You Lu, Xinmin Hou, Jun-Ming Xu

## A NOTE ON THE p-DOMINATION NUMBER OF TREES


#### Abstract

Let $p$ be a positive integer and $G=(V(G), E(G))$ a graph. A $p$-dominating set of $G$ is a subset $S$ of $V(G)$ such that every vertex not in $S$ is dominated by at least $p$ vertices in $S$. The $p$-domination number $\gamma_{p}(G)$ is the minimum cardinality among the $p$-dominating sets of $G$. Let $T$ be a tree with order $n \geq 2$ and $p \geq 2$ a positive integer. A vertex of $V(T)$ is a $p$-leaf if it has degree at most $p-1$, while a $p$-support vertex is a vertex of degree at least $p$ adjacent to a $p$-leaf. In this note, we show that $\gamma_{p}(T) \geq\left(n+\left|L_{p}(T)\right|-\left|S_{p}(T)\right|\right) / 2$, where $L_{p}(T)$ and $S_{p}(T)$ are the sets of $p$-leaves and $p$-support vertices of $T$, respectively. Moreover, we characterize all trees attaining this lower bound.


Keywords: p-domination number, trees.

Mathematics Subject Classification: 05C69.

## 1. INTRODUCTION

Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The Open neighborhood of a vertex $v \in V(G)$, denoted by $N_{G}(v)$, is the set of adjacent vertices of $v$, and the Closed neighborhood $N_{G}[v]=N_{G}(v) \cup\{v\}$. Let $\operatorname{deg}_{G}(v)=$ $\left|N_{G}(v)\right|$ denote the degree of $v$. The maximum degree $\Delta(G)=\max \left\{\operatorname{deg}_{G}(v): v \in\right.$ $V(G)\}$. For $S \subseteq V(G)$, the subgraph induced by $S$ is denoted by $G[S]$. For a pair of vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ between $u$ and $v$ is the length of the shortest uv-paths in $G$. The diameter of $G$ is $d(G)=\max \left\{d_{G}(u, v): u, v \in V(G)\right\}$.

Let $T$ be a nontrivial tree and $p \geq 2$ a positive integer. A $p$-leaf of $T$ is a vertex with degree at most $p-1$, while a $p$-support vertex of $T$ is a vertex of degree at least $p$ adjacent to a $p$-leaf. We denote the sets of $p$-leaves and $p$-support vertices of $T$ by $L_{p}(T)$ and $S_{p}(T)$, respectively. Notice that if $p=2$ then the 2-leaves (resp. 2-support vertices) are the usual leaves (resp. support vertices) of $T$, while $L_{2}(T)\left(\right.$ resp. $\left.S_{2}(T)\right)$ is the set of leaves (resp. support vertices) of $T$. A tree $T$ is a double star if it contains exactly two vertices that are not leaves. A double star with two support vertices $a$ and $b$ is denoted by $S_{a, b}$.

For notation and graph theory terminology we follow $[2,5,6]$. For a vertex $v$ in a rooted tree $T$, we let $C(v)$ and $D(v)$ denote the set of children and descendants, respectively, of $v$, and we define $D[v]=D(v) \cup\{v\}$.

In [4], Fink and Jacobson introduced the concept of $p$-domination. Let $p$ be a positive integer. A subset $S$ of $V(G)$ is a $p$-dominating set of $G$ if for every vertex $v \in V(G)-S,\left|S \cap N_{G}(v)\right| \geq p$. The $p$-domination number $\gamma_{p}(G)$ is the minimum cardinality among the $p$-dominating sets of $G$. Any $p$-dominating set of $G$ with cardinality $\gamma_{p}(G)$ will be called a $\gamma_{p}$-set of $G$. Note that the 1-domination number $\gamma_{1}(G)$ is the classical domination number $\gamma(G)$. For any $S, T \subseteq V(G), S p$-dominates $T$ in $G$ if for every vertex $v \in T-S,\left|S \cap N_{G}(v)\right| \geq p$.

Some bounds of the $p$-domination number of a tree $T$ are given in literature. Let $T$ be a nontrivial tree of order $n \geq 3$ and with $l$ leaves and $s$ support vertices. Lemańska [7] showed that $\gamma(T) \geq(n+2-l) / 2$. Chellali [3] proved that $\gamma_{2}(T) \geq$ $(n+l-s) / 2$ and this lower bound is sharp. In [1], Blidia et al. proved that, for $p \geq 2$, $\gamma_{p}(T) \leq\left(n+\left|L_{p}(T)\right|\right) / 2$.

In this note, we give a lower bound of $\gamma_{p}(T)$ in terms of $n,\left|L_{p}(T)\right|,\left|S_{p}(T)\right|$, that is: Let $T$ be a tree of order $n$. Then

$$
\gamma_{p}(T) \geq\left(n+\left|L_{p}(T)\right|-\left|S_{p}(T)\right|\right) / 2
$$

for $p \geq 2$, which generalizes the lower bounds of Chellali [3]. Moreover, we characterize all trees attaining this lower bound.

Note that Fink and Jacobson [4] also provided a lower bound of $\gamma_{p}(T)$ in terms of the order $n$ of a tree $T$ and $p$, that is: $\gamma_{p}(T) \geq \frac{(p-1) n+1}{p}$. And recently Volkmann [8] characterized the family of trees with $\gamma_{p}(T)=\left\lceil\frac{(p-1) n+1}{p}\right\rceil$. Now we show that our bound is better than Fink and Jacobson's in some cases. Let $X_{p}(T)$ denote the set of vertices with degree at least $p$ in $T$. Let $l_{p}=\left|L_{p}(T)\right|$ and $x_{p}=\left|X_{p}(T)\right|$. Then $\frac{\sum_{v \in L_{p}(T)} \operatorname{deg}_{T}(v)}{l_{p}} \geq 1$ and $\frac{\sum_{v \in X_{p}(T)} \operatorname{deg}_{T}(v)}{x_{p}} \geq p$. Let $T$ be a tree satisfying the following conditions:

$$
\begin{equation*}
\frac{\sum_{v \in L_{p}(T)} d e g_{T}(v)}{l_{p}} \geq 1+\alpha \text { and } \frac{\sum_{v \in X_{p}(T)} d e g_{T}(v)}{x_{p}} \geq p+\beta, \tag{1.1}
\end{equation*}
$$

where $\alpha$ and $\beta$ are any two nonnegative constants satisfying $(p-1) \alpha+\beta=1$. Hence $2 n-2=\sum_{v \in L_{p}(T)} \operatorname{deg}_{T}(v)+\sum_{v \in X_{p}(T)} d e g_{T}(v) \geq(1+\alpha) l_{p}+(p+\beta) x_{p}=(1+\alpha) n+$ $p(1-\alpha) x_{p}$, the second equality holds since $l_{p}+x_{p}=n$ and $(p-1) \alpha+\beta=1$. So $x_{p} \leq \frac{n}{p}-\frac{2}{p(1-\alpha)}$. Therefore,

$$
\frac{n+\left|L_{p}(T)\right|-\left|S_{p}(T)\right|}{2} \geq \frac{n+l_{p}-x_{p}}{2}=n-x_{p} \geq n-\frac{n}{p}+\frac{2}{p(1-\alpha)}>\frac{(p-1) n+1}{p} .
$$

This implies that our bound is better than the bound given by Fink and Jacobson for the trees satisfying condition (1.1). [Such trees satisfying condition (1.1) exist. For example, let $T$ be a tree of order $n \geq 2$ and $\operatorname{cor}_{p}(T)$ a tree obtained from $T$ by adding $p$ pendant edges to each vertex of $T$. Then $L_{p}\left(\operatorname{cor}_{p}(T)\right)=V\left(\operatorname{cor}_{p}(T)\right)-V(T)$ and
$X_{p}\left(\operatorname{cor}_{p}(T)\right)=V(T)$. Let $T^{\prime}=\operatorname{cor}_{p}(T)$. Then we have $\frac{\sum_{v \in L_{p}\left(T^{\prime}\right)} \operatorname{deg}_{T^{\prime}}(v)}{l_{p}}=1=1+0$ and $\frac{\sum_{v \in X_{p}\left(T^{\prime}\right)} \operatorname{deg}_{T^{\prime}}(v)}{x_{p}}=p+\frac{1}{n} \sum_{v \in V(T)} \operatorname{deg}_{T}(v)=p+\frac{2 n-2}{n} \geq p+1$.]

## 2. MAIN RESULTS

The following result is straightforward and can be found in [1].
Lemma 2.1. ([1]) Every p-dominating set of a graph $G$ contains any vertex of degree at most $p-1$.

A vertex is a central vertex of a star $K_{1, t}(t \geq 1)$ if either $t \geq 2$ and it is the support vertex or $t=1$ and it is one of the two leaves. For convenience, we call an isolated vertex a star, denoted by $K_{1,0}$, and the only vertex is called the central vertex.

We define the family $\mathcal{T}_{p}$ as:
$\mathcal{T}_{p}=\left\{T: T\right.$ is obtained from a sequence $T_{1}, T_{2}, \cdots, T_{k}(k \geq 1)$ of trees, where $T_{1}=$ $K_{1, t}(t \geq p), T=T_{k}$, and, if $k \geq 2, T_{i+1}(1 \leq i \leq k-1)$ is obtained from $T_{i}$ by using Operation $\mathcal{O}_{j}(j=1,2$ or 3$)$ listed below. $\}$

- Operation $\mathcal{O}_{1}$ : Attach a copy of $K_{1, t}(0 \leq t \leq p-2)$ by joining the central vertex to a $p$-support vertex of $T_{i}$ or to a vertex of degree at most $p-2$ in $T_{i}$.
- Operation $\mathcal{O}_{2}$ : Attach a copy of $K_{1, t}(t \geq p)$ by joining the central vertex to a $p$-support vertex of $T_{i}$.
- Operation $\mathcal{O}_{3}$ : Attach a copy of $K_{1, t}(t \geq p-1)$ by joining the central vertex to a vertex of degree at most $p-2$ in $T_{i}$.
From the way in which a tree $T \in \mathcal{T}_{p}$ is constructed we make the following lemma.
Lemma 2.2. Let $T$ be a tree in the family $\mathcal{T}_{p}$ with $p \geq 2$. Then, $V(T)=L_{p}(T) \cup S_{p}(T)$ and each vertex of $S_{p}(T)$ is adjacent to at least $p$ p-leaves in $T$.

From Lemma 2.1 and Lemma 2.2, it is straightforward to obtain the follow result.
Lemma 2.3. For any positive integer $p \geq 2$, if $T \in \mathcal{T}_{p}$, then $L_{p}(T)$ is the unique $\gamma_{p}$-set of $T$, and

$$
\gamma_{p}(T)=\left|L_{p}(T)\right|=\left(|V(T)|+\left|L_{p}(T)\right|-\left|S_{p}(T)\right|\right) / 2
$$

Theorem 2.4. Let $T$ be a tree with order $n \geq 2$ and $p \geq 2$ a positive integer. Then

$$
\gamma_{p}(T) \geq\left(n+\left|L_{p}(T)\right|-\left|S_{p}(T)\right|\right) / 2
$$

with equality if and only if either $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_{p}$.
Proof. Let $l_{p}=\left|L_{p}(T)\right|$ and $s_{p}=\left|S_{p}(T)\right|$. We proceed by induction on the order $n$. If $n=2$, then $T=P_{2}$, and so $\Delta(T) \leq p-1$. The result holds. This establishes the base case. Assume that the result is true for every tree $T^{\prime}$ with order $2 \leq\left|V\left(T^{\prime}\right)\right|=n^{\prime}<n$ and let $T$ be a tree of order $n$.

If $\Delta(T) \leq p-1$, then $l_{p}=n, s_{p}=0$ and by Lemma $2.1, \gamma_{p}(T)=n=\left(n+l_{p}-s_{p}\right) / 2$. The result follows. Assume now that $\Delta(T) \geq p$, then $d(T) \geq 2$. If $d(T)=2$, then $T=K_{1, t}(t \geq p)$ belongs to $\mathcal{T}_{p}$. By Lemma 2.3, $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$. If $d(T)=3$, then $T$ is a double star $S_{a, b}$ with $\operatorname{deg}_{T}(a) \geq p$ or $\operatorname{deg}_{T}(b) \geq p$. Without loss of generality, assume $\operatorname{deg}_{T}(a) \geq p$. If $2 \leq \operatorname{deg}_{T}(b) \leq p-1$, then $T$ can be obtained recursively from $K_{1, t}\left(t=\operatorname{deg}_{T}(a) \geq p\right)$ by attaching $\operatorname{deg}_{T}(b)-1$ vertices to one leaf of $K_{1, t}$. Hence $T$ is obtained recursively from $K_{1, t}$ by using $\operatorname{deg}_{T}(b)-1$ Operations $\mathcal{O}_{1}$. Hence $T \in \mathcal{T}_{p}$ and, by Lemma 2.3, $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$. If $\operatorname{deg}_{T}(b)=p$, then, to $p$-dominate $b$, one of $a, b$ must be contained in a $p$-dominating set of $T$. Hence $\gamma_{p}(T) \geq l_{p}+1=\left(n+l_{p}-s_{p}\right) / 2+1>\left(n+l_{p}-s_{p}\right) / 2$. If $d e g_{T}(b)>p$ and $\operatorname{deg}_{T}(a)=p$, then, to $p$-dominate $a$, one of $a, b$ must be contained in a $p$-dominating set of $T$. Hence $\gamma_{p}(T) \geq l_{p}+1=\left(n+l_{p}-s_{p}\right) / 2+1>\left(n+l_{p}-s_{p}\right) / 2$. If $\operatorname{deg}_{T}(b)>p$ and $\operatorname{deg}_{T}(a)>p$, then $T$ can be seen as a tree constructed from a star $K_{1, t}\left(t=\operatorname{deg}_{T}(a)-1 \geq p\right)$ by using Operation $\mathcal{O}_{2}$ by attaching a star $K_{1, m}\left(m=\operatorname{deg}_{T}(b)-1 \geq p\right)$ to vertex $a$. Hence $T \in \mathcal{T}_{p}$. By Lemma 2.3, $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$. Therefore, in the following we assume that $T$ is a tree with $d(T) \geq 4$ and $\Delta(T) \geq p$.

We now root $T$ at a vertex $r$ of maximum eccentricity. Let $P=u v w x y \cdots r$ be a longest path such that $d(u, r)=d(T) \geq 4$ and $\operatorname{deg}_{T}(v)$ is as large as possible. Then, each vertex in $D(w)-C(w)$ has degree one.
Case 1. $\operatorname{deg}_{T}(v) \geq p$.
Let $T^{\prime}=T-D[v]$ and $S$ be a $\gamma_{p}$-set of $T$ such that $S$ contains the vertices of $D[v]$ as few as possible. Since every vertex of $D(v)$ has degree one, $D(v) \subseteq S$. Hence $v \notin S$ (otherwise, we can replace $v$ by $w$ and get a $\gamma_{p}$-set of $T$ which contains fewer vertices of $D[v]$ than $S$, a contradiction). Thus $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$, and so

$$
\gamma_{p}(T)=|S|=|D(v)|+\left|S \cap V\left(T^{\prime}\right)\right| \geq|D(v)|+\gamma_{p}\left(T^{\prime}\right)
$$

Subcase 1.1. $\operatorname{deg}_{T}(w) \neq p$.
Then $n^{\prime}=n-|D[v]|, l_{p}^{\prime}=l_{p}-|D(v)|$ and $s_{p}^{\prime}=s_{p}-1$. By the inductive hypothesis on $T^{\prime}$,

$$
\gamma_{p}(T) \geq|D(v)|+\gamma_{p}\left(T^{\prime}\right) \geq|D(v)|+\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2=\left(n+l_{p}-s_{p}\right) / 2
$$

Further, if $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$, then $\gamma_{p}\left(T^{\prime}\right)=\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2$. By the inductive hypothesis on $T^{\prime}, \Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$.

If $\Delta\left(T^{\prime}\right) \leq p-1$, then $\operatorname{deg}_{T}(w)=\operatorname{deg}_{T^{\prime}}(w)+1 \leq \Delta\left(T^{\prime}\right)+1 \leq p$. Since $\operatorname{deg}_{T}(w) \neq p$, $\operatorname{deg}_{T}(w) \leq p-1$, and so $v$ is the unique vertex with degree at least $p$ in $T$. Hence $T$ can be obtained recursively from a star $K_{1, t}\left(t=\operatorname{deg}_{T}(v) \geq p\right)$ by attaching $n-t-1$ isolated vertices. Hence $T$ is obtained recursively from the star $K_{1, t}$ by using $n-t-1$ operations $\mathcal{O}_{1}$, and so $T \in \mathcal{T}_{p}$.

If $T^{\prime} \in \mathcal{T}_{p}$, then, by Lemma 2.3, $S \cap V\left(T^{\prime}\right)=L_{p}\left(T^{\prime}\right)$. If $\operatorname{deg}_{T}(w) \leq p-1$, then $\operatorname{deg}_{T^{\prime}}(w) \leq p-2$. Thus $T$ is obtained from $T^{\prime}$ by using Operation $\mathcal{O}_{3}$ by attaching the star $K_{1, t}\left(=T[D[v]], t=\operatorname{deg}_{T}(v)-1 \geq p-1\right)$ to $w$. Hence $T \in \mathcal{T}_{p}$. If $\operatorname{deg}_{T}(w) \geq p+1$ and $\operatorname{deg}_{T}(v) \geq p+1$, then $\operatorname{deg}_{T^{\prime}}(w) \geq p$. Thus $T$ is obtained from $T^{\prime}$ by using Operation $\mathcal{O}_{2}$ by attaching the star $K_{1, t}\left(=T[D[v]], t=\operatorname{deg}_{T}(v)-1 \geq p\right)$ to $w$. Hence $T \in \mathcal{T}_{p}$. If $\operatorname{deg}_{T}(w) \geq p+1$ and $\operatorname{deg}_{T}(v)=p$, we claim that the
equality doesn't hold in this case. Since $\operatorname{deg}_{T}(w) \geq p+1$, then $\operatorname{deg}_{T^{\prime}}(w) \geq p$. Hence, $w \notin L_{p}\left(T^{\prime}\right)=S \cap V\left(T^{\prime}\right)$. Since $v \notin S$ and to $p$-dominates $v, w \in S$, a contradiction. Subcase 1.2. $\operatorname{deg}_{T}(w)=p$.

Then $n^{\prime}=n-|D[v]|$ and $l_{p}^{\prime}=l_{p}-|D(v)|+1$. Now we count the number of the $p$-support vertices of $T^{\prime}$. Note that a $p$-support vertex of $T$ in $C(w) \backslash\{v\}$ is a $p$-support vertex of $T^{\prime}$, too. Define $\delta_{1}$ to be equal to 1 , if $w \in S_{p}(T)$; and 0 , otherwise. Define $\delta_{2}$ to be equal to 1 , if $\operatorname{deg}_{T}(x) \geq p$ and $x \notin S_{p}(T)$; and 0 , otherwise. Then $s_{p}^{\prime}=s_{p}-1-\delta_{1}+\delta_{2}$. By the inductive hypothesis on $T^{\prime}$,

$$
\begin{aligned}
\gamma_{p}(T) & \geq|D(v)|+\gamma_{p}\left(T^{\prime}\right) \geq \\
& \geq|D(v)|+\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2= \\
& =\left(n+l_{p}-s_{p}\right) / 2+\left(\delta_{1}+1-\delta_{2}\right) / 2 \geq \\
& \geq\left(n+l_{p}-s_{p}\right) / 2 .
\end{aligned}
$$

We claim that the equality doesn't hold in this case. Suppose to the contrary that $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$. Then $\delta_{1}+1=\delta_{2}$, and $\gamma_{p}\left(T^{\prime}\right)=\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2$. By the definitions of $\delta_{1}$ and $\delta_{2}, \delta_{1}=0$ and $\delta_{2}=1$. So $d e g_{T}(x) \geq p$ and $x \notin$ $S_{p}(T)$. By inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathcal{T}_{p}$. By Lemma 2.3, $L_{p}\left(T^{\prime}\right)$ is the unique $p$-dominating set of $T^{\prime}$. Since $\operatorname{deg}_{T^{\prime}}(w)=p-1, w$ is a $p$-leaf of $T^{\prime}$. Hence $x$ is a $p$-support vertex of $T^{\prime}$. By Lemma 2.2, $x$ be adjacent to at least $p p$-leaves of $T^{\prime}$, and so $x$ must be adjacent to at least $p-1(\geq 1) p$-leaves in $T$. Thus $x$ is a $p$-support vertex of $T$ since $d e g_{T}(x) \geq p$, which contradicts $x \notin S_{p}(T)$.
Case 2. $\operatorname{deg}_{T}(v) \leq p-1$
By our choice of the path $P=u v w x y \cdots r$, each vertex in $D(w)-C(w)$ has degree one, and for each vertex $a \in C(w), \operatorname{deg}_{T}(a) \leq d e g_{T}(v) \leq p-1$. Hence $D(w) \subseteq L_{p}(T)$. Subcase 2.1. $\operatorname{deg}_{T}(w) \leq p-1$ or $\operatorname{deg}_{T}(w) \geq p+2$.

Let $T^{\prime}=T-D[v]$. Let $S$ be a $\gamma_{p}$-set of $T$. Then $n^{\prime}=n-|D[v]|, l_{p}^{\prime}=l_{p}-|D[v]|$ and $s_{p}^{\prime}=s_{p}$. If $d e g_{T}(w) \leq p-1$, then, by Lemma $2.1, w \in S$. Hence $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$. If $\operatorname{deg}_{T}(w) \geq p+2$, then $C(w) \backslash\{v\} \subseteq D(w) \subseteq L_{p}(T) \subseteq S$. Hence $C(w) \backslash\{v\} \subseteq S \cap V\left(T^{\prime}\right)$. Since $|C(w)|-1=\left|\operatorname{deg}_{T}(w)\right|-2 \geq p, w$ is $p$-dominated by $S \cap V\left(T^{\prime}\right)$ and hence $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$, too. By the induction on $T^{\prime}$,

$$
\begin{aligned}
\gamma_{p}(T) & =|S|=|D[v]|+\left|S \cap V\left(T^{\prime}\right)\right| \geq \\
& \geq|D[v]|+\gamma_{p}\left(T^{\prime}\right) \geq \\
& \geq|D[v]|+\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2= \\
& =\left(n+l_{p}-s_{p}\right) / 2 .
\end{aligned}
$$

Further if $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$, then $\gamma_{p}\left(T^{\prime}\right)=\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2$. By the inductive hypothesis on $T^{\prime}, \Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$. We claim that the equality does not hold for $\Delta\left(T^{\prime}\right) \leq p-1$. If not, then $\operatorname{deg}_{T}(w)=\operatorname{deg}_{T^{\prime}}(w)+1 \leq \Delta\left(T^{\prime}\right)+1 \leq p$. Since $\operatorname{deg}_{T}(w) \leq p-1$ or $\operatorname{deg}_{T}(w) \geq p+2$, we have $\operatorname{deg}_{T}(w) \leq p-1$. Thus $\Delta(T) \leq p-1$, which contradicts the assumption that $\Delta(T) \geq p$.

Note that $\operatorname{deg}_{T^{\prime}}(w) \leq p-2$ or $\operatorname{deg}_{T^{\prime}}(w) \geq p+1\left(w \in S_{p}\left(T^{\prime}\right)\right.$ since $\left.D(w) \subseteq L_{p}(T)\right)$. Since $T^{\prime} \in \mathcal{T}_{p}, T$ can be constructed from $T^{\prime}$ by Operation $\mathcal{O}_{1}$ by attaching the star $K_{1, t}\left(=T[D[v]], t=\operatorname{deg}_{T}(v)-1 \leq p-2\right)$ to $w$. Hence, $T \in \mathcal{T}_{p}$.
Subcase 2.2. $\operatorname{deg}_{T}(w)=p$ and $\operatorname{deg}_{T}(x) \neq p$ or $\operatorname{deg}_{T}(w)=p+1$ and $\operatorname{deg}_{T}(x) \neq p$.
Let $T^{\prime}=T-D[w]$, then $n^{\prime}=n-|D[w]|$ and $l_{p}^{\prime}=l_{p}-|D(w)|$ (since $D(w) \subseteq L_{p}(T)$ and $\left.\operatorname{deg}_{T}(x) \neq p\right)$. Since $\operatorname{deg}_{T}(x) \neq p, S_{p}\left(T^{\prime}\right)=S_{p}(T) \backslash\{w\}$ and $s_{p}^{\prime}=s_{p}-1$. Let $S$ be a $\gamma_{p}$-set of $T$ that contains the vertices of $D[w]$ as few as possible. Then $w \notin S$ (otherwise, we can replace $w$ by $x$ ). Hence $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$. By the induction on $T^{\prime}$,

$$
\begin{aligned}
\gamma_{p}(T) & =|S|=|D(w)|+\left|S \cap V\left(T^{\prime}\right)\right| \geq \\
& \geq|D(w)|+\gamma_{p}\left(T^{\prime}\right) \geq \\
& \geq|D(w)|+\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2= \\
& =\left(n+l_{p}-s_{p}\right) / 2 .
\end{aligned}
$$

Further if $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$, then $\gamma_{p}\left(T^{\prime}\right)=\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2=\left|S \cap V\left(T^{\prime}\right)\right|$. Hence $S \cap V\left(T^{\prime}\right)$ is a $\gamma_{p}$-set of $T^{\prime}$. By the induction on $T^{\prime}, \Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$. If $\Delta\left(T^{\prime}\right) \leq p-1$, then $\operatorname{deg}_{T}(w)=\operatorname{deg}_{T^{\prime}}(w)+1 \leq \Delta\left(T^{\prime}\right)+1 \leq p$. Since $\operatorname{deg}_{T}(w)=p$ or $p+1, \operatorname{deg}_{T}(w)=p$. Thus $w$ is a unique vertex of degree at least $p$ in $T$. Hence $T$ can be obtained recursively from $K_{1, t}\left(t=\operatorname{deg}_{T}(w)=p\right)$ by attaching $n-t-1$ isolated vertices. Hence $T$ can be obtained recursively from $K_{1, t}$ by using $n-t-1$ operations $\mathcal{O}_{1}$, and so $T \in \mathcal{T}_{p}$. Assume now that $T^{\prime} \in \mathcal{T}_{p}$. By Lemma $2.3, S \cap V\left(T^{\prime}\right)=L_{p}\left(T^{\prime}\right)$.

If $d e g_{T}(w)=p$ and $d e g_{T}(x) \geq p+1$, we claim that the equality doesn't hold in this case. Since $\operatorname{deg}_{T}(x) \geq p+1, \operatorname{deg}_{T^{\prime}}(x)=\operatorname{deg}_{T}(x)-1 \geq p$ and so $x \notin L_{p}\left(T^{\prime}\right)=$ $S \cap V\left(T^{\prime}\right)$. Hence $x \notin S$. Note that $d e g_{T}(w)=p$ and $w \notin S$, to $p$-dominate $w, x \in S$, a contradiction.

If $d e g_{T}(w)=p+1$ and $d e g_{T}(x) \geq p+1$, then let $T^{\prime \prime}=T[V(T)-(D(w)-C(w))]$. Note that $\operatorname{deg}_{T^{\prime}}(x)=\operatorname{deg}_{T}(x)-1 \geq p$, by Lemma $2.2, x \in S_{p}\left(T^{\prime}\right)$. Thus $T^{\prime \prime}$ is obtained from $T^{\prime}$ by using Operation $\mathcal{O}_{2}$ by attaching the star $K_{1, t}(=T[C(w) \cup\{w\}]$, $t=$ $\operatorname{deg}_{T}(w)-1=p$ ) to $x$, and so $T^{\prime \prime} \in \mathcal{T}_{p}$. By $2 \leq \operatorname{deg}_{T}(v) \leq p-1, p \geq 3$. Since $T[D(w)-C(w)]$ consists of $|D(w)-C(w)|$ isolated vertices, $T$ is obtained recursively from $T^{\prime \prime}$ by attaching $|D(w)-C(w)|$ isolated vertices to some vertices of $C(w)$. Hence $T$ is obtained recursively from $T^{\prime \prime}$ by using $|D(w)-C(w)|$ operations $\mathcal{O}_{1}$, and so $T \in \mathcal{T}_{p}$.

If $\operatorname{deg}_{T}(x) \leq p-1$, then $p \geq 3$ and let $T^{\prime \prime}=T[V(T)-(D(w)-C(w))]$. Since $\operatorname{deg}_{T^{\prime}}(x)=\operatorname{deg}_{T}(x)-1 \leq p-2$. $T^{\prime \prime}$ is obtained from $T^{\prime}$ by using Operation $\mathcal{O}_{3}$ by attaching the star $K_{1, t}\left(=T[C(w) \cup\{w\}], t=\operatorname{deg}_{T}(w)-1 \geq p-1\right)$ to $x$. So, $T^{\prime \prime} \in \mathcal{T}_{p}$. Since $T[D(w)-C(w)]$ consists of $|D(w)-C(w)|$ isolated vertices, $T$ is obtained recursively from $T^{\prime \prime}$ by attaching $|D(w)-C(w)|$ isolated vertices to some vertices of $C(w)$. Hence $T$ is obtained recursively from $T^{\prime \prime}$ by using $|D(w)-C(w)|$ operations $\mathcal{O}_{1}$, and so $T \in \mathcal{T}_{p}$.
Subcase 2.3. $\operatorname{deg}_{T}(w)=p+1$ and $\operatorname{deg}_{T}(x)=p$.
Let $T^{\prime}=T-D[v]$. Note that $D[v] \subseteq L_{p}(T)$, we have $n^{\prime}=n-|D[v]|, l_{p}^{\prime}=l_{p}-|D[v]|$ and $s_{p}^{\prime}=s_{p}$. Let $S$ be a $\gamma_{p}$-set of $T$, then by Lemma 2.1, $D[v] \subseteq S$. If $w \in S$, then $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$. Since $\operatorname{deg}_{T}(x)=p$ and $S p$-dominates $w$,
$w \in S$ or $x \in S$. If $w \notin S$, then, to $p$-dominate $x, x \in S$ since $\operatorname{deg}_{T}(x)=p$. Hence $\left|\left(S \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(w)\right|=|(C(w)-\{v\}) \cup\{x\}|=\operatorname{deg}_{T}(w)-1=p$. So, $w$ is $p$-dominated by $S \cap V\left(T^{\prime}\right)$. Thus $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$. By the induction on $T^{\prime}$,

$$
\begin{aligned}
\gamma_{p}(T) & =|S|=|D[v]|+\left|S \cap V\left(T^{\prime}\right)\right| \geq \\
& \geq|D[v]|+\gamma_{p}\left(T^{\prime}\right) \geq \\
& \geq|D[v]|+\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2= \\
& =\left(n+l_{p}-s_{p}\right) / 2 .
\end{aligned}
$$

We claim that the equality doesn't hold in this case. Suppose to the contrary that $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$. Then $\gamma_{p}\left(T^{\prime}\right)=\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2=\left|S \cap V\left(T^{\prime}\right)\right|$. Hence $S \cap V\left(T^{\prime}\right)$ is a $\gamma_{p}$-set of $T^{\prime}$. Since $\operatorname{deg}_{T^{\prime}}(w)=\operatorname{deg}_{T}(w)-1=p, \Delta\left(T^{\prime}\right) \geq p$. By the inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathcal{T}_{p}$. By Lemma 2.3, $S \cap V\left(T^{\prime}\right)=L_{p}\left(T^{\prime}\right)$. Since $\operatorname{deg}_{T^{\prime}}(w)=p$ and $\operatorname{deg}_{T^{\prime}}(x)=\operatorname{deg}_{T}(x)=p$, by Lemma 2.2, $w \notin L_{p}\left(T^{\prime}\right)$ and $x \notin L_{p}\left(T^{\prime}\right)$. Hence $w, x \notin S$. But, to $p$-dominate $w$ and $x$, at least one of $w, x$ is contained by $S$, a contradiction.
Subcase 2.4. $\operatorname{deg}_{T}(w)=p$ and $\operatorname{deg}_{T}(x)=p$.
Since $d(T) \geq 4$, the father $y$ of $x$ in the rooted tree $T$ exists. Let $C_{p}(x)$ be the set of children of $x$ with degree at least $p$. Since $\operatorname{deg}_{T}(w)=p, w \in C_{p}(x)$. Let $C_{p}(x)=\left\{w_{1}, \cdots, w_{t}\right\}(t \geq 1)$. Then, for $1 \leq i \leq t, D\left(w_{i}\right) \neq \emptyset$. By the choice of the path $P$, each vertex of $\cup_{i=1}^{t} D\left(w_{i}\right)$ has degree at most $p-1$. So $\cup_{i=1}^{t} D\left(w_{i}\right) \subseteq L_{p}(T)$ and $C_{p}(x) \subseteq S_{p}(T)$. Define $\delta$ to be equal to 1 , if $\operatorname{deg}_{T}(y) \geq p$ and $y \notin S_{p}(T)$; and 0 , otherwise.

Let $T^{\prime}=T-\cup_{i=1}^{t} D\left[w_{i}\right]$. Then we have $n^{\prime}=n-\left|\cup_{i=1}^{t} D\left[w_{i}\right]\right|, l_{p}^{\prime}=l_{p}-\mid \cup_{i=1}^{t}$ $D\left(w_{i}\right) \mid+1$ and $s_{p}^{\prime}=s_{p}-t+\delta$. Let $S$ be a $\gamma_{p}$-set of $T$ that contains the vertices of $\cup_{i=1}^{t} D\left[w_{i}\right]$ as few as possible. Then $w_{i} \notin S$ for $i=1, \cdots, t$ (otherwise, we can replace $w_{i}$ by $x$ ). Hence, to $p$-dominate $w, x$ must be in $S$ for $\operatorname{deg}_{T}(w)=p$. Thus $S \cap V\left(T^{\prime}\right)$ is a $p$-dominating set of $T^{\prime}$. By the induction on $T^{\prime}$,

$$
\begin{aligned}
\gamma_{p}(T) & =|S|=\left|\cup_{i=1}^{t} D\left(w_{i}\right)\right|+\left|S \cap V\left(T^{\prime}\right)\right| \geq \\
& \geq \sum_{i=1}^{t}\left|D\left(w_{i}\right)\right|+\gamma_{p}\left(T^{\prime}\right) \geq \\
& \geq \sum_{i=1}^{t}\left|D\left(w_{i}\right)\right|+\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2= \\
& =\left(n+l_{p}-s_{p}\right) / 2+(1-\delta) / 2 \geq \\
& \geq\left(n+l_{p}-s_{p}\right) / 2
\end{aligned}
$$

We claim that the equality doesn't hold in this case. If $\gamma_{p}(T)=\left(n+l_{p}-s_{p}\right) / 2$, then $\delta=1$ and $\gamma_{p}\left(T^{\prime}\right)=\left(n^{\prime}+l_{p}^{\prime}-s_{p}^{\prime}\right) / 2=\left|S \cap V\left(T^{\prime}\right)\right|$. Hence $\operatorname{deg}_{T^{\prime}}(y)=\operatorname{deg}_{T}(y) \geq p$, $y \notin S_{p}(T)$ and $S \cap V\left(T^{\prime}\right)$ is a $\gamma_{p}$-set of $T^{\prime}$. Thus $\Delta\left(T^{\prime}\right) \geq p$ and $y \in S_{p}\left(T^{\prime}\right)$. By the inductive hypothesis on $T^{\prime}, T^{\prime} \in \mathcal{T}_{p}$. By Lemma 2.3, $S \cap V\left(T^{\prime}\right)=L_{p}\left(T^{\prime}\right)$. Then $y \notin S \cap V\left(T^{\prime}\right)$. So $y \notin S$. Hence, to $p$-dominate $y$, there are at least $p p$-leaves in $T^{\prime}$ (and hence $p-1 \geq 1 p$-leaves in $T$ ) that are adjacent to $y$. That is $y \in S_{p}(T)$, which contradicts to $y \notin S_{p}(T)$.

## Acknowledgments

The work was supported by NNSF of China (No. 10701068 and No.10671191).

## REFERENCES

[1] M. Blidia, M. Chellali, L. Volkmann, Some bounds on the $p$-domination number in trees, Discrete Math. 306 (2006), 2031-2037.
[2] G. Chartrant, L. Lesniak, Graphs \& Digraphs, 3rd ed., Chapman \& Hall, London, 1996.
[3] M. Chellali, Bounds on the 2-domination number in cactus graphs, Opuscula Math. 26 (2006), 5-11.
[4] J.F. Fink, M.S. Jacobson, n-Domination in graphs, [in:] Y.Alavi, A.J.Schwenk (Eds.), Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, 1985, 283-300.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, New York, Marcel Deliker, 1998.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Deliker, 1998.
[7] M. Lemańska, Lower bound on the domination number of a tree, Discuss. Math. Graph Theory 24(2) (2004), 165-169.
[8] L.Volkmann, Some remarks on lower bounds on the p-domination number in trees, J. Combin. Math. Combin. Comput. 61 (2007), 159-167.

You Lu
University of Science and Technology of China
Department of Mathematics
Hefei, Anhui, 230026, China
Xinmin Hou
xmhou@ustc.edu.cn
University of Science and Technology of China
Department of Mathematics
Hefei, Anhui, 230026, China
Jun-Ming Xu
University of Science and Technology of China
Department of Mathematics
Hefei, Anhui, 230026, China
Received: September 9, 2008.
Revised: March 4, 2009.
Accepted: March 10, 2009.

