiltonian cycle of length 6 in R— F. Then there exist two internally disjoint
fault-free uv-path P; and P, in R, and then £(Py) + &(P2) = 6. Without loss
of generality, assume that e(P;) < e(P,). Then 1 < e(P) < 3.

a) When ¢(P;) = 1, P; is a hamiltonian uv-path of R — F. Since f;, < 1,
there exists an edge #'y’ in Py such that /" and y'" are fault-free. Without
loss of generality, assume that z is closer to u than y. Then let Ps = Pa(u, x')
and Py = Pa(v,y).

b) When £(P;) = 2, let

Py =uxy +x1v, Py =wuyr +y1y2 + Y293 + y3v.

Since fr = 1, xf or x5 is fault-free. Without loss of generality, assume that
oh is fault-free. And we know that yJ' or y% is fault-free. Without loss of
generality, assume that y? is fault-free. Let

=z, Y =wy1, Py=ux1, Pi=vys+ysy2+yy.
¢) When g(Py) = 3, let
P1 =y + 1102 + w20,  Po = uy1 + y1y2 + y2v.

Since fr = 1, {z% vk} or {2}, yh} is fault-free. Without loss of generality,
assume that {zf, y?} is fault-free. Let

' = xo, y’:yl, P =wuxy + 2122, Py =vy2 + y2u1.



714 Hailiang WANG et al.

Since R & AQ3, by Lemma 3.6, there exists a fault-free x’hy’h—path Pj of
length ;. Then the path Ps +2/2'" + P+ y'"y' + Py is a fault-free uv-path
of length [ = (I; + 6).

Since fr, = 1 and fr = 2, we finish the proof of the theorem for this
subcase.

Subcase 2.3 w € L— F and v € R— F. By Proposition 2.7, we can assume
d(u,v") =d —1.

Let S = Ng(v) — {u"}. Then |S| > 2n—4. Since |F| = 2n — 5, there exists
a vertex wy in S such that w; and w? are fault-free. We know that

d—2 < d(u,wt) < d.

In the same sense, there exists a fault-free vertex ws incident with u in L
such that w} is fault-free and w} # v.
For
d+4<1<2" = fr +1,

let I{ =1 — 2. Then
d+2<h <2 — fr -1

By the induction hypothesis, there exists a uw!-path Py, of length [; in L— F.
Then Pr, + w{lwl + wyv is a fault-free uv-path of length I = [ + 2.
For
"l fp+3<I<2t — f -2,

let
L=1-2""Y4fr, lo=1-2""14 fr+1.

Then
3K <2 —fr -2, 2< <2 — fr — 1.

When n > 5, by Lemma 3.1, there exists a fault-free vwh-path Tg of
length 27~ ! — fr — 1 in R. By the induction hypothesis, there exists a uws-
path Pj of length [; in L — F. Then P; + wowh + T is a fault-free uv-path
oflength I =1y + 142"t — fr — 1.

When n = 4, by Lemma 3.2, there exists a fault-free hamiltonian cycle C'
of length 6 in R. Let

C =wvx1 + r120 + Tox3 + T3x4 + 245 + T50.

Since fr, = 1, one of 2%, % and 2 is fault-free, and not u. If 2% is fault-free
and 8 # u, then let

/
Tr =vx5 + T5T4 + T4x3 + T3T2.

Since L = AQ3, by Lemma 3.6, there exists a fault-free uz-path Pj oflength
ly in L. Then P} + ahae + T} is a fault-free uv-path of length | = [; + 5. If
x1 or x5 is fault-free, and not u, then without loss of generality, assume that
x? is fault-free and 2 # u. Let

1
Tp =025 + X524 + TaT3 + T3T2 + T2T1.



Fault-tolerant panconnectivity of augmented cubes 715

Since L & AQs, by Lemma 3.6, there exists a fault-free uxi-path P; of length
li. Then P} + vzl + T} is a fault-free uv-path of length [ = [; + 6.

Since fr, =1 and fr = 2n — 6, we finish the proof of the theorem for this
subcase.

Case 3 |Fg| = 2n — 5. Then L — F is a fault-free (n — 1)-dimensional
augmented cube.

Subcase 3.1 Both uw and v are in L.

For d +4 < 1 < 2! — 1, by the induction hypothesis, there exists a
uv-path of length [ in L.

Since there exist 2771 —2n+5 (> 5) fault-free vertices in R, there exists a
fault-free vertex w such that w ¢ {u”, u¢, v",v°}. By Lemma 3.3, there exist
ww™-path P, and vw®path P, such that P, and P, are internally disjoint
and P; U P, contains all vertices of L.

For | = 2"~ !, the path P, + whw 4+ ww® + P, is a fault-free uv-path of
length [.

For

ol L1l — f—2,

let I; =1 —2""1. Then
I<h <2 t—f—2

Assume that w is a fault vertex in R. By Lemma 3.2, there exists a
hamiltonian cycle C'in R — F + {w}. Let

C=wzri+xi22+ -+ 212 + 210,
where t = 2"~1 — fr. Then
Pr=mxs+ - Fapxny1, Po=mimeq 4+ T 1%y

are two distinct paths of length ;. So there exists a fault-free path Pgr of
length [; such that Pg is not a path between v and v”". Assume that Pg is
the path between z and y. Then = ¢ {u”,v"} or y ¢ {u” v"}. Without loss
of generality, assume z ¢ {u”,v"} below.

If y = u" or y = v", then without loss of generality, assume y = u.
Since z # v", by Lemma 3.1, there exists a 2"v-path Py, of length 271 —2in
L—{u}. Then P +x"2+ Pgr-+yu is a fault-free uv-path of length [ = [;+27~1.

If y # u" and y # v", by Lemma 3.3, there exist uy” path P; and vz"-
path P, such that Ps and P, are internally disjoint and P; U P, contains all
vertices of L. Then Ps + y"y+ Pr + x2" + P, is a fault-free uv-path of length
=1+ on—1,

Subcase 3.2 Both v and v are in R — F.
For
d+4<i<2m 41,

let I; =1 — 2. Then
d+2<l; <2t —1.
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We know that d(u”,v") = d. Then there exists a u"v"-path Py, of length I;.
Then uu® + P, + v"v is a fault-free uv-path of length | =11 + 2.
For
"l fH4gIg<2"— f -2,

let
Lh=1-2""14f lh=1-2""14+f+1

Then
4<h <2 =2, 5<ly<2m -1,

Assume that w is a faulty vertex in R.

When n > 5, by Lemma 3.1, there exists a hamiltonian uv-path Tx in
R — F 4+ {w}. Assume that z and y are two vertices incident with w in Tg.
Without loss of generality, assume that « is closer to « than y. Since

d(z",y") = d(z,y) <2

there exists an z"y"-path P} of length ;. Then Tr(u,x) +za" + Pj +y"y +
Tr(y,v) is a fault-free uv-path of length [ = I; + 2"~ ! — f.

When n = 4, by Lemma 3.2, there exists a hamiltonian cycle C' of length
6in R— F +{w}. Let

C = wzy + 2122 + ToT3 + T3T4 + T4T5 + T5W.

If v is incident with u in C, then there exist two fault-free disjoint paths
P, and P, in R, such that P; ends with u and P, ends with v, P, UP, contains
all vertices in R — F. Assume that the other end-vertex of P; is x, and the
other end-vertex of P is y. By Lemma 3.6, there exists a fault-free z"y"-path
Pj of length I;. Then Py + za" + P + y"y + P, is a fault-free uv-path of
length [ =11 4 5.

If v is not incident with w in C, then there exist two distinct fault-free
vertices « and y, such that z is incident with w and y is incident with v.
By Lemma 3.6, there exists a fault-free 2"y"-path P} of length l5. Then the
path ux + zz" + P} + y"y + yv is a fault-free uv-path of length | =I5 + 4.

Since fr = 2n — 5, we finish the proof of the theorem for this subcase.

Subcase 3.3 u € L— F and v € R— F. By Proposition 2.7, we can assume
d(u,v") =d — 1.

Let S = Ng(v) —{u"}. Then |S| > 2n —4. Since |F| = 2n — 5, there exists
a vertex w in S such that w and w” are fault-free. We know that

d—1<du", w") <d+1.

For
d+4<1<2" 41,

let 1 =1 — 2. Then
d+2<l <2"t—1.
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There exists a uw”-path P, of length [; in L. The path Pr + whw + wo is a
fault-free uv-path of length [ =1; + 2.
For
2l Lol — f—2,

let Iy =1 —2""1 Then
2<h <2t —f—2.

When n > 5, by Lemma 3.2, there exists a cycle C of length 2"~1 — f
in R — F. Then there exists a vertex x in R — F' such that there exists a
fault-free va-path Tx of length I;. And we have 2" # u or 2° # u. Without
loss of generality, assume 2" # u. By Lemma 3.1, there exists a uz"-path T},
of length 2"~! — 1 in L. The path Ty + 2"z + T is a fault-free uv-path of
length [ = [; 4+ 271,

When n = 4, since

fR:2n757 |NR(U)|:2TL737

there exists a fault-free vy-path Pg of length 2 in R — F for some y € R — F.
We know that 4" # u or y© # u. Without loss of generality, assume y" # w.
By Lemma 3.6, there exists a uy"-path T, of length 23 — 1. Then the path
Ty, + y"y + Pg is a fault-free uv-path of length 23 + 2.

We know that there exist two disjoint edges vx1 and y121 in R — F), such
that 2% and 2! are not u. When y? # u, by Lemma 3.3, there exist uy?-path
P, and :B’fzil-path P, such that P; and P» are disjoint and P; U P» contains
all vertices in L. Then the path P; + yfyl + 121+ zlz{l + P+ :17’11:171 +x1v is
a fault-free uv-path of length 23 +3. When y? = u, there exists an 2% 2*-path
Ps of length 6 in L — {u}. Then the path vy +z12% + Py + 2021 + 2191 +y1u
is a fault-free uv-path of length 23 + 3.

The proof of the theorem is complete.

5 Conclusion and problems

The augmented cube AQ,, is an important variation of the hypercube Q.
In this paper, we have shown that if AQ, (n > 3) has at most 2n — 5
faulty vertices and/or edges, then for any two fault-free vertices v and v with
distance d in AQ,,, there exist fault-free uv-paths of every length from d + 2
to 2" — f — 1, where f is the number of faulty vertices in AQ,,. Our result is
the best possible in the following sense.

Assume that d(u,v) = 1 and u = v% for some 4, where 2 < j < n, by
Proposition 2.2,

SNT = {ul (= v91), o (= us0), whsst (= 0%+, ohovs (= w1},

Assume that

)

u=1" F= {uhf,uhf“}.
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We know that
[Fl=2<2n—-5 (n>4)
and then, there exists no uv-path of length 2.
In AQ,, if |F| = 2n — 4, then there exist two distinct fault-free vertices u
and v with distance d, such that there exists no fault-free uv-path of length

[ for some ! € {d+2,d+3,...,2" — f — 1}. We have an instance as follows.
Assume that

U = ULUUZ * * " Uy, UV = U™ = U U3 + Uy
Then uv is an edge in AQ,,. Let
_ ,Cn—2 _ m m — b =
r=u = UrU2U3 " Up, Y =U = ULU2U3 """ Unp,

and let S be the vertices adjacent to uw and F = S—{v,z,y}. Since v,z,y € S,
we have
|[F|=2n—1-3=2n—4.

We can affirm that there are no fault-free uv-paths of length 3. Assume that
A= AQW B = AQ"

n—2 n—=2»

C=AQY, D=AQ!,.

n—2»

Without loss of generality, assume u € A since AQ,, is vertex-symmetric.
Then
veB, ze€A yeC.

We have
N(z) NV (C) = {z" = Tusts - - -1, },
N(z)NV(D) = {2 = WTauz - - - up },
N(z)NV(B) ={v=a"""} (since 2t =u/n-1),
N@)NV(C) = {v° =y = Tyusus - - un},

N@)NV(D) =0 (since v" = u®is fault), N(v)NV(A) = {u,x}.

So, there exist no vx-paths of length 2 except xuwv. Similarly, there exist no
vy-paths of length 2 except vuy. So, there exist no fault-free uv-paths of
length 3.

However, these examples are valid only in the case d = 1. Excluding this
case, for d > 2 or n > 4, it is worthwhile to investigate the following questions
suggested by the anonymous referees when they reviewed our manuscript.

First, it is known that AQ,, is pancyclic for n > 2 [2] and panconnected
for n > 1 [10]. There are several other generalized results. For example, AQ,
is (2n — 3)-edge-fault-tolerant pancyclic for n > 2 [10], (2n — 3)-fault-tolerant
pancyclic for n > 4 [18], (2n — 3)-fault-tolerant hamiltonian, and (2n — 4)-
fault-tolerant hamiltonian connected for n > 4 [7]. The first question is, is
AQ,, (2n — 4)-fault-tolerant panconnected for some large d > 2 or n > 47

Second, by definition, a graph is panconnected if, for any two vertices u
and v, there exists a fault-free uv-path of length [ which ranges from d to
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2" — f — 1. However, our proof of Theorem 1.1 is not valid for the cases d
and d + 1. What study or comment can we make on these for d > 2?7
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