You Lu, Xinmin Hou, Jun-Ming Xu

A NOTE ON THE *p*-DOMINATION NUMBER OF TREES

Abstract. Let p be a positive integer and G = (V(G), E(G)) a graph. A p-dominating set of G is a subset S of V(G) such that every vertex not in S is dominated by at least p vertices in S. The p-domination number $\gamma_p(G)$ is the minimum cardinality among the p-dominating sets of G. Let T be a tree with order $n \ge 2$ and $p \ge 2$ a positive integer. A vertex of V(T) is a p-leaf if it has degree at most p - 1, while a p-support vertex is a vertex of degree at least p adjacent to a p-leaf. In this note, we show that $\gamma_p(T) \ge (n + |L_p(T)| - |S_p(T)|)/2$, where $L_p(T)$ and $S_p(T)$ are the sets of p-leaves and p-support vertices of T, respectively. Moreover, we characterize all trees attaining this lower bound.

Keywords: *p*-domination number, trees.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) and edge set E(G). The Open neighborhood of a vertex $v \in V(G)$, denoted by $N_G(v)$, is the set of adjacent vertices of v, and the Closed neighborhood $N_G[v] = N_G(v) \cup \{v\}$. Let $deg_G(v) =$ $|N_G(v)|$ denote the degree of v. The maximum degree $\Delta(G) = \max\{deg_G(v) : v \in$ $V(G)\}$. For $S \subseteq V(G)$, the subgraph induced by S is denoted by G[S]. For a pair of vertices $u, v \in V(G)$, the distance $d_G(u, v)$ between u and v is the length of the shortest uv-paths in G. The diameter of G is $d(G) = \max\{d_G(u, v) : u, v \in V(G)\}$.

Let T be a nontrivial tree and $p \ge 2$ a positive integer. A *p*-leaf of T is a vertex with degree at most p-1, while a *p*-support vertex of T is a vertex of degree at least p adjacent to a *p*-leaf. We denote the sets of *p*-leaves and *p*-support vertices of T by $L_p(T)$ and $S_p(T)$, respectively. Notice that if p = 2 then the 2-leaves (resp. 2-support vertices) are the usual leaves (resp. support vertices) of T, while $L_2(T)$ (resp. $S_2(T)$) is the set of leaves (resp. support vertices) of T. A tree T is a double star if it contains exactly two vertices that are not leaves. A double star with two support vertices a and b is denoted by $S_{a,b}$. For notation and graph theory terminology we follow [2, 5, 6]. For a vertex v in a rooted tree T, we let C(v) and D(v) denote the set of children and descendants, respectively, of v, and we define $D[v] = D(v) \cup \{v\}$.

In [4], Fink and Jacobson introduced the concept of p-domination. Let p be a positive integer. A subset S of V(G) is a p-dominating set of G if for every vertex $v \in V(G) - S$, $|S \cap N_G(v)| \ge p$. The p-domination number $\gamma_p(G)$ is the minimum cardinality among the p-dominating sets of G. Any p-dominating set of G with cardinality $\gamma_p(G)$ will be called a γ_p -set of G. Note that the 1-domination number $\gamma_1(G)$ is the classical domination number $\gamma(G)$. For any $S, T \subseteq V(G), S$ p-dominates T in G if for every vertex $v \in T - S$, $|S \cap N_G(v)| \ge p$.

Some bounds of the *p*-domination number of a tree *T* are given in literature. Let *T* be a nontrivial tree of order $n \geq 3$ and with *l* leaves and *s* support vertices. Lemańska [7] showed that $\gamma(T) \geq (n+2-l)/2$. Chellali [3] proved that $\gamma_2(T) \geq (n+l-s)/2$ and this lower bound is sharp. In [1], Blidia et al. proved that, for $p \geq 2$, $\gamma_p(T) \leq (n+|L_p(T)|)/2$.

In this note, we give a lower bound of $\gamma_p(T)$ in terms of $n, |L_p(T)|, |S_p(T)|$, that is: Let T be a tree of order n. Then

$$\gamma_p(T) \ge (n + |L_p(T)| - |S_p(T)|)/2$$

for $p \ge 2$, which generalizes the lower bounds of Chellali [3]. Moreover, we characterize all trees attaining this lower bound.

Note that Fink and Jacobson [4] also provided a lower bound of $\gamma_p(T)$ in terms of the order n of a tree T and p, that is: $\gamma_p(T) \geq \frac{(p-1)n+1}{p}$. And recently Volkmann [8] characterized the family of trees with $\gamma_p(T) = \lceil \frac{(p-1)n+1}{p} \rceil$. Now we show that our bound is better than Fink and Jacobson's in some cases. Let $X_p(T)$ denote the set of vertices with degree at least p in T. Let $l_p = |L_p(T)|$ and $x_p = |X_p(T)|$. Then $\frac{\sum_{v \in L_p(T)} deg_T(v)}{l_p} \geq 1$ and $\frac{\sum_{v \in X_p(T)} deg_T(v)}{x_p} \geq p$. Let T be a tree satisfying the following conditions:

$$\frac{\sum_{v \in L_p(T)} \deg_T(v)}{l_p} \ge 1 + \alpha \text{ and } \frac{\sum_{v \in X_p(T)} \deg_T(v)}{x_p} \ge p + \beta, \tag{1.1}$$

where α and β are any two nonnegative constants satisfying $(p-1)\alpha + \beta = 1$. Hence $2n-2 = \sum_{v \in L_p(T)} deg_T(v) + \sum_{v \in X_p(T)} deg_T(v) \ge (1+\alpha)l_p + (p+\beta)x_p = (1+\alpha)n + p(1-\alpha)x_p$, the second equality holds since $l_p + x_p = n$ and $(p-1)\alpha + \beta = 1$. So $x_p \le \frac{n}{p} - \frac{2}{p(1-\alpha)}$. Therefore,

$$\frac{n+|L_p(T)|-|S_p(T)|}{2} \ge \frac{n+l_p-x_p}{2} = n-x_p \ge n-\frac{n}{p} + \frac{2}{p(1-\alpha)} > \frac{(p-1)n+1}{p}.$$

This implies that our bound is better than the bound given by Fink and Jacobson for the trees satisfying condition (1.1). [Such trees satisfying condition (1.1) exist. For example, let T be a tree of order $n \ge 2$ and $cor_p(T)$ a tree obtained from T by adding p pendant edges to each vertex of T. Then $L_p(cor_p(T)) = V(cor_p(T)) - V(T)$ and

$$\begin{aligned} X_p(cor_p(T)) &= V(T). \text{ Let } T' = cor_p(T). \text{ Then we have } \frac{\sum_{v \in L_p(T')} deg_{T'}(v)}{l_p} = 1 = 1 + 0 \\ \text{and } \frac{\sum_{v \in X_p(T')} deg_{T'}(v)}{x_p} = p + \frac{1}{n} \sum_{v \in V(T)} deg_T(v) = p + \frac{2n-2}{n} \ge p + 1. \end{aligned}$$

2. MAIN RESULTS

The following result is straightforward and can be found in [1].

Lemma 2.1. ([1]) Every p-dominating set of a graph G contains any vertex of degree at most p - 1.

A vertex is a central vertex of a star $K_{1,t}$ $(t \ge 1)$ if either $t \ge 2$ and it is the support vertex or t = 1 and it is one of the two leaves. For convenience, we call an isolated vertex a star, denoted by $K_{1,0}$, and the only vertex is called the central vertex.

We define the family \mathcal{T}_p as:

- $\mathcal{T}_p = \{T : T \text{ is obtained from a sequence } T_1, T_2, \cdots, T_k \ (k \ge 1) \text{ of trees, where } T_1 = K_{1,t} \ (t \ge p), \ T = T_k, \text{ and, if } k \ge 2, \ T_{i+1}(1 \le i \le k-1) \text{ is obtained from } T_i \text{ by using Operation } \mathcal{O}_j \ (j = 1, 2 \text{ or } 3) \text{ listed below.} \}$
 - Operation \mathcal{O}_1 : Attach a copy of $K_{1,t}$ $(0 \le t \le p-2)$ by joining the central vertex to a *p*-support vertex of T_i or to a vertex of degree at most p-2 in T_i .
 - **Operation** \mathcal{O}_2 : Attach a copy of $K_{1,t}$ $(t \ge p)$ by joining the central vertex to a *p*-support vertex of T_i .
 - Operation \mathcal{O}_3 : Attach a copy of $K_{1,t}$ $(t \ge p-1)$ by joining the central vertex to a vertex of degree at most p-2 in T_i .

From the way in which a tree $T \in \mathcal{T}_p$ is constructed we make the following lemma.

Lemma 2.2. Let T be a tree in the family \mathcal{T}_p with $p \ge 2$. Then, $V(T) = L_p(T) \cup S_p(T)$ and each vertex of $S_p(T)$ is adjacent to at least p p-leaves in T.

From Lemma 2.1 and Lemma 2.2, it is straightforward to obtain the follow result.

Lemma 2.3. For any positive integer $p \ge 2$, if $T \in \mathcal{T}_p$, then $L_p(T)$ is the unique γ_p -set of T, and

$$\gamma_p(T) = |L_p(T)| = (|V(T)| + |L_p(T)| - |S_p(T)|)/2.$$

Theorem 2.4. Let T be a tree with order $n \ge 2$ and $p \ge 2$ a positive integer. Then

$$\gamma_p(T) \ge (n + |L_p(T)| - |S_p(T)|)/2$$

with equality if and only if either $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_p$.

Proof. Let $l_p = |L_p(T)|$ and $s_p = |S_p(T)|$. We proceed by induction on the order n. If n = 2, then $T = P_2$, and so $\Delta(T) \leq p - 1$. The result holds. This establishes the base case. Assume that the result is true for every tree T' with order $2 \leq |V(T')| = n' < n$ and let T be a tree of order n.

If $\Delta(T) \leq p-1$, then $l_p = n$, $s_p = 0$ and by Lemma 2.1, $\gamma_p(T) = n = (n+l_p-s_p)/2$. The result follows. Assume now that $\Delta(T) \ge p$, then $d(T) \ge 2$. If d(T) = 2, then $T = K_{1,t}$ $(t \ge p)$ belongs to \mathcal{T}_p . By Lemma 2.3, $\gamma_p(T) = (n + l_p - s_p)/2$. If d(T) = 3, then T is a double star $S_{a,b}$ with $deg_T(a) \ge p$ or $deg_T(b) \ge p$. Without loss of generality, assume $deg_T(a) \ge p$. If $2 \le deg_T(b) \le p - 1$, then T can be obtained recursively from $K_{1,t}$ $(t = deg_T(a) \ge p)$ by attaching $deg_T(b) - 1$ vertices to one leaf of $K_{1,t}$. Hence T is obtained recursively from $K_{1,t}$ by using $\deg_T(b) - 1$ Operations \mathcal{O}_1 . Hence $T \in \mathcal{T}_p$ and, by Lemma 2.3, $\gamma_p(T) = (n + l_p - s_p)/2$. If $deg_T(b) = p$, then, to p-dominate b, one of a, b must be contained in a p-dominating set of T. Hence $\gamma_p(T) \ge l_p + 1 = (n + l_p - s_p)/2 + 1 > (n + l_p - s_p)/2$. If $deg_T(b) > p$ and $deg_T(a) = p$, then, to p-dominate a, one of a, b must be contained in a p-dominating set of T. Hence $\gamma_p(T) \ge l_p + 1 = (n + l_p - s_p)/2 + 1 > (n + l_p - s_p)/2$. If $deg_T(b) > p$ and $deg_T(a) > p$, then T can be seen as a tree constructed from a star $K_{1,t}$ $(t = deg_T(a) - 1 \ge p)$ by using Operation \mathcal{O}_2 by attaching a star $K_{1,m}$ $(m = deg_T(b) - 1 \ge p)$ to vertex a. Hence $T \in \mathcal{T}_p$. By Lemma 2.3, $\gamma_p(T) = (n + l_p - s_p)/2$. Therefore, in the following we assume that T is a tree with $d(T) \ge 4$ and $\Delta(T) \ge p$.

We now root T at a vertex r of maximum eccentricity. Let $P = uvwxy\cdots r$ be a longest path such that $d(u, r) = d(T) \ge 4$ and $deg_T(v)$ is as large as possible. Then, each vertex in D(w) - C(w) has degree one.

Case 1. $deg_T(v) \ge p$.

Let T' = T - D[v] and S be a γ_p -set of T such that S contains the vertices of D[v]as few as possible. Since every vertex of D(v) has degree one, $D(v) \subseteq S$. Hence $v \notin S$ (otherwise, we can replace v by w and get a γ_p -set of T which contains fewer vertices of D[v] than S, a contradiction). Thus $S \cap V(T')$ is a p-dominating set of T', and so

$$\gamma_p(T) = |S| = |D(v)| + |S \cap V(T')| \ge |D(v)| + \gamma_p(T').$$

Subcase 1.1. $deg_T(w) \neq p$.

Then n' = n - |D[v]|, $l'_p = l_p - |D(v)|$ and $s'_p = s_p - 1$. By the inductive hypothesis on T',

$$\gamma_p(T) \ge |D(v)| + \gamma_p(T') \ge |D(v)| + (n' + l'_p - s'_p)/2 = (n + l_p - s_p)/2.$$

Further, if $\gamma_p(T) = (n+l_p-s_p)/2$, then $\gamma_p(T') = (n'+l'_p-s'_p)/2$. By the inductive hypothesis on T', $\Delta(T') \leq p-1$ or $T' \in \mathcal{T}_p$.

If $\Delta(T') \leq p-1$, then $deg_T(w) = deg_{T'}(w)+1 \leq \Delta(T')+1 \leq p$. Since $deg_T(w) \neq p$, $deg_T(w) \leq p-1$, and so v is the unique vertex with degree at least p in T. Hence Tcan be obtained recursively from a star $K_{1,t}$ ($t = deg_T(v) \geq p$) by attaching n-t-1isolated vertices. Hence T is obtained recursively from the star $K_{1,t}$ by using n-t-1operations \mathcal{O}_1 , and so $T \in \mathcal{T}_p$.

If $T' \in \mathcal{T}_p$, then, by Lemma 2.3, $S \cap V(T') = L_p(T')$. If $deg_T(w) \leq p-1$, then $deg_{T'}(w) \leq p-2$. Thus T is obtained from T' by using Operation \mathcal{O}_3 by attaching the star $K_{1,t}$ (= T[D[v]], $t = deg_T(v) - 1 \geq p-1$) to w. Hence $T \in \mathcal{T}_p$. If $deg_T(w) \geq p+1$ and $deg_T(v) \geq p+1$, then $deg_{T'}(w) \geq p$. Thus T is obtained from T'by using Operation \mathcal{O}_2 by attaching the star $K_{1,t}$ (= T[D[v]], $t = deg_T(v) - 1 \geq p$) to w. Hence $T \in \mathcal{T}_p$. If $deg_T(w) \geq p+1$ and $deg_T(v) = p$, we claim that the equality doesn't hold in this case. Since $deg_T(w) \ge p+1$, then $deg_{T'}(w) \ge p$. Hence, $w \notin L_p(T') = S \cap V(T')$. Since $v \notin S$ and to p-dominates $v, w \in S$, a contradiction. Subcase 1.2. $deg_T(w) = p$.

Then n' = n - |D[v]| and $l'_p = l_p - |D(v)| + 1$. Now we count the number of the *p*-support vertices of T'. Note that a *p*-support vertex of T in $C(w) \setminus \{v\}$ is a *p*-support vertex of T', too. Define δ_1 to be equal to 1, if $w \in S_p(T)$; and 0, otherwise. Define δ_2 to be equal to 1, if $deg_T(x) \ge p$ and $x \notin S_p(T)$; and 0, otherwise. Then $s'_p = s_p - 1 - \delta_1 + \delta_2$. By the inductive hypothesis on T',

$$\begin{aligned} \gamma_p(T) &\geq |D(v)| + \gamma_p(T') \geq \\ &\geq |D(v)| + (n' + l'_p - s'_p)/2 = \\ &= (n + l_p - s_p)/2 + (\delta_1 + 1 - \delta_2)/2 \geq \\ &\geq (n + l_p - s_p)/2. \end{aligned}$$

We claim that the equality doesn't hold in this case. Suppose to the contrary that $\gamma_p(T) = (n + l_p - s_p)/2$. Then $\delta_1 + 1 = \delta_2$, and $\gamma_p(T') = (n' + l'_p - s'_p)/2$. By the definitions of δ_1 and δ_2 , $\delta_1 = 0$ and $\delta_2 = 1$. So $deg_T(x) \ge p$ and $x \notin S_p(T)$. By inductive hypothesis on $T', T' \in \mathcal{T}_p$. By Lemma 2.3, $L_p(T')$ is the unique *p*-dominating set of T'. Since $deg_{T'}(w) = p - 1$, w is a *p*-leaf of T'. Hence x is a *p*-support vertex of T'. By Lemma 2.2, x be adjacent to at least p *p*-leaves of T', and so x must be adjacent to at least $p - 1 (\ge 1)$ *p*-leaves in T. Thus x is a *p*-support vertex of T since $deg_T(x) \ge p$, which contradicts $x \notin S_p(T)$. Case 2. $deg_T(v) \le p - 1$

By our choice of the path $P = uvwxy \cdots r$, each vertex in D(w) - C(w) has degree one, and for each vertex $a \in C(w)$, $deg_T(a) \leq deg_T(v) \leq p-1$. Hence $D(w) \subseteq L_p(T)$. Subcase 2.1. $deg_T(w) \leq p-1$ or $deg_T(w) \geq p+2$.

Let T' = T - D[v]. Let S be a γ_p -set of T. Then n' = n - |D[v]|, $l'_p = l_p - |D[v]|$ and $s'_p = s_p$. If $deg_T(w) \leq p - 1$, then, by Lemma 2.1, $w \in S$. Hence $S \cap V(T')$ is a p-dominating set of T'. If $deg_T(w) \geq p + 2$, then $C(w) \setminus \{v\} \subseteq D(w) \subseteq L_p(T) \subseteq S$. Hence $C(w) \setminus \{v\} \subseteq S \cap V(T')$. Since $|C(w)| - 1 = |deg_T(w)| - 2 \geq p$, w is p-dominated by $S \cap V(T')$ and hence $S \cap V(T')$ is a p-dominating set of T', too. By the induction on T',

$$\gamma_p(T) = |S| = |D[v]| + |S \cap V(T')| \ge \ge |D[v]| + \gamma_p(T') \ge \ge |D[v]| + (n' + l'_p - s'_p)/2 = = (n + l_p - s_p)/2.$$

Further if $\gamma_p(T) = (n+l_p-s_p)/2$, then $\gamma_p(T') = (n'+l'_p-s'_p)/2$. By the inductive hypothesis on T', $\Delta(T') \leq p-1$ or $T' \in \mathcal{T}_p$. We claim that the equality does not hold for $\Delta(T') \leq p-1$. If not, then $deg_T(w) = deg_{T'}(w) + 1 \leq \Delta(T') + 1 \leq p$. Since $deg_T(w) \leq p-1$ or $deg_T(w) \geq p+2$, we have $deg_T(w) \leq p-1$. Thus $\Delta(T) \leq p-1$, which contradicts the assumption that $\Delta(T) \geq p$. Note that $deg_{T'}(w) \leq p-2$ or $deg_{T'}(w) \geq p+1$ ($w \in S_p(T')$ since $D(w) \subseteq L_p(T)$). Since $T' \in \mathcal{T}_p$, T can be constructed from T' by Operation \mathcal{O}_1 by attaching the star $K_{1,t}$ (= T[D[v]], $t = deg_T(v) - 1 \leq p - 2$) to w. Hence, $T \in \mathcal{T}_p$.

Subcase 2.2. $\deg_T(w) = p$ and $\deg_T(x) \neq p$ or $\deg_T(w) = p + 1$ and $\deg_T(x) \neq p$. Let T' = T - D[w], then n' = n - |D[w]| and $l'_p = l_p - |D(w)|$ (since $D(w) \subseteq L_p(T)$ and $\deg_T(x) \neq p$). Since $\deg_T(x) \neq p$, $S_p(T') = S_p(T) \setminus \{w\}$ and $s'_p = s_p - 1$. Let Sbe a γ_p -set of T that contains the vertices of D[w] as few as possible. Then $w \notin S$ (otherwise, we can replace w by x). Hence $S \cap V(T')$ is a p-dominating set of T'. By the induction on T',

$$\gamma_p(T) = |S| = |D(w)| + |S \cap V(T')| \ge \\ \ge |D(w)| + \gamma_p(T') \ge \\ \ge |D(w)| + (n' + l'_p - s'_p)/2 = \\ = (n + l_p - s_p)/2.$$

Further if $\gamma_p(T) = (n + l_p - s_p)/2$, then $\gamma_p(T') = (n' + l'_p - s'_p)/2 = |S \cap V(T')|$. Hence $S \cap V(T')$ is a γ_p -set of T'. By the induction on T', $\Delta(T') \leq p-1$ or $T' \in \mathcal{T}_p$. If $\Delta(T') \leq p-1$, then $deg_T(w) = deg_{T'}(w) + 1 \leq \Delta(T') + 1 \leq p$. Since $deg_T(w) = p$ or p+1, $deg_T(w) = p$. Thus w is a unique vertex of degree at least p in T. Hence T can be obtained recursively from $K_{1,t}$ ($t = deg_T(w) = p$) by attaching n - t - 1 isolated vertices. Hence T can be obtained recursively from $K_{1,t}$ the provided from $K_{1,t}$ by using n - t - 1 operations \mathcal{O}_1 , and so $T \in \mathcal{T}_p$. Assume now that $T' \in \mathcal{T}_p$. By Lemma 2.3, $S \cap V(T') = L_p(T')$.

If $deg_T(w) = p$ and $deg_T(x) \ge p + 1$, we claim that the equality doesn't hold in this case. Since $deg_T(x) \ge p + 1$, $deg_{T'}(x) = deg_T(x) - 1 \ge p$ and so $x \notin L_p(T') = S \cap V(T')$. Hence $x \notin S$. Note that $deg_T(w) = p$ and $w \notin S$, to p-dominate $w, x \in S$, a contradiction.

If $deg_T(w) = p + 1$ and $deg_T(x) \ge p + 1$, then let T'' = T[V(T) - (D(w) - C(w))]. Note that $deg_{T'}(x) = deg_T(x) - 1 \ge p$, by Lemma 2.2, $x \in S_p(T')$. Thus T'' is obtained from T' by using Operation \mathcal{O}_2 by attaching the star $K_{1,t}$ (= $T[C(w) \cup \{w\}]$, $t = deg_T(w) - 1 = p$) to x, and so $T'' \in \mathcal{T}_p$. By $2 \le deg_T(v) \le p - 1$, $p \ge 3$. Since T[D(w) - C(w)] consists of |D(w) - C(w)| isolated vertices, T is obtained recursively from T'' by attaching |D(w) - C(w)| isolated vertices to some vertices of C(w). Hence T is obtained recursively from T'' by using |D(w) - C(w)| operations \mathcal{O}_1 , and so $T \in \mathcal{T}_p$.

If $deg_T(x) \leq p-1$, then $p \geq 3$ and let T'' = T[V(T) - (D(w) - C(w))]. Since $deg_{T'}(x) = deg_T(x) - 1 \leq p-2$. T'' is obtained from T' by using Operation \mathcal{O}_3 by attaching the star $K_{1,t}$ (= $T[C(w) \cup \{w\}]$, $t = deg_T(w) - 1 \geq p-1$) to x. So, $T'' \in \mathcal{T}_p$. Since T[D(w) - C(w)] consists of |D(w) - C(w)| isolated vertices, T is obtained recursively from T'' by attaching |D(w) - C(w)| isolated vertices to some vertices of C(w). Hence T is obtained recursively from T'' by using |D(w) - C(w)| operations \mathcal{O}_1 , and so $T \in \mathcal{T}_p$.

Subcase 2.3. $deg_T(w) = p + 1$ and $deg_T(x) = p$.

Let T' = T - D[v]. Note that $D[v] \subseteq L_p(T)$, we have n' = n - |D[v]|, $l'_p = l_p - |D[v]|$ and $s'_p = s_p$. Let S be a γ_p -set of T, then by Lemma 2.1, $D[v] \subseteq S$. If $w \in S$, then $S \cap V(T')$ is a p-dominating set of T'. Since $deg_T(x) = p$ and S p-dominates w, $w \in S$ or $x \in S$. If $w \notin S$, then, to p-dominate $x, x \in S$ since $deg_T(x) = p$. Hence $|(S \cap V(T')) \cap N_{T'}(w)| = |(C(w) - \{v\}) \cup \{x\}| = deg_T(w) - 1 = p$. So, w is p-dominated by $S \cap V(T')$. Thus $S \cap V(T')$ is a p-dominating set of T'. By the induction on T',

$$\gamma_p(T) = |S| = |D[v]| + |S \cap V(T')| \ge \\ \ge |D[v]| + \gamma_p(T') \ge \\ \ge |D[v]| + (n' + l'_p - s'_p)/2 = \\ = (n + l_p - s_p)/2.$$

We claim that the equality doesn't hold in this case. Suppose to the contrary that $\gamma_p(T) = (n+l_p-s_p)/2$. Then $\gamma_p(T') = (n'+l'_p-s'_p)/2 = |S \cap V(T')|$. Hence $S \cap V(T')$ is a γ_p -set of T'. Since $deg_{T'}(w) = deg_T(w) - 1 = p$, $\Delta(T') \ge p$. By the inductive hypothesis on $T', T' \in \mathcal{T}_p$. By Lemma 2.3, $S \cap V(T') = L_p(T')$. Since $deg_{T'}(w) = p$ and $deg_{T'}(x) = deg_T(x) = p$, by Lemma 2.2, $w \notin L_p(T')$ and $x \notin L_p(T')$. Hence $w, x \notin S$. But, to p-dominate w and x, at least one of w, x is contained by S, a contradiction.

Subcase 2.4. $deg_T(w) = p$ and $deg_T(x) = p$.

Since $d(T) \geq 4$, the father y of x in the rooted tree T exists. Let $C_p(x)$ be the set of children of x with degree at least p. Since $deg_T(w) = p$, $w \in C_p(x)$. Let $C_p(x) = \{w_1, \dots, w_t\}$ $(t \geq 1)$. Then, for $1 \leq i \leq t$, $D(w_i) \neq \emptyset$. By the choice of the path P, each vertex of $\cup_{i=1}^t D(w_i)$ has degree at most p-1. So $\cup_{i=1}^t D(w_i) \subseteq L_p(T)$ and $C_p(x) \subseteq S_p(T)$. Define δ to be equal to 1, if $deg_T(y) \geq p$ and $y \notin S_p(T)$; and 0, otherwise.

Let $T' = T - \bigcup_{i=1}^{t} D[w_i]$. Then we have $n' = n - |\bigcup_{i=1}^{t} D[w_i]|, l'_p = l_p - |\bigcup_{i=1}^{t} D(w_i)| + 1$ and $s'_p = s_p - t + \delta$. Let S be a γ_p -set of T that contains the vertices of $\bigcup_{i=1}^{t} D[w_i]$ as few as possible. Then $w_i \notin S$ for $i = 1, \dots, t$ (otherwise, we can replace w_i by x). Hence, to p-dominate w, x must be in S for $deg_T(w) = p$. Thus $S \cap V(T')$ is a p-dominating set of T'. By the induction on T',

$$\begin{split} \gamma_p(T) &= |S| = |\cup_{i=1}^t D(w_i)| + |S \cap V(T')| \ge \\ &\geq \sum_{i=1}^t |D(w_i)| + \gamma_p(T') \ge \\ &\geq \sum_{i=1}^t |D(w_i)| + (n' + l'_p - s'_p)/2 = \\ &= (n + l_p - s_p)/2 + (1 - \delta)/2 \ge \\ &\ge (n + l_p - s_p)/2. \end{split}$$

We claim that the equality doesn't hold in this case. If $\gamma_p(T) = (n + l_p - s_p)/2$, then $\delta = 1$ and $\gamma_p(T') = (n' + l'_p - s'_p)/2 = |S \cap V(T')|$. Hence $deg_{T'}(y) = deg_T(y) \ge p$, $y \notin S_p(T)$ and $S \cap V(T')$ is a γ_p -set of T'. Thus $\Delta(T') \ge p$ and $y \in S_p(T')$. By the inductive hypothesis on $T', T' \in \mathcal{T}_p$. By Lemma 2.3, $S \cap V(T') = L_p(T')$. Then $y \notin S \cap V(T')$. So $y \notin S$. Hence, to p-dominate y, there are at least p p-leaves in T'(and hence $p - 1 \ge 1$ p-leaves in T) that are adjacent to y. That is $y \in S_p(T)$, which contradicts to $y \notin S_p(T)$.

Acknowledgments

The work was supported by NNSF of China (No.10701068 and No.10671191).

REFERENCES

- M. Blidia, M. Chellali, L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006), 2031–2037.
- [2] G. Chartrant, L. Lesniak, Graphs & Digraphs, 3rd ed., Chapman & Hall, London, 1996.
- [3] M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula Math. 26 (2006), 5–11.
- [4] J.F. Fink, M.S. Jacobson, n-Domination in graphs, [in:] Y.Alavi, A.J.Schwenk (Eds.), Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, 283–300.
- [5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, New York, Marcel Deliker, 1998.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Deliker, 1998.
- [7] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24(2) (2004), 165–169.
- [8] L.Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput. 61 (2007), 159–167.

You Lu

University of Science and Technology of China Department of Mathematics Hefei, Anhui, 230026, China

Xinmin Hou xmhou@ustc.edu.cn

University of Science and Technology of China Department of Mathematics Hefei, Anhui, 230026, China

Jun-Ming Xu

University of Science and Technology of China Department of Mathematics Hefei, Anhui, 230026, China

Received: September 9, 2008. Revised: March 4, 2009. Accepted: March 10, 2009.