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Abstract The augmented cube AQn is a variation of the hypercube Qn.
This paper considers the panconnectivity of AQn (n � 3) with at most 2n−5
faulty vertices and/or edges and shows that, for any two fault-free vertices u
and v with distance d in AQn, there exist fault-free uv-paths of every length
from d + 2 to 2n − f − 1, where f is the number of faulty vertices in AQn.
The proof is based on an inductive construction.
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1 Introduction

It is well known that a topological structure of an interconnection network
can be modeled by a connected graph G = (V, E), where V is the set of
processors and E is the set of communication links in the network [19]. One
of the central issues in evaluating a network is the embedding problem. A
path or cycle structure is suitable for designing simple parallel algorithms
with low communication cost.

A graph G of order n is l-pancyclic if G contains a cycle of length k for
every k with l � k � n, and G is pancyclic if it is g-pancyclic, where g is
the girth of G, the length of a shortest cycle in G. A graph is hamiltonian
connected if for any pair of distinct vertices u and v, there exists a uv-
hamiltonian path. A graph is panconnected if for any pair of distinct vertices
u and v with distance d, there exists a uv-path of length l for every l with
d � l � n − 1.
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Since some vertex and/or link faults may happen when a network is
put in use, it is practically meaningful and important to consider faulty
networks. A graph G is k-fault-tolerant pancyclic (resp. hamiltonian
connected, panconnected) if G − F remains pancyclic (resp. hamiltonian
connected, panconnected) for any F ⊂ V (G) ∪ E(G) with |F | � k, and is
k-vertex-fault-tolerant pancyclic (resp. hamiltonian connected, panconnected)
if G − F remains pancyclic (resp. panconnected) for any F ⊂ V (G) with
|F | � k, and k-edge-fault-tolerant pancyclic (resp. hamiltonian connected,
panconnected) if G − F remains pancyclic (resp. hamiltonian connected,
panconnected) for any F ⊂ E(G) with |F | � k.

In recent years, cycle embedding and path embedding, fault-tolerant cycle
embedding and fault-tolerant path embedding in the hypercube and other
networks have been widely investigated in the literature, as, for example,
Refs. [1,4–6,9,11,13–17], which all appeared in Theoretical Computer Science.
Almost all known results on this topic for the hypercube and its variations
are stated in a survey article by Xu and Ma [20].

As a variation of the hypercube network Qn, the augmented cube AQn, as
proposed by Choudum and Sunitha [2,3], is pancyclic for n � 2. Recently, this
result has been generalized by several authors. Hsu et al. [7] showed that AQn

is (2n−3)-fault-tolerant hamiltonian and (2n−4)-fault-tolerant hamiltonian
connected for n � 4. Ma et al. [10] showed that AQn is panconnected for
n � 1 and (2n − 3)-edge-fault-tolerant pancyclic for n � 2. Wang et al. [18]
showed that AQn is (2n−3)-fault-tolerant pancyclic for n � 4. Recently, Ma
et al. [12] have showed that the super connectivity is 4n − 8 for n � 6 and
the super edge-connectivity is 4n − 4 for n � 5. In this paper, we improve
these results by showing the following result.

Theorem 1.1 If AQn (n � 3) contains at most 2n − 5 faulty vertices
and/or edges, then for any two distinct non-faulty vertices u and v with
distance d in AQn, there exist fault-free uv-paths of length l for every l with
d + 2 � l � 2n − 1 − f, where f is the number of faulty vertices in AQn.

The proof is based on an inductive construction of AQn and given in
Section 4. Section 2 gives the definition of the augmented cube and some
propositions. Some lemmas are given in Section 3. In Section 5, we make a
conclusion and suggest two questions to investigate further.

2 Definition and preliminaries

Let G = (V, E) be a graph, where V is the vertex-set and E is the edge-set.
For two distinct vertices u and v in G, a uv-path P of length k is a sequence of
different vertices (x0, x1, . . . , xk), where x0 = u, xk = v, and xi−1xi ∈ E(G)
for each i = 1, 2, . . . , k, where k is the number of edges in P, called the length
of P, denoted by ε(P ) = k. The distance between them, denoted by dG(u, v),
is the length of a shortest uv-path in G. Let P = (u, . . . , t, x, y, z, . . . , v) be
a uv-path of length at least two. An interior vertex x in P partitions P into
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two sections. We use P (u, x) to denote the subpath (u, . . . , t, x) of P from
u to x and use P (y, v) to denote the subpath (y, z, . . . , v) of P from y to v.
Since xy is an edge in P, we can write the path

P = P (u, x) + xy + P (y, v).

The n-dimensional augmented cube AQn (n � 1), can be defined
recursively as follows. AQ1 is a complete graph K2 with the vertex set
{0, 1}. For n � 2, AQn is obtained by taking two copies of the augmented
cube AQn−1, denoted by AQ0

n−1 and AQ1
n−1, and adding 2 × 2n−1 edges

between AQ0
n−1 and AQ1

n−1 as follows.
Let

V (AQ0
n) = {0un−1 · · ·u2u1 : ui = 0 or 1, i = 1, 2, . . . , n − 1},

V (AQ1
n) = {1vn−1 · · · v2v1 : vi = 0 or 1, i = 1, 2, . . . , n − 1}.

A vertex u = 0un−1 · · ·u2u1 of AQ0
n−1 is joined to a vertex v = 1vn−1 · · · v2v1

of AQ1
n−1 if and only if either

(1) ui = vi for 1 � i � n − 1 (in this case uv is called an n-dimensional
hypercube edge, setting v = uhn or u = vhn), or

(2) ui = vi for 1 � i � n − 1 (in this case uv is called an n-dimensional
complement edge, setting v = ucn or u = vcn).

And an edge between u = unun−1 · · ·u2u1 and v = unun−1 · · ·u2u1 (ui =
0 or 1, 1 � i � n) is called a 1-dimensional complement edge, setting v = uc1

or u = vc1 . For example, the graphs shown in Fig. 1 are augmented cubes
AQ1, AQ2 and AQ3.
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Fig. 1 Three augmented cubes AQ1, AQ2 and AQ3

Obviously, AQn is a (2n− 1)-regular graph with 2n vertices. It has been
shown by Choudum and Sunitha [2,3] that AQn is vertex-symmetric, (2n−1)-
connected for n �= 3 (AQ3 is 4-connected), and has diameter �n/2� for n � 1.
Some further properties of AQn can be found in Refs. [12,21].

For the sake of simplicity, we use d(x, y) to denote the distance between
x and y in AQn, and write L = AQ0

n−1 and R = AQ1
n−1. For each vertex

v ∈ L (or R), let NL(v) (or NR(v)) denote the set of vertices adjacent to v
in L (or R).

For a vertex u in AQn, we use uh to denote uhn and use uc to denote
ucn . Let In = {h2, h3, . . . , hn, c1, c2, . . . , cn}. If P = (u, x1, x2, . . . , xt, v) is a
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uv-path in AQn, we use P b to denote the ubvb-path (ub, xb
1, x

b
2, . . . , x

b
t , v

b) in
AQn for any b ∈ In. If S = {x1, x2, . . . , xt} is a subset of vertices in AQn, we
use Sb to denote the set of vertices {xb

1, x
b
2, . . . , x

b
t} with b ∈ In.

The following two properties can be easily verified from the definition of
AQn.

Proposition 2.1 If uv is an edge in AQn (n � 2), then so is ubvb for any
b ∈ In.

Proposition 2.2 Let u be a vertex in AQn (n � 2). Then, for any i with
2 � i � n, uhi and uci are joined by an (i−1)-dimensional complement edge;
uci and uci−1 are joined by an i-dimensional hypercube edge; uhi and uci−1

are joined by an i-dimensional complement edge; otherwise, ua and ub are
not adjacent for any two distinct a, b ∈ In.

By Propositions 2.1 and 2.2, we have the following property immediately.

Proposition 2.3 Let uv be an edge in AQn (n � 2). If uv is not an (n −
1)-dimensional complement edge, then uh, uc, vh and vc are all distinct.
Otherwise uh = vc, uc = vh.

Proposition 2.4 In AQn (n � 3), for any vertex u ∈ L, let S = NL(u).
Then

Sh = NR(uh), Sc = NR(uc), |Sh ∩ Sc| = 2.

Proof Let u = 0un−1 · · ·u2u1 ∈ L. Then

S = NL(u) = {uhi : 2 � i � n − 1} ∪ {ucj : 1 � j � n − 1},
where

uhi = 0un−1 · · ·ui+1uiui−1 · · ·u1, 2 � i � n − 1,
(1)

ucj = 0un−1 · · ·uj+1ujuj−1 · · ·u1, 1 � j � n − 1.

Thus,

Sh = {(uhi)h : 2 � i � n − 1} ∪ {(ucj)h : 1 � j � n − 1},
where

(uhi)h = 1un−1 · · ·ui+1uiui−1 · · ·u1, 2 � i � n − 1,
(2)

(ucj )h = 1un−1 · · ·uj+1ujuj−1 · · ·u1, 1 � j � n − 1;

and
Sc = {(uhi)c : 2 � i � n − 1} ∪ {(ucj)c : 1 � j � n − 1},

where
(uhi)c = 1un−1 · · ·ui+1uiui−1 · · ·u1, 2 � i � n − 1,

(3)
(ucj )c = 1un−1 · · ·uj+1ujuj−1 · · ·u1, 1 � j � n − 1.

Since

uh = 1un−1 · · ·u2u1 ∈ R, uc = 1un−1 · · ·u1 ∈ R,
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from (2) and (3), it is easy to verify that

Sh = NR(uh), Sc = NR(uc).

Also from (2) and (3), it is easy to see that only two vertices (uhn−1)h =
(ucn−2)c and (ucn−2)h = (uhn−1)c in Sh ∩ Sc, which implies

|Sh ∩ Sc| = 2. �

For example, let u = 00000 be a vertex in AQn. Then 7 vertices in S are

uh2 = 00010, uh3 = 00100, uh4 = 01000,

uc1 = 00001, uc2 = 00011, uc3 = 00111, uc4 = 01111.

Thus,
Sh = {10010, 10100, 11000, 10001, 10011, 10111, 11111},
Sc = {11101, 11011, 10111, 11110, 11100, 11000, 10000},

and so
Sh ∩ Sc = {11000, 10111}.

Proposition 2.5 For any edge uv in AQn (n � 3), there exist p internally
disjoint uv-paths of length 3, where p = 2n − 4 if v = uci (2 � i � n − 1),
and p = 2n − 3 otherwise.

Proof We prove the proposition by induction on n � 3. For n = 3, it is easy
to check that the conclusion holds. Now assume that the proposition holds
for n − 1.

Case 1 uv is not an n-dimensional (complement/hypercube) edge. Without
loss of generality, assume that uv is an edge in L.

If v = ucj , 2 � j � n− 2, by the induction hypothesis, there exist 2n− 6
internally disjoint uv-paths of length 3 in L. By Proposition 2.3, uh, uc, vh

and vc are all distinct, then uuh + uhvh + vhv and uuc + ucvc + vcv are two
internally disjoint uv-paths of length 3. Thus, there exist 2n − 4 internally
disjoint uv-paths of length 3 in AQn.

If v = uc1 or v = uhj , 2 � j � n − 1, by the induction hypothesis, there
exist 2n−5 internally disjoint uv-paths of length 3 in L. For the same reason
as the above, uuh+uhvh+vhv and uuc+ucvc+vcv are two internally disjoint
uv-paths of length 3. Thus, there exist 2n− 3 internally disjoint uv-paths of
length 3 in AQn.

If v = ucn−1, by the induction hypothesis, there exist 2n − 5 internally
disjoint uv-paths of length 3 in L. By Proposition 2.3, uh = vc and uc = vh,
then uuh +uhvh + vhv and uuc +ucvc + vcv are two internally joint uv-paths
of length 3. Thus, there exist 2n − 4 internally disjoint uv-paths of length 3
in AQn.

Case 2 uv is an n-dimensional (complement/hypercube) edge. Without
loss of generality, assume u ∈ L and v ∈ R.
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If b ∈ In−1, then ubvb is an n-dimensional edge, and then uub +ubvb +vbv
is a uv-path of length 3. Since |In−1| = 2n − 3, ub ∈ L, vb ∈ R, there exist
at least 2n−3 internally uv-paths of length 3. If v = uh, we have uc = vcn−1 ;
if v = uc, we have uh = vcn−1 . Since cn−1 ∈ In−1, there exist exactly 2n − 4
internally uv-paths of length 3 in AQn.

By the induction principle, the proposition follows. �

Proposition 2.6 Let u and v be any two distinct vertices in AQn. Then
d(ub, vb) = d(u, v) for any b ∈ In.

Proof Assume d(u, v) = d1 and d(ub, vb) = d2. There exist a uv-path P1 of
length d1 and a ubvb-path P2 of length d2. Assume that P1 = (u, x1, x2, . . . ,
xd1−1, v). Then P b

1 = (ub, xb
1, x

b
2, . . . , x

b
d1−1, v

b) is a ubvb-path of length d1.
Then we know that d2 � d1.

Assume that x and y are two distinct vertices in AQn. If u = vb, then ub =
v. Assume that P2 = (uh, y1, y2, . . . , yd2−1, v

h). Then P b
2 = (u, yb

1, y
b
2, . . . ,

yb
d2−1, v) is a uv-path of length d2. Then we know that d1 � d2. So d1 = d2.

The proof is complete. �

Proposition 2.7 (Choudum and Sunitha [2]) For any two distinct vertices
u ∈ L and v ∈ R with distance d in AQn (n � 2), d(u, vc) = d − 1 or
d(u, vh) = d − 1.

3 Some lemmas

Let F denote the set of faulty vertices and/or faulty edges in AQn, f denote
the number of faulty vertices in AQn, FL and FR denote the set of faulty
vertices and/or faulty edges in L and R, respectively, and fL and fR denote
the number of faulty vertices in L and R, respectively. We have f = fL +fR.
A subgraph of AQn is fault-free if it contains no element in F.

Lemma 3.1 (Hsu, Chiang, Tan and Hsu [7]) AQn (n � 2) is (2n− 4)-fault
hamiltonian connected for n �= 3, and AQ3 is 1-fault hamiltonian connected.

Lemma 3.2 (Wang, Ma and Xu [18]) AQn is (2n − 3)-fault-tolerant
pancyclic for n � 4, and AQ3 is 2-fault-tolerant pancyclic.

Lemma 3.3 (Hsu, Chiang, Tan and Hsu [7]) For any four distinct vertices
u, v, x, y in AQn (n � 2), there exist a ux-path P1 and a vy-path P2 such that
P1 and P2 are internally disjoint and P1 ∪ P2 contains all vertices of AQn.

Lemma 3.4 (Hsu, Lai, Tsai [8]) For any two distinct vertices u and v with
distance d � 2 in AQn (n � 3), there exist at least two internally disjoint
uv-paths of length l for every l with d � l � 2n−1 in AQn.

Lemma 3.5 In AQn (n � 3), if |F | � 2n − 5, then for any two fault-free
vertices u ∈ L and v ∈ R with d(u, v) = 1, there exist two fault-free uv-paths
of every length 3 and 4, respectively.
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Proof Let u ∈ L and v ∈ R with d(u, v) = 1. Since |F | � 2n − 5, by
Proposition 2.5, there exists a fault-free uv-path of length 3 in AQn.

We now show that there exists a fault-free uv-path of length 4 in AQn.
Without loss of generality, assume that |FL| � |FR| and v = uh. Let S =
NL(u). Then Sh = NR(v) by Proposition 2.4, that is,

S = NL(u) = {uhi : 2 � i � n − 1} ∪ {ucj : 1 � j � n − 1},

where uhi and ucj are defined in (1). By the proof of Proposition 2.4,
(uhn−1)h = (ucn−2)c and (ucn−2)h = (uhn−1)c are only two vertices in Sh∩Sc.
Let T = S − {ucn−2}. Then T h ∩ T c = ∅.

For the sake of simplicity, let T = {x1, x2, . . . , x2n−4}, where, x1 = ucn−1.
Clearly, P1 = (u, x1, v) is a uv-path of length 2 in AQn. By Proposition 2.2,
for each i = 2, 3, . . . , 2n− 4, xh

i and xc
i are joined by an (n − 1)-dimensional

complement edge, and so Pi = (u, xi, x
c
i , x

h
i , v) is a uv-path of length 4 in

AQn. Since T ⊂ L, T h, T c ⊂ R, and T h∩T c = ∅, the paths P1, P2, . . . , P2n−4

are internally disjoint uv-paths, at least one of them is fault-free since |F | �
2n− 5.

If Pi is fault-free for some i with 2 � i � 2n− 4, we are done. Otherwise,
P1 is fault-free since |F | � 2n − 5.

Since |FL| � |FR| by our hypothesis, |FL| � n − 3 � 2(n − 1) − 4 for
n � 3. By Proposition 2.5, there exists a fault-free ux1-path PL of length 3
in L. Clearly, x1v /∈ F since x1v is not in Pi for each i = 2, 3, . . . , 2n − 4.
Then PL + x1v is a fault-free uv-path of length 4.

The lemma follows. �
Lemma 3.6 If AQ3 contains only one faulty element that is a vertex, then
for any two distinct fault-free vertices u and v, there exists a fault-free uv-path
of length l for every l with 2 � l � 6.

Proof Since AQ3 is vertex-symmetric, we can suppose that w = 000 is a
faulty vertex (see Fig. 2). Let u and v be two distinct vertices in AQ3 − w.
We need to prove that AQ3 − w contains a uv-path of length l for every l
with 2 � l � 6. Toward that end, assume that L = AQ0

2 and R = AQ1
2.

010 011

001

101

100

111

110

Fig. 2 AQ3 − {000}

Case 1 Both u and v in L − w.
It is easy to see from Fig. 2 that L − w contains a uv-path of length 2

since L−w is a triangle. Since uv is an edge in L, by Proposition 2.1, uhvh is
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an edge in R. Thus, uuh+uhvh +vhv is a uv-path of length 3 in AQ3−w. Let
x be the vertex in L−w different from u and v. For 4 � l � 6, let l1 = l− 3.
Then 1 � l1 � 3. Similarly, R contains a uhxh-path PR of length l1, and so
the path uuh + PR + xhx + xv is a uv-path of length l in AQ3 − w.

Case 2 Both u and v in R.
For 2 � l � 3, R contains a uv-path of length l since R is a complete

graph of order 4. For 4 � l � 5, let l1 = l − 3. Then 1 � l1 � 2. Assume
that x and y are two other vertices in R different from u and v. Then at
least two vertices in {vh, vc, xh, xc} or {vh, vc, yh, yc} are fault-free. Without
loss of generality, assume that vh and xh are fault-free. Since L contains a
vhxh-path PL of length l1, the path ux+xxh +PL +vhv is fault-free uv-path
of length l, and uy + yx + xxh + PL + vhv is a fault-free uv-path of length 6
when the length of PL is 2.
Case 3 u ∈ L − w and v ∈ R.

For 2 � l � 4, let l1 = l − 1. Then 1 � l1 � 3. Since at least one of uh

and uc is not v, we can, without loss of generality, assume uh �= v. Since R
contains a uhv-path PR of length l1, uuh + PR is a uv-path of length l in
AQ3 −w. Let x and y be vertices in L−w different from u and, without loss
of generality, assume xh �= v. For 5 � l � 6, let l1 = l − 3. Then 2 � l1 � 3.
Since R contains an xhv-path P ′

R of length l1, uy+yx+xxh +P ′
R is a uv-path

of length l in AQ3 − w.
The proof of the lemma is complete. �

Lemma 3.7 Let w be any vertex in AQ3. Then for any four distinct vertices
u, v, x, y in AQ3−w, there exist two disjoint either ux-path P1 and vy-path P2

or uy-path P3 and vx-path P4, such that they contains all vertices of AQ3−w.

Proof Since AQ3 is vertex-symmetric, we can suppose that w = 000 is a
faulty vertex (see Fig. 2). L − w is a completed graph of 3 vertices and R is
a completed graph of 4 vertices.
Case 1 u, v, x, y ∈ R. Without loss of generality, assume that vh or yh

is fault. We know that vy is an edge in R. And in L − w, there exists a
hamiltonian path PL between uh and xh. Let P1 = uuh + PL + xhx and
P2 = vy. Then the lemma holds.
Case 2 Three of u, v, x, y are in R, one is in L−w. Without loss of generality,
assume that u, v, x ∈ R and y ∈ L−w. Let z1 and z2 be two vertices in L−w
different from y. Then one of zh

1 and zh
2 is not x, assume zh

1 �= x.
If zh

1 = u, then in R − {u} there exists a vx-path PR of length 2. Let
P3 = uz2 + z2z1 + z1u and P4 = PR. Then the lemma holds.

If zh
1 = v, then in R − {v} there exists a ux-path P ′

R of length 2. Let
P1 = yz2 + z2z1 + z1v and P4 = P ′

R. Then the lemma holds.
If zh

1 �= u and zh
1 �= v, zh

1 is incident with v in R. Let P1 = ux and
P2 = vzh

1 + zh
1 z1 + z1z2 + z2y. Then the lemma holds.

Case 3 Two of u, v, x, y are in R, and two are in L − w.

Subcase 3.1 Both u and x are in the same part of R or L − w, and both
v and y are in the other part. Without loss of generality, assume u, x ∈
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R, v, y ∈ L − w. Since R and L − w are completed graphs, there exist a
hamiltonian ux-path PR in R and a hamiltonian vy-path PL in L − w. Let
P1 = PR and P2 = PL. Then the lemma holds.
Subcase 3.2 Both u and y are in the same part of R or L − w, and both
v and x are in the other part. Without loss of generality, assume u, y ∈
R, v, x ∈ L − w. Since R and L − w are completed graphs, there exist a
hamiltonian uy-path PR in R and a hamiltonian vx-path PL in L − w. Let
P3 = PR and P4 = PL. Then the lemma holds.
Subcase 3.3 Both u and v are in the same part of R or L − w, and both
x and y are in the other part. Without loss of generality, assume u, v ∈
L−w, x, y ∈ R. Let z be a vertex in L−w different from u and v. Then one
of uz and vz is not a 2-dimensional complement edge. Assume that uz is not
a 2-dimensional complement edge. Then uh, zh, uc, zh are 4 distinct vertices.

Assume that either uh or uc is in {x, y}, without loss of generality, say
uh = x. Since uh, zh, uc, zh are 4 distinct vertices, one of zh and zc is not x
and y, say zh �= y. Since R−{x} is a completed graph, there exists a zhy-path
PR of length 2 in R − {x}. Let P1 = ux and P2 = vz + zzh + PR. Then the
lemma holds.

Assume that neither uh nor uc is in {x, y} below. Since uh, zh, uc, zh are
4 distinct vertices, {zh, zc} = {x, y}, say zh = x and zc = y. Since uh �= x,
there exists a uhx-path P ′

R of length 2 in R − {y}. Let P1 = uuh + P ′
R and

P2 = vz + zy. Then the lemma holds.
Case 4 One of u, v, x, y is in R, three are in L−w. Without loss of generality,
assume u, v, x ∈ L − w and y ∈ R. One of vh and vc is not y, say vh �= y.
There exists a hamiltonian uhx-path PR of length 3 in R. Let P1 = ux and
P2 = vvh + PR. Then the lemma holds.

The proof of the lemma is complete. �
Lemma 3.8 If AQn (n � 3) contains at most 2n− 5 faulty vertices and no
faulty edges, then for any two distinct fault-free vertices u and v with distance
d, there exist fault-free uv-paths of length l for each l = d + 2, d + 3.

Proof We prove the lemma by induction on n � 3. The induction basis for
n = 3 holds by Lemma 3.6. Assume that the lemma holds for n − 1 with
n � 4. Without loss of generality, assume that

|FL| = fL � |FR| = fR.

Then fL � n − 3. Let u and v be any two distinct fault-free vertices with
distance d in AQn.

Case 1 Both u and v are in L − F.
Since

fL � n − 3 � 2(n − 1) − 5 (n � 4),

by the induction hypothesis, there exists a fault-free uv-path of length l for
each l = d + 2, d + 3 in L, and so in AQn.

Case 2 Both u and v are in R − F.
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If fR � 2n − 7, then the conclusion holds by the induction hypothesis.
Assume fR � 2n − 6 below. Then fL � 1.

Subcase 2.1 If uv is not an (n−1)-dimensional complementary edge, then
uh �= vc and uc �= vh. Since at least one of {uh, vh} and {uc, vc} is fault-free,
without loss of generality, assume that {uh, vh} is fault-free.

If d = 1, then, by Proposition 2.5, there exists a fault-free uv-path of
length 3. By Proposition 2.2 and fL � 1, there exists a fault-free uhvh-path
PL of length 2. Then the path uuh+PL+vvh is a fault-free uv-path of length
4. If d � 2, then, since d(uh, vh) = d and fL � 1, by Lemma 3.4, there exist
a fault-free uhvh-path P ′

L of length d and a fault-free uhvh-path P ′′
L of length

d + 1 in L. Then the path uuh + P ′
L + vhv is a fault-free uv-path of length

d + 2 and the path uuh + P ′′
L + vhv is a fault-free uv-path of length d + 3.

Subcase 2.2 If uv is an (n − 1)-dimensional complementary edge, then
uh = vc and uc = vh.

Since |F | � 2n−5, there exists a fault-free uv-path of length 3. We assume
that this path is uubvbv, where b ∈ In. Then ubvb is an (n − 1)-dimensional
complementary edge.

If uh and vh are fault-free, then, by Lemma 3.4 and |FL| � 1, there exists
a fault-free uhvh-path PL of length 2. Then the path uuh + PL + vvh is a
fault-free uv-path of length 4. We assume that one of uh and vh is faulty
below. Then we know that ub ∈ R and vb ∈ R. Let x = ub and y = vb. Since
xy is an (n − 1)-dimensional edge, we know that xh = yc. Since one of uh

and vh is faulty and fR � 1, we know that xh is fault-free. Then uxxhyv is
a fault-free uv-path of length 4.
Case 3 u ∈ L − F and v ∈ R − F.

By Lemma 3.5, the lemma holds for d = 1. Assume d � 2 below. By
Proposition 2.7, d(u, vh) = d−1 or d(u, vc) = d−1. Without loss of generality,
assume d(u, vh) = d − 1.

Subcase 3.1 fR � 2n − 7.
When vh or uh is fault-free, without loss of generality, assume that vh is

fault-free. By the induction hypothesis, in L there exist fault-free uvh-paths
PL of length d + 1 and P ′

L of length d + 2. Then PL + vhv is a fault-free
uv-path of length d + 2 and P ′

L + vhv is a fault-free uv-path of length d + 3.
Assume that vh and uh are faulty below.

Let
F = {vh, x1, x2, . . . , xfL−1, u

h, y1, y2, . . . , yfR−1},
where xi ∈ L, 1 � i � fL − 1 and yi ∈ R, 1 � i � fR − 1. Let

S = {xi : 1 � i � fL − 1}, T = {yi : 1 � i � fR − 1},
L′ = L − S − T h.

Since
|S| + |T | = fL + fR − 2 � 2n − 7,

by the induction hypothesis, there exist uvh-path TL of length d + 1 and T ′
L

of length d+2 in L′. We use x to denote the vertex incident with vh in TL and
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use y to denote the vertex incident with vh in T ′
L. Then TL(u, x)+xxh +xhv

is a uv-path of length d + 2 and T ′
L(u, y) + yyh + yhv is a uv-path of length

d + 3. Since
L′ ∩ (S + T h) = ∅,

we know that TL(u, x), T ′
L(u, y), xh and yh are fault-free. So TL(u, x) +

xxh + xhv and T ′
L(u, y) + yyh + yhv are fault-free.

Subcase 3.2 fR � 2n − 6, then fL � 1. In R, there exist 2n − 3 vertices
incident with v. Since |F | � 2n− 5, there exists a fault-free vertex x incident
with v in R, such that xh �= u, and xh is fault-free. Since

d(u, vh) = d − 1,

we know that
d − 2 � d(u, xh) � d.

By Lemma 3.4, Proposition 2.2 and the induction hypothesis, there exist
fault-free uxh-paths PL of length d + 1 and P ′

L of length d + 2. Then PL +
xhx+xv is a fault-free uv-path of length d+2 and P ′

L+xhx+xv is a fault-free
uv-path of length d + 3.

The lemma follows. �

4 Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. Start with the following
lemma.

Lemma 4.1 If Theorem 1.1 holds for any subset F ⊂ V (AQn) with |F | =
2n− 5, then Theorem 1.1 holds also for

(i) any subset F ′ ⊂ V (AQn) with |F ′| � 2n − 5, and
(ii) any subset F ′ ⊂ V (AQn) ∪ E(AQn) with |F ′| � 2n − 5.

Proof (i) Let m = 2n−5−|F |. Then 0 � m � 2n−5. We prove the lemma
by induction on m. For m = 0, i.e., |F | = 2n−5 for any subset F ⊂ V (AQn),
the induction basis holds by our hypothesis. Assume that the lemma holds
for any m0 with 0 � m0 < 2n − 5, that is, Theorem 1.1 holds for any subset
F ′ ⊂ V (AQn) with |F ′| = 2n − 5 − m0.

Let m = m0 + 1, and F be any subset of V (AQn) with

|F | = 2n − 6 − m0 < 2n − 5.

Let u and v be arbitrary two distinct vertices in AQn − F with distance
d = dAQn(u, v), and let x be a vertex in AQn −F different from u and v and
F ′ = F ∪ {x}. Then

|F ′| = 2n − 5 − m0 � 2n− 5,
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that is,
m0 = 2n − 5 − |F ′| � 0.

By the induction hypothesis, for every integer l with

d + 2 � l � 2n − |F ′| − 1,

there exists a uv-path of length l in AQn − F ′, so in AQn − F.

(ii) We now prove the second assertion by induction on k, where k is the
number of faulty edges in any subset

F ⊂ V (AQn) ∪ E(AQn) (|F | � 2n − 5).

The induction basis for k = 0 holds by (i). Assume that the lemma holds for
k with 0 � k < 2n − 5.

Assume that

F ⊂ V (AQn) ∪ E(AQn) (|F | � 2n− 5, |F ∩ E(AQn)| = k + 1).

Let u and v be arbitrary two distinct vertices in AQn −F with distance d in
AQn. When uv ∈ F, let F ′ = F − {uv}. Then |F ′| � 2n − 6 and F ′ includes
k edges. By the induction hypothesis, for any l with

d + 2 � l � 2n − f − 1,

there exists a uv-path P of length l in AQn −F ′. Clearly, P does not contain
the edge uv. Thus, P is a uv-path P of length l in AQn − F.

Assume that uv is fault-free below. Let xy be an edge in F. Since xy is
not uv, we can assume that x �= u and x �= v. Let

F ′′ = F − {uv} ∪ {x}.

Then
|F ′′| = |F | � 2n − 5

and F ′′ contains at most k edges. By the induction hypothesis, for every
integer l with

d + 2 � l � 2n − f − 2,

there exists a uv-path P of length l in AQn−F ′′. Clearly, P does not contain
x, and so P is in AQn−F. For l = 2n−f−1, by Lemma 3.1 and |F | � 2n−5,
there exists a fault-free uv-path of length l.

The proof of the lemma is complete. �
We now give the proof of Theorem 1.1.

Proof of Theorem 1.1 By Lemma 4.1, we only need to prove the theorem
when |F | = 2n − 5 and all faulty elements are vertices.

Now, we prove the theorem by induction on n � 3. The induction basis
for n = 3 holds by Lemma 3.6. Assume that the theorem holds for any k
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with 3 � k < n. Let u and v be two distinct vertices in AQn − F. Since all
faulty elements are vertices, we have

|F | = f = fL + fR.

Without loss of generality, assume fL � fR. For l = d + 2 and d + 3, by
Lemma 3.8, we are done. For l = 2n − f − 1, by Lemma 3.1, we are done.
Assume that

d + 4 � l � 2n − f − 2

below.
Case 1 fR � 2n − 7. In this case, n cannot be 4.

Subcase 1.1 Both u and v are in either L − F or R − F. Without loss of
generality, assume u, v ∈ L − F.

For
d + 2 � l � 2n−1 − fL − 1,

by the induction hypothesis, there exists a uv-path of length l in L − F. In
particular, we use TL to denote a uv-path of length 2n−1− fL −1 and use T ′

L

to denote a uv-path of length 2n−1−fL−2. The path T ′
L (resp. TL) contains

2n−1 − fL − 1 (resp. 2n−1 − fL) vertices. We have

2n−1 − fL − 1
2

� 2n− 5 − fL + 1 = fR + 1 (n � 5),

and so there exists an edge xy in T ′
L (resp. TL) with {xxh, yyh, xhyh} that

are fault-free. Without loss of generality, assume that x is closer to u than y.
For l = 2n−1 − fL, the path T ′

L(u, x) + xxh + xhyh + yhy + T ′
L(y, v) is a

fault-free uv-path of length l.
For l = 2n−1 − fL + 1, the path TL(u, x) + xxh + xhyh + yhy + TL(y, v)

is a fault-free uv-path of length l.
For

2n−1 − fL + 2 � l � 2n − f − 2,

let
l1 = l − 2n−1 + fL + 1.

Then
3 � l1 � 2n−1 − fR − 1.

By the induction hypothesis, there exists an xhyh-path PR of length l1 in
R − F. Then the path T ′

L(u, x) + xxh + PR + yhy + T ′
L(y, v) is a fault-free

uv-path of length l (= l1 + 2 + 2n−1 − fL − 2 − 1, see Fig. 3 (a)).
Subcase 1.2 u ∈ L − F and v ∈ R − F. By Proposition 2.7, without loss
of generality, we can assume that d(u, vh) = d − 1.

For
d + 4 � l � 2n−1 − fL + 1,

let l1 = l − 2. Then
d + 2 � l1 � 2n−1 − fL − 1.



710 Hailiang WANG et al.
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u
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x

v
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x

v

PR
T ′

L

L R

(a) (b) (c)

Fig. 3 Illustrations for Case 1

Let S = NR(v) − {uh}. Since |NR(v)| = 2n − 3, we have |S| � 2n − 4.
Since |F | = 2n− 5, there exists a vertex x in S such that x and xh are fault-
free. Since d(u, vh) = d− 1, d(u, xh) � d. By the induction hypothesis, there
exists a fault-free uxh-path PL of length l1. Then the path PL + xhx + xv is
a fault-free uv-path of length l (= l1 + 2, see Fig. 3 (b)).

Let T ′
L be a uxh-path of length 2n−1 − fL − 2 in L.

For
2n−1 − fL + 2 � l � 2n − f − 2,

let
l1 = l − 2n−1 + fL + 1.

Then
3 � l1 � 2n−1 − fR − 1.

By the induction hypothesis, there exists a fault-free vx-path PR of length
l1 in R. Then the path T ′

L + xhx + PR is a fault-free uv-path of length
l (= l1 + 2n−1 − fL − 2 + 1, see Fig. 3 (c)).
Case 2 fR = 2n − 6. In this case, fL = 1.

Subcase 2.1 Both u and v are in L − F.
In this subcase, we have

2n−1 − fL − 1
2

� 2n− 5 − fL + 1 = fR + 1.

For the same reason as Subcase 1.1, for

d + 4 � l � 2n−1 − fL + 1,

there exists a fault-free uv-path of length l in AQn − F.
When n � 5, for

2n−1 − fR + 5 � l � 2n − f − 2,

let
l1 = l − 2n−1 + fR − 2, l2 = l − 2n−1 + fR − 1.

Then
3 � l1 � 2n−1 − fL − 4, 4 � l2 � 2n−1 − fL − 3.
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Let S = NL(v)−{u}. Since |NL(v)| = 2n−3, we have |S| � 2n−4. Since
|F | = 2n − 5, there exists a vertex x in S such that x and xh are fault-free.
If uh is fault-free then, since uh �= xh, there exists an xhuh-path TR of length
2n−1 − fR − 1 in R − F by Lemma 3.1. Since

|FL + {u}| = 2 � 2n − 7 (n � 5),

by the induction hypothesis, there exists a vx-path P of length l2 in L −
F − {u}. The path uuh + TR + xxh + P is a fault-free uv-path of length
l (= 1 + 2n−1 − fR − 1 + 1 + l2, see Fig. 4 (a)).

L R

v

u

xh

x

uh

TR

P

L R

v

u

x

y

xh

yh

P ′ T ′
R

(a) (b)

Fig. 4 Illustrations for Subcase 2.1

Assume that uh is a faulty vertex below.
Let T = NL(u) − {v, x}. Since |NL(u)| = 2n − 3, we have |T | � 2n − 5.

Since |F | = 2n − 5 and uh is faulty, there exists a vertex y in T such that y
and yh are fault-free. By Lemma 3.1, there exists an xhyh-path T ′

R of length
2n−1 − fR − 1 in R − F. Since

|FL + {v, x}| = 3 � 2n − 7 (n � 5),

by the induction hypothesis, there exists a uy-path P ′ of length l1 in L−F −
{v, x}. The path P ′ + yyh + T ′

R + xhx + xv is a fault-free uv-path of length
l (= l1 + 1 + 2n−1 − fR − 1 + 2, see Fig. 4 (b)).

Since

(2n−1 − fR + 5) − (2n−1 − fL + 1) = fL − fR + 4 = 11 − 2n � 1 (n � 5),

we finish the proof of the theorem for this situation.
When n = 4, for

2n−1 − fL + 2 � l � 2n − f − 2,

let
l1 = l − 2n−1 + fL.

Then 2 � l1 � 4. Let w be a faulty vertex in L.
Next, we prove that there exists a fault-free path PR of length l1 with

end-vertices x and y, such that there exists a vertex x′ incident with x and
a vertex y′ incident with y in R, and x′, y′ /∈ {u, v, w}, x′ �= y′.
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Assume that AQ10
2 = L′ and AQ11

2 = R′. Let w1, x1, y1 and z1 be four
vertices in L′, and assume that

w2 = wh2
1 , x2 = xh2

1 , y2 = yh2
1 , z2 = zh2

1 .

Then w2, x2, y2, z2 ∈ R′. Since there exist exactly two faulty vertices in R,
two of {w1, w2}, {x1, x2}, {y1, y2}, {z1, z2} are fault-free. Without loss of
generality, we assume that both {x1, x2} and {y1, y2} are fault-free.

And we know that two of w1, w2, z1, z2 are fault-free. We only need to
consider two cases: a) both w1 and z1 are fault-free (see Fig. 5 (a)); b) both
z1 and z2 are fault-free (see Fig. 5 (b)) (We omit some edges in the figure
since they are not needed in our proof). The other cases can be considered
similarly.

z1 x1 x2

y1 y2w1

z1 x1 x2

y1 y2

z2

(a) (b)

Fig. 5 Illustrations for the situation n = 4 of Subcase 2.1

Since x1y1 is not a 2-dimensional complement edge and xh
1 , xc

1, y
h
1 , yc

1 are
4 distinct vertices, any one of xh

1 , xc
1, y

h
1 , yc

1 is not in {u, v, w}. Without loss
of generality, assume that xh

1 is not in {u, v, w}.
In Fig. 5 (a), we enumerate some paths of length 2 with the end-vertex

x1 : x1z1y1, x1y1w1, x1y1z1, x1y1y2. Since y1, w1, z1, y2 are all distinct, one
of yh

1 , zh
1 , wh

1 , yh
2 is not in {u, v, w}, say y′. We use x′ to denote xh

1 .
Similarly, for the length 3 or 4 and the situation in Fig. 5 (b), there

exists a fault-free path PR of length l1 end with x and y, such that there
exists a vertex x′ incident with x and a vertex y′ incident with y in R, and
x′, y′ /∈ {u, v, w}, x′ �= y′.

Since L ∼= AQ3, by Lemma 3.7, there exist ux′-path P1 and vy′-path
P2 such that P1 and P2 are disjoint and P1 ∪ P2 contains all vertices of
L−{w}. Then path P1 +x′x+PR + yy′ +P2 is a fault-free uv-path of length
l = l1 + 2n−1 − fL.

Subcase 2.2 Both u and v are in R − F.
In this case, either uh or uc is fault-free. Without loss of generality,

assume that uh is fault-free. Let S = NR(v) − {u}. Then |S| � 2n − 4.
Since |F | = 2n− 5, there exists a vertex x in S such that both x and xh are
fault-free. We know that

d − 1 � d(uh, xh) � d + 1.

For l = d + 4 or d + 5, let l1 = l − 3. Then l1 = d + 1 or d + 2. Since
fL = 1, by Lemma 3.4, Proposition 2.2, and the induction hypothesis, there
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exists a fault-free uhxh-path PL of length l1. Then uuh + PL + xhx + xv is a
fault-free uv-path of length l = l1 + 3.

For
d + 6 � l � 2n−1 − fL + 2,

let l1 = l − 3. Then
d + 3 � l1 � 2n−1 − fL − 1.

By the induction hypothesis, there exists a fault-free uhxh-path P ′
L of length

l1. Then uuh + P ′
L + xhx + xv is a fault-free uv-path of length l = l1 + 3.

For
2n−1 − fR + 3 � l � 2n − f − 2,

let
l1 = l − 2n−1 + fR.

Then
3 � l1 � 2n−1 − fL − 2.

When n � 5, by Lemma 3.1, there exists a uv-path TR of length 2n−1 −
fR−1 in R−F. Since fL = 1, there exists an edge xy in TR such that xh and
yh are fault-free. By the induction hypothesis and d(xh, yh) = 1, there exists
a fault-free xhyh-path P ′

L of length l1. Without loss of generality, assume
that x is closer to u than y. Then TR(u, x) + xxh + P ′

L + yhy + TR(y, v) is a
fault-free uv-path of length l = (l1 + 2n−1 − fR).

When n = 4, we have fR = 2 and fL = 1. By Lemma 3.2, there exists a
hamiltonian cycle of length 6 in R−F. Then there exist two internally disjoint
fault-free uv-path P1 and P2 in R, and then ε(P1) + ε(P2) = 6. Without loss
of generality, assume that ε(P1) � ε(P2). Then 1 � ε(P1) � 3.

a) When ε(P1) = 1, P2 is a hamiltonian uv-path of R−F. Since fL � 1,

there exists an edge x′y′ in P2 such that x′h and y′h are fault-free. Without
loss of generality, assume that x is closer to u than y. Then let P3 = P2(u, x′)
and P4 = P2(v, y).

b) When ε(P1) = 2, let

P1 = ux1 + x1v, P2 = uy1 + y1y2 + y2y3 + y3v.

Since fL = 1, xh
1 or xc

1 is fault-free. Without loss of generality, assume that
xh

1 is fault-free. And we know that yh
1 or yh

3 is fault-free. Without loss of
generality, assume that yh

1 is fault-free. Let

x′ = x1, y′ = y1, P3 = ux1, P4 = vy3 + y3y2 + y2y1.

c) When ε(P1) = 3, let

P1 = ux1 + x1x2 + x2v, P2 = uy1 + y1y2 + y2v.

Since fL = 1, {xh
1 , yh

2 } or {xh
2 , yh

1 } is fault-free. Without loss of generality,
assume that {xh

2 , yh
1 } is fault-free. Let

x′ = x2, y′ = y1, P3 = ux1 + x1x2, P4 = vy2 + y2y1.
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Since R ∼= AQ3, by Lemma 3.6, there exists a fault-free x′hy′h-path P ′
L of

length l1. Then the path P3 + x′x′h + P ′
L + y′hy′ + P4 is a fault-free uv-path

of length l = (l1 + 6).
Since fL = 1 and fR = 2, we finish the proof of the theorem for this

subcase.
Subcase 2.3 u ∈ L−F and v ∈ R−F. By Proposition 2.7, we can assume
d(u, vh) = d − 1.

Let S = NR(v)−{uh}. Then |S| � 2n−4. Since |F | = 2n−5, there exists
a vertex w1 in S such that w1 and wh

1 are fault-free. We know that

d − 2 � d(u, wh
1 ) � d.

In the same sense, there exists a fault-free vertex w2 incident with u in L
such that wh

2 is fault-free and wh
2 �= v.

For
d + 4 � l � 2n−1 − fL + 1,

let l1 = l − 2. Then
d + 2 � l1 � 2n−1 − fL − 1.

By the induction hypothesis, there exists a uwh
1 -path PL of length l1 in L−F.

Then PL + wh
1w1 + w1v is a fault-free uv-path of length l = l1 + 2.

For
2n−1 − fR + 3 � l � 2n − f − 2,

let
l1 = l − 2n−1 + fR, l2 = l − 2n−1 + fR + 1.

Then
3 � l1 � 2n−1 − fL − 2, 2 � l2 � 2n−1 − fL − 1.

When n � 5, by Lemma 3.1, there exists a fault-free vwh
2 -path TR of

length 2n−1 − fR − 1 in R. By the induction hypothesis, there exists a uw2-
path P ′

L of length l1 in L − F. Then P ′
L + w2w

h
2 + TR is a fault-free uv-path

of length l = l1 + 1 + 2n−1 − fR − 1.
When n = 4, by Lemma 3.2, there exists a fault-free hamiltonian cycle C

of length 6 in R. Let

C = vx1 + x1x2 + x2x3 + x3x4 + x4x5 + x5v.

Since fL = 1, one of xh
1 , xh

2 and xh
5 is fault-free, and not u. If xh

2 is fault-free
and xh

2 �= u, then let

T ′
R = vx5 + x5x4 + x4x3 + x3x2.

Since L ∼= AQ3, by Lemma 3.6, there exists a fault-free uxh
2 -path P ′

L of length
l2 in L. Then P ′

L + xh
2x2 + T ′

L is a fault-free uv-path of length l = l1 + 5. If
x1 or x5 is fault-free, and not u, then without loss of generality, assume that
xh

1 is fault-free and xh
1 �= u. Let

T ′′
R = vx5 + x5x4 + x4x3 + x3x2 + x2x1.
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Since L ∼= AQ3, by Lemma 3.6, there exists a fault-free ux1-path P ′
L of length

l1. Then P ′
L + x1x

h
1 + T ′′

R is a fault-free uv-path of length l = l1 + 6.
Since fL = 1 and fR = 2n− 6, we finish the proof of the theorem for this

subcase.
Case 3 |FR| = 2n − 5. Then L − F is a fault-free (n − 1)-dimensional
augmented cube.
Subcase 3.1 Both u and v are in L.

For d + 4 � l � 2n−1 − 1, by the induction hypothesis, there exists a
uv-path of length l in L.

Since there exist 2n−1−2n+5 (> 5) fault-free vertices in R, there exists a
fault-free vertex w such that w /∈ {uh, uc, vh, vc}. By Lemma 3.3, there exist
uwh-path P1 and vwc-path P2 such that P1 and P2 are internally disjoint
and P1 ∪ P2 contains all vertices of L.

For l = 2n−1, the path P1 + whw + wwc + P2 is a fault-free uv-path of
length l.

For
2n−1 + 1 � l � 2n − f − 2,

let l1 = l − 2n−1. Then

1 � l1 � 2n−1 − f − 2.

Assume that w is a fault vertex in R. By Lemma 3.2, there exists a
hamiltonian cycle C in R − F + {w}. Let

C = wx1 + x1x2 + · · · + xt−1xt + xtw,

where t = 2n−1 − fR. Then

P1 = x1x2 + · · · + xl1xl1+1, P2 = xtxt−1 + · · · + xt−l1+1xt−l1

are two distinct paths of length l1. So there exists a fault-free path PR of
length l1 such that PR is not a path between uh and vh. Assume that PR is
the path between x and y. Then x /∈ {uh, vh} or y /∈ {uh, vh}. Without loss
of generality, assume x /∈ {uh, vh} below.

If y = uh or y = vh, then without loss of generality, assume y = uh.
Since x �= vh, by Lemma 3.1, there exists a xhv-path PL of length 2n−1−2 in
L−{u}. Then PL+xhx+PR+yu is a fault-free uv-path of length l = l1+2n−1.

If y �= uh and y �= vh, by Lemma 3.3, there exist uyh path P3 and vxh-
path P4 such that P3 and P4 are internally disjoint and P3 ∪ P4 contains all
vertices of L. Then P3 + yhy +PR +xxh +P4 is a fault-free uv-path of length
l = l1 + 2n−1.

Subcase 3.2 Both u and v are in R − F.
For

d + 4 � l � 2n−1 + 1,

let l1 = l − 2. Then
d + 2 � l1 � 2n−1 − 1.
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We know that d(uh, vh) = d. Then there exists a uhvh-path PL of length l1.
Then uuh + PL + vhv is a fault-free uv-path of length l = l1 + 2.

For
2n−1 − f + 4 � l � 2n − f − 2,

let
l1 = l − 2n−1 + f, l2 = l − 2n−1 + f + 1.

Then
4 � l1 � 2n−1 − 2, 5 � l2 � 2n−1 − 1.

Assume that w is a faulty vertex in R.
When n � 5, by Lemma 3.1, there exists a hamiltonian uv-path TR in

R − F + {w}. Assume that x and y are two vertices incident with w in TR.
Without loss of generality, assume that x is closer to u than y. Since

d(xh, yh) = d(x, y) � 2,

there exists an xhyh-path P ′
L of length l1. Then TR(u, x)+xxh +P ′

L + yhy +
TR(y, v) is a fault-free uv-path of length l = l1 + 2n−1 − f.

When n = 4, by Lemma 3.2, there exists a hamiltonian cycle C of length
6 in R − F + {w}. Let

C = wx1 + x1x2 + x2x3 + x3x4 + x4x5 + x5w.

If v is incident with u in C, then there exist two fault-free disjoint paths
P1 and P2 in R, such that P1 ends with u and P2 ends with v, P1∪P2 contains
all vertices in R − F. Assume that the other end-vertex of P1 is x, and the
other end-vertex of P2 is y. By Lemma 3.6, there exists a fault-free xhyh-path
P ′

L of length l1. Then P1 + xxh + P ′
L + yhy + P2 is a fault-free uv-path of

length l = l1 + 5.
If v is not incident with u in C, then there exist two distinct fault-free

vertices x and y, such that x is incident with u and y is incident with v.
By Lemma 3.6, there exists a fault-free xhyh-path P ′′

L of length l2. Then the
path ux + xxh + P ′′

L + yhy + yv is a fault-free uv-path of length l = l2 + 4.
Since fR = 2n− 5, we finish the proof of the theorem for this subcase.

Subcase 3.3 u ∈ L−F and v ∈ R−F. By Proposition 2.7, we can assume
d(u, vh) = d − 1.

Let S = NR(v)−{uh}. Then |S| � 2n−4. Since |F | = 2n−5, there exists
a vertex w in S such that w and wh are fault-free. We know that

d − 1 � d(uh, wh) � d + 1.

For
d + 4 � l � 2n−1 + 1,

let l1 = l − 2. Then
d + 2 � l1 � 2n−1 − 1.
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There exists a uwh-path PL of length l1 in L. The path PL + whw + wv is a
fault-free uv-path of length l = l1 + 2.

For
2n−1 + 2 � l � 2n − f − 2,

let l1 = l − 2n−1. Then

2 � l1 � 2n−1 − f − 2.

When n � 5, by Lemma 3.2, there exists a cycle C of length 2n−1 − f
in R − F. Then there exists a vertex x in R − F such that there exists a
fault-free vx-path TR of length l1. And we have xh �= u or xc �= u. Without
loss of generality, assume xh �= u. By Lemma 3.1, there exists a uxh-path TL

of length 2n−1 − 1 in L. The path TL + xhx + TR is a fault-free uv-path of
length l = l1 + 2n−1.

When n = 4, since

fR = 2n− 5, |NR(v)| = 2n− 3,

there exists a fault-free vy-path PR of length 2 in R−F for some y ∈ R−F.
We know that yh �= u or yc �= u. Without loss of generality, assume yh �= u.
By Lemma 3.6, there exists a uyh-path TL of length 23 − 1. Then the path
TL + yhy + PR is a fault-free uv-path of length 23 + 2.

We know that there exist two disjoint edges vx1 and y1z1 in R − F, such
that xh

1 and zh
1 are not u. When yh

1 �= u, by Lemma 3.3, there exist uyh
1 -path

P1 and xh
1zh

1 -path P2, such that P1 and P2 are disjoint and P1 ∪ P2 contains
all vertices in L. Then the path P1 + yh

1 y1 + y1z1 + z1z
h
1 + P2 + xh

1x1 + x1v is
a fault-free uv-path of length 23 +3. When yh

1 = u, there exists an xh
1zh

1 -path
P3 of length 6 in L−{u}. Then the path vx1 +x1x

h
1 +P3 + zh

1 z1 + z1y1 + y1u
is a fault-free uv-path of length 23 + 3.

The proof of the theorem is complete.

5 Conclusion and problems

The augmented cube AQn is an important variation of the hypercube Qn.
In this paper, we have shown that if AQn (n � 3) has at most 2n − 5
faulty vertices and/or edges, then for any two fault-free vertices u and v with
distance d in AQn, there exist fault-free uv-paths of every length from d + 2
to 2n − f − 1, where f is the number of faulty vertices in AQn. Our result is
the best possible in the following sense.

Assume that d(u, v) = 1 and u = vcj for some i, where 2 � j � n, by
Proposition 2.2,

S ∩ T = {uhj (= vcj−1), vhj (= ucj−1), uhj+1 (= vcj+1), vhj+1(= ucj+1)}.
Assume that

u = vb, F = {uhj , uhj+1}.
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We know that
|F | = 2 � 2n − 5 (n � 4)

and then, there exists no uv-path of length 2.
In AQn, if |F | = 2n− 4, then there exist two distinct fault-free vertices u

and v with distance d, such that there exists no fault-free uv-path of length
l for some l ∈ {d + 2, d + 3, . . . , 2n − f − 1}. We have an instance as follows.

Assume that

u = u1u2u3 · · ·un, v = ucn−1 = u1u2u3 · · ·un.

Then uv is an edge in AQn. Let

x = ucn−2 = u1u2u3 · · ·un, y = uh = u1u2u3 · · ·un,

and let S be the vertices adjacent to u and F = S−{v, x, y}. Since v, x, y ∈ S,
we have

|F | = 2n− 1 − 3 = 2n− 4.

We can affirm that there are no fault-free uv-paths of length 3. Assume that

A = AQ00
n−2, B = AQ01

n−2, C = AQ10
n−2, D = AQ11

n−2.

Without loss of generality, assume u ∈ A since AQn is vertex-symmetric.
Then

v ∈ B, x ∈ A, y ∈ C.

We have
N(x) ∩ V (C) = {xh = u1u2u3 · · ·un},
N(x) ∩ V (D) = {xc = u1u2u3 · · ·un},

N(x) ∩ V (B) = {v = xhn−1} (since xcn−1 = uhn−1),

N(v) ∩ V (C) = {vc = y = u1u2u3 · · ·un},
N(v) ∩ V (D) = ∅ (since vh = uc is fault), N(v) ∩ V (A) = {u, x}.

So, there exist no vx-paths of length 2 except xuv. Similarly, there exist no
vy-paths of length 2 except vuy. So, there exist no fault-free uv-paths of
length 3.

However, these examples are valid only in the case d = 1. Excluding this
case, for d � 2 or n � 4, it is worthwhile to investigate the following questions
suggested by the anonymous referees when they reviewed our manuscript.

First, it is known that AQn is pancyclic for n � 2 [2] and panconnected
for n � 1 [10]. There are several other generalized results. For example, AQn

is (2n−3)-edge-fault-tolerant pancyclic for n � 2 [10], (2n−3)-fault-tolerant
pancyclic for n � 4 [18], (2n − 3)-fault-tolerant hamiltonian, and (2n − 4)-
fault-tolerant hamiltonian connected for n � 4 [7]. The first question is, is
AQn (2n − 4)-fault-tolerant panconnected for some large d � 2 or n � 4?

Second, by definition, a graph is panconnected if, for any two vertices u
and v, there exists a fault-free uv-path of length l which ranges from d to
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2n − f − 1. However, our proof of Theorem 1.1 is not valid for the cases d
and d + 1. What study or comment can we make on these for d > 2?
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