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A NOTE ON THE p-DOMINATION NUMBER OF TREES

Abstract. Let p be a positive integer and G = (V(G), E(G)) a graph. A p-dominating set
of G is a subset S of V(G) such that every vertex not in S is dominated by at least p vertices
in S. The p-domination number v, (G) is the minimum cardinality among the p-dominating
sets of G. Let T be a tree with order n > 2 and p > 2 a positive integer. A vertex of V(T') is
a p-leaf if it has degree at most p — 1, while a p-support vertex is a vertex of degree at least
p adjacent to a p-leaf. In this note, we show that v,(T) > (n + |Ly(T)| — |Sp(T)])/2, where
L,(T) and Sp(T) are the sets of p-leaves and p-support vertices of T, respectively. Moreover,
we characterize all trees attaining this lower bound.
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1. INTRODUCTION

Let G = (V(G), E(GQ)) be a simple graph with vertex set V(G) and edge set E(G).
The Open neighborhood of a vertex v € V(G), denoted by N¢(v), is the set of adjacent
vertices of v, and the Closed neighborhood Nglv] = Ng(v) U {v}. Let degg(v) =
|Ng(v)| denote the degree of v. The mazimum degree A(G) = max{degs(v) : v €
V(G)}. For S C V(G), the subgraph induced by S is denoted by G[S]. For a pair
of vertices u,v € V(G), the distance dg(u,v) between u and v is the length of the
shortest uv-paths in G. The diameter of G is d(G) = max{dg(u,v) : u,v € V(G)}.

Let T be a nontrivial tree and p > 2 a positive integer. A p-leaf of T is a vertex
with degree at most p — 1, while a p-support vertexr of T is a vertex of degree at least
p adjacent to a p-leaf. We denote the sets of p-leaves and p-support vertices of T' by
L,(T) and S,(T), respectively. Notice that if p = 2 then the 2-leaves (resp. 2-support
vertices) are the usual leaves (resp. support vertices) of T, while Ly (T') (resp. S2(T))
is the set of leaves (resp. support vertices) of T'. A tree T is a double star if it contains
exactly two vertices that are not leaves. A double star with two support vertices a
and b is denoted by S 5.
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For notation and graph theory terminology we follow [2,5,6]. For a vertex v in
a rooted tree T, we let C'(v) and D(v) denote the set of children and descendants,
respectively, of v, and we define D[v] = D(v) U {v}.

In [4], Fink and Jacobson introduced the concept of p-domination. Let p be a
positive integer. A subset S of V(G) is a p-dominating set of G if for every vertex
v e V(G) — S, |SNNg(v)| > p. The p-domination number v,(G) is the minimum
cardinality among the p-dominating sets of G. Any p-dominating set of G with
cardinality v,(G) will be called a ~y,-set of G. Note that the 1-domination number
~1(G) is the classical domination number v(G). For any S,T C V(G), S p-dominates
T in G if for every vertex v € T — S, |S N Ng(v)| > p.

Some bounds of the p-domination number of a tree T are given in literature.
Let T be a nontrivial tree of order n > 3 and with [ leaves and s support vertices.
Lemariska [7] showed that v(T) > (n + 2 —1)/2. Chellali [3] proved that v2(T) >
(n+1—s)/2 and this lower bound is sharp. In [1], Blidia et al. proved that, for p > 2,
w(T) < (0 + L, (T))) /2.

In this note, we give a lower bound of 7,(T) in terms of n, |L,(T)|,|S,(T)|, that
is: Let T be a tree of order n. Then

W(T) 2 (n+ [Lp(T)] = |5,(T)])/2

for p > 2, which generalizes the lower bounds of Chellali [3]. Moreover, we characterize
all trees attaining this lower bound.

Note that Fink and Jacobson [4] also provided a lower bound of v,(T) in terms of
the order n of a tree T and p, that is: ~,(T) > W. And recently Volkmann [8]
characterized the family of trees with ~,(T) = (W]. Now we show that our
bound is better than Fink and Jacobson’s in some cases. Let X,(T") denote the set
of vertices with degree at least p in T. Let l, = |L,(T)| and z, = |X,(T)|. Then
Zq;eLp(jl“) deQT('U) Z 1 and Zvexp(;") degT(U)

> p. Let T be a tree satisfying the following
P
conditions:

v degr (v U degr (v
2 <L) 70 14 g and ZveXem de9r ()
p Ip

>p+ 0, (1.1)

where « and 3 are any two nonnegative constants satisfying (p — 1)a+ 8 = 1. Hence
2n—2=73 cp, () degr(v) + X ex, () degr(v) = 1+ a)l, + (p+ Bz, = 1+ a)n+

p(1 — a)xp, the second equality holds since [, + 2, = n and (p — 1)a+ 5 = 1. So

n 2
Tp < iy Therefore,

L,(T)| - |S,(T I, — 2 1 1
n+ |Lp(T)| = |Sp( )Izn+p L L >(p jnt+1
2 2 p p(l-a) P

This implies that our bound is better than the bound given by Fink and Jacobson for
the trees satisfying condition (1.1). [Such trees satisfying condition (1.1) exist. For
example, let T be a tree of order n > 2 and cor,(T') a tree obtained from T' by adding
p pendant edges to each vertex of T. Then L, (cor,(T)) = V(cor,(T)) — V(T) and
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ZueLp(T/) degp: (v)

lp

X, (cor,(T)) =V(T). Let T' = cor,(T). Then we have

’ de (v
and Zvexpw;; 91/ (v) =p+ 5 pevirydegr(v) =p+ 22 > p+ 1

=1=1+40

2. MAIN RESULTS

The following result is straightforward and can be found in [1].

Lemma 2.1. ([1]) Every p-dominating set of a graph G contains any vertex of degree
at most p — 1.

A vertex is a central vertex of a star Ky, (¢t > 1) if either ¢ > 2 and it is the
support vertex or ¢ = 1 and it is one of the two leaves. For convenience, we call
an isolated vertex a star, denoted by K o, and the only vertex is called the central
vertex.

We define the family 7, as:

7, ={T : T is obtained from a sequence T7,T5,--- ,T) (k > 1) of trees, where T} =
K, (t>p), T=Tg, and, if k> 2, T;11(1 <¢<k—1) is obtained from T;
by using Operation O; (j = 1,2 or 3) listed below.}

e Operation O, : Attach a copy of K, (0 <t < p—2) by joining the central
vertex to a p-support vertex of T; or to a vertex of degree
at most p — 2 in T;.

e Operation O : Attach a copy of K7 (t > p) by joining the central vertex
to a p-support vertex of T;.

e Operation O3 : Attach a copy of K;, (¢ > p — 1) by joining the central
vertex to a vertex of degree at most p — 2 in T;.

From the way in which a tree T' € 7,, is constructed we make the following lemma.

Lemma 2.2. Let T be a tree in the family T, withp > 2. Then, V(T') = L,(T)US,(T)
and each vertex of S,(T) is adjacent to at least p p-leaves in T.

From Lemma 2.1 and Lemma 2.2, it is straightforward to obtain the follow result.

Lemma 2.3. For any positive integer p > 2, if T € T,, then L,(T) is the unique
Yp-set of T', and

W(T) = |Lp(T)| = (IV(T)| + | Lp(T)| = [Sp(T)]) /2.
Theorem 2.4. Let T be a tree with order n > 2 and p > 2 a positive integer. Then
W(T) = (n+ |Lp(T)| = [Sp(T)]) /2

with equality if and only if either A(T) <p—1orT € T,.

Proof. Let I, = |L,(T')| and s, = |S,(T")|. We proceed by induction on the order n. If
n =2, then T'= P», and so A(T) < p—1. The result holds. This establishes the base
case. Assume that the result is true for every tree 77 with order 2 < |[V(T")| =n’ <n
and let T be a tree of order n.
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If A(T) < p—1, thenl, = n, s, = 0 and by Lemma 2.1, v,(T) = n = (n+l,—s,)/2.
The result follows. Assume now that A(T) > p, then d(T) > 2. If d(T) = 2, then
T = Ky (t > p) belongs to 7,,. By Lemma 2.3, v,(T) = (n+1, — sp)/2. If d(T) = 3,
then T is a double star S,; with degr(a) > p or degr(b) > p. Without loss of
generality, assume degr(a) > p. If 2 < degr(b) < p — 1, then T can be obtained
recursively from K, ; (¢t = degr(a) > p) by attaching degr(b) — 1 vertices to one leaf
of K1 4. Hence T is obtained recursively from K ; by using deg;(b) — 1 Operations
O1. Hence T € 7, and, by Lemma 2.3, v,(T) = (n+ 1, — sp)/2. If degr(b) = p, then,
to p-dominate b, one of a,b must be contained in a p-dominating set of 7. Hence
Y(T) >l +1=(n+l,—s,)/2+1 > (n+1,—s,)/2. If degr(b) > p and degr(a) = p,
then, to p-dominate a, one of a, b must be contained in a p-dominating set of 7. Hence
Vp(T) > lp+1=(n+l,—sp)/2+1 > (n+1,—s,)/2. If degr(b) > p and degr(a) > p,
then T can be seen as a tree constructed from a star K ; (¢t = degr(a) —1 > p) by
using Operation Oy by attaching a star Kj ,,, (m = degr(b) — 1 > p) to vertex a.
Hence T € 7,. By Lemma 2.3, v,(T) = (n + 1, — sp)/2. Therefore, in the following
we assume that 7' is a tree with d(7") > 4 and A(T') > p.

We now root T at a vertex r of maximum eccentricity. Let P = wvwzy---r be a
longest path such that d(u,r) = d(T) > 4 and degr(v) is as large as possible. Then,
each vertex in D(w) — C'(w) has degree one.

Case 1. degr(v) > p.

Let T" =T — D[v] and S be a v,-set of T such that S contains the vertices of D[v]
as few as possible. Since every vertex of D(v) has degree one, D(v) C S. Hence v ¢ S
(otherwise, we can replace v by w and get a y,-set of T' which contains fewer vertices
of D[v] than S, a contradiction). Thus SNV (T”) is a p-dominating set of T, and so

w(T) = 18| = D) + [SNV(T')| = [ D(v)| + 7 (T").

Subcase 1.1. degr(w) # p.
Then n’ = n—|D[v]|, l;, = I, —|D(v)| and s}, = s, — 1. By the inductive hypothesis
on T,

Ww(T) Z [D)] +7(T") = [D(v)| + (0 +1, = 5,)/2 = (n+ 1, — 5p) /2.

Further, if v,(T) = (n+1,—sp)/2, then v, (T") = (n'+1},—s},) /2. By the inductive
hypothesis on 77, A(T") <p—1or T € T,.

If A(T") < p—1, then degr (w) = degr (w)+1 < A(T")+1 < p. Since degr(w) # p,
degr(w) < p—1, and so v is the unique vertex with degree at least p in T. Hence T
can be obtained recursively from a star K; ; (t = degr(v) > p) by attaching n —t —1
isolated vertices. Hence T is obtained recursively from the star K; ; by using n—¢t—1
operations O;, and so T' € 7,,.

If T" € 7,, then, by Lemma 2.3, SNV (T') = L,(T"). If degr(w) < p — 1,
then degr (w) < p — 2. Thus T is obtained from 7’ by using Operation Oz by
attaching the star K, (= T[D[v]], t = degr(v) —1>p—1) to w. Hence T' € 7,,. If
degr(w) > p+1 and degr(v) > p+1, then degr (w) > p. Thus T is obtained from T’
by using Operation Oy by attaching the star Ky, (= T[D[v]], t = degr(v) —1 > p)
to w. Hence T € 7,. If degr(w) > p+ 1 and degr(v) = p, we claim that the
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equality doesn’t hold in this case. Since degr(w) > p+ 1, then degr:(w) > p. Hence,
w¢ L,(T") =SNV(T'). Since v ¢ S and to p-dominates v, w € S, a contradiction.
Subcase 1.2. degr(w) = p.

Then n' = n — |[D[v]| and [}, = I, — |D(v)| + 1. Now we count the number of
the p-support vertices of T'. Note that a p-support vertex of T' in C(w) \ {v} is a
p-support vertex of T/, too. Define d; to be equal to 1, if w € S,(T'); and 0, otherwise.
Define §5 to be equal to 1, if degr(x) > p and = ¢ S,(T); and 0, otherwise. Then
s, = 8p — 1 — 01 + d2. By the inductive hypothesis on T,

() = D)+ () >
> D)+ (0" +1,—5,)/2 =
=Mm+l—s)/2+ (01 +1-6)/2>
> (n+1l,—sp)/2.

We claim that the equality doesn’t hold in this case. Suppose to the contrary
that v,(T) = (n + 1, — sp)/2. Then 01 + 1 = &g, and 7,(T') = (n' + 1, — s3,)/2.
By the definitions of §; and d2, 61 = 0 and d2 = 1. So degr(xz) > p and x ¢
S,(T). By inductive hypothesis on 77, T € 7,. By Lemma 2.3, L,(T”) is the unique
p-dominating set of T”. Since degr (w) = p — 1, w is a p-leaf of T’. Hence z is a
p-support vertex of 7’. By Lemma 2.2, x be adjacent to at least p p-leaves of 7', and
so & must be adjacent to at least p — 1 (> 1) p-leaves in T. Thus z is a p-support
vertex of T since degr(z) > p, which contradicts @ ¢ S,(T').

Case 2. degr(v) <p—1

By our choice of the path P = uvwzy - - - r, each vertex in D(w) — C(w) has degree
one, and for each vertex a € C(w), degr(a) < degr(v) < p—1. Hence D(w) C L,(T).
Subcase 2.1. degr(w) < p—1 or degr(w) > p+ 2.

Let 7" =T — D[v]. Let S be a ,-set of T. Then n’ = n — [D[v]], I, = I, — [D[v]|
and s;, = s;,. If degr(w) < p — 1, then, by Lemma 2.1, w € S. Hence SNV(T") is a
p-dominating set of 7". If degr(w) > p + 2, then C(w) \ {v} € D(w) C L,(T) C S.
Hence C'(w)\{v} C SNV (T”). Since |C(w)|—1 = |degr(w)|—2 > p, w is p-dominated
by SNV(T") and hence SNV (T") is a p-dominating set of 7", too. By the induction
on T,

W(T) =S| = [D[]| +[SNV(T)| >
> [D]| +%(T") =
> (D]l + (0 + 1) — 5)/2 =
=(n+1l,—sp)/2.

v]
v]

Further if 7, (T') = (n+1, —s,)/2, then 4, (T") = (n' +1}, - s,) /2. By the inductive
hypothesis on T, A(T") < p—1or T' € 7,. We claim that the equality does not
hold for A(T”) < p — 1. If not, then degr(w) = degr (w) +1 < A(T') + 1 < p. Since
degr(w) < p—1 or degr(w) > p+ 2, we have degr(w) < p—1. Thus A(T) <p-—1,
which contradicts the assumption that A(T) > p.
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Note that degr (w) < p—2 or degr (w) > p+1 (w € S,(T") since D(w) C L,(T)).
Since T” € 7, T can be constructed from 7" by Operation O; by attaching the star
Ky (=T[D[]], t =degr(v) —1 <p—2) tow. Hence, T € 7,,.

Subcase 2.2. degr(w) = p and degr(z) # p or degr(w) = p+ 1 and degr(z) # p.

Let 7" = T'— D[w], then n' = n—|D[w]| and I}, = I, — |D(w)| (since D(w) C L, (T')
and degr(x) # p). Since degr(z) # p, Sp(T") = Sp(T) \ {w} and s, = s, — 1. Let S
be a y,-set of T that contains the vertices of D[w] as few as possible. Then w ¢ S
(otherwise, we can replace w by z). Hence SNV (T) is a p-dominating set of T”. By
the induction on 77,

(T) =S| = |[D(w)| +[SNV(T)] >
> [D(w)| +7,(T") =
> [D(w)| + (0 + 1, —5,)/2 =
=+l —sp)/2.

Further if ,(T) = (n + 1, — s)/2, then ,(T") = (n' +1;, — 5,)/2 = [SNV(T")].
Hence SNV (T") is a y,-set of T". By the induction on 77, A(T") <p—1lor T’ € 7,. If
A(T") < p—1, then degr(w) = degr(w) +1 < A(T") + 1 < p. Since degr(w) = p or
p+1, degr(w) = p. Thus w is a unique vertex of degree at least p in 7. Hence T can
be obtained recursively from K, (¢t = degr(w) = p) by attaching n — ¢ — 1 isolated
vertices. Hence T can be obtained recursively from K ; by using n —t — 1 operations
Oy, and so T € T,. Assume now that 7" € 7,. By Lemma 2.3, SN V(T") = L,(T").

If degr(w) = p and degr(xz) > p + 1, we claim that the equality doesn’t hold in
this case. Since degr(x) > p + 1, degr/ () = degr(x) —1 > p and so x ¢ L,(T') =
SNV (T"). Hence x ¢ S. Note that degr(w) = p and w ¢ S, to p-dominate w, x € S,
a contradiction.

If degr (w) = p+1 and degr(z) > p+ 1, then let 7" = T[V(T) — (D(w) — C(w))].
Note that degr (z) = degr(x)—1 > p, by Lemma 2.2, € S,(T”). Thus 7" is obtained
from T by using Operation O by attaching the star K7, (= T[C(w) U {w}], t =
degr(w) —1 = p) to x, and so T € 7,. By 2 < degr(v) < p—1, p > 3. Since
T[D(w) — C(w)] consists of | D(w) — C(w)]| isolated vertices, T is obtained recursively
from T by attaching | D(w)— C(w)] isolated vertices to some vertices of C'(w). Hence
T is obtained recursively from 7" by using |D(w) — C(w)| operations O1, and so
TeT,

If degr(z) < p—1, then p > 3 and let T = T[V(T) — (D(w) — C(w))]. Since
degr/ (x) = degr(z) —1 < p—2. T” is obtained from 7" by using Operation Os
by attaching the star K, (= T[C(w) U{w}], t = degr(w) —1 > p—1) to z. So,
T" € T,. Since T[D(w) — C(w)] consists of |D(w) — C(w)| isolated vertices, T is
obtained recursively from 7" by attaching |D(w) — C(w)| isolated vertices to some
vertices of C(w). Hence T is obtained recursively from 7" by using |D(w) — C(w)]
operations O1, and so T € 7,,.

Subcase 2.3. degr(w) =p+ 1 and degr(z) = p.

Let 7" = T'—D[v]. Note that D[v] C L,(T), we have n’ = n—|D[v]|, I}, = l,—|D[v]|
and s, = s,. Let S be a y,-set of T', then by Lemma 2.1, D[v] € S. If w € S, then
SNV(T) is a p-dominating set of T”. Since degr(x) = p and S p-dominates w,
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we SorxeS. Ifwegls, then, to p-dominate x, x € S since degr(x) = p. Hence
[(SNV(T"))N Ny (w)] = |(C(w) —{v})U{z}| = degr(w)—1 = p. So, w is p-dominated
by SNV (T"). Thus SNV (T’) is a p-dominating set of T’. By the induction on T”,

W(T) = |S] = |D[]| + [SNV(T")| =

> [D]| +7,(T") =

> [D[]|+ (0" +1;, — 5,,) /2 =
= (1 — 5,)/2.

We claim that the equality doesn’t hold in this case. Suppose to the contrary that
Yp(T) = (n+1,—sp)/2. Then v,(T") = (n'+1,—s,)/2 = [SNV(T")|. Hence SNV (T")
is a yp-set of T". Since degr(w) = degr(w) — 1 = p, A(T") > p. By the inductive
hypothesis on T7, T € 7,,. By Lemma 2.3, SNV(T") = L,(T"). Since degr(w) = p
and degr: (z) = degr(x) = p, by Lemma 2.2, w ¢ L,(T") and = ¢ L,(7"). Hence
w,x ¢ S. But, to p-dominate w and z, at least one of w,x is contained by S, a
contradiction.

Subcase 2.4. degr(w) = p and degr(z) = p.

Since d(T") > 4, the father y of x in the rooted tree T exists. Let Cp(x) be the
set of children of = with degree at least p. Since degr(w) = p, w € Cp(x). Let
Cp(x) = {wy, -+ ,w} (t > 1). Then, for 1 < i <t, D(w;) # 0. By the choice of the
path P, each vertex of U!_, D(w;) has degree at most p — 1. So U!_; D(w;) C L,(T)
and Cp(z) C Sp(T'). Define 6 to be equal to 1, if degr(y) > p and y ¢ S,(T'); and 0,
otherwise.

Let 7" = T — Ui_; D[w;]. Then we have n’ = n — |Ul_; D[w]|, I}, = I, — | Uj_,
D(w;)| +1 and s}, = s, —t + 0. Let S be a v,-set of T' that contains the vertices of
U!_, D[w;] as few as possible. Then w; ¢ S fori=1,--- ,t (otherwise, we can replace
w; by ). Hence, to p-dominate w, x must be in S for degr(w) = p. Thus SNV (T”)
is a p-dominating set of T”. By the induction on 7",

Ww(T) =S| = | Uiey D(wi)| + 1SN V(T)]| =

> [D(wi)| + 7, (T") >
=1

2> D)+ (' +1, = 5,)/2 =

=n+l,—sp)/2+(1-6)/2>
> (n+1, —sp)/2.

We claim that the equality doesn’t hold in this case. If v,(T) = (n + 1, — s)/2,
then § = 1 and v, (T") = (n'+1;,—s;,)/2 = [SNV(T")|. Hence degr(y) = degr(y) > p,
y ¢ Sp(T) and SNV (T') is a yp-set of T'. Thus A(T') > p and y € S,(T"). By
the inductive hypothesis on 7, 7" € 7,. By Lemma 2.3, SNV (T’) = L,(T"). Then
y¢ SNV(T'). Soy ¢ S. Hence, to p-dominate y, there are at least p p-leaves in T’
(and hence p — 1 > 1 p-leaves in T') that are adjacent to y. That is y € S,(T), which
contradicts to y ¢ S,(T). O
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