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A NOTE ON THE p-DOMINATION NUMBER OF TREES

Abstract. Let p be a positive integer and G = (V (G), E(G)) a graph. A p-dominating set
of G is a subset S of V (G) such that every vertex not in S is dominated by at least p vertices
in S. The p-domination number γp(G) is the minimum cardinality among the p-dominating
sets of G. Let T be a tree with order n ≥ 2 and p ≥ 2 a positive integer. A vertex of V (T ) is
a p-leaf if it has degree at most p− 1, while a p-support vertex is a vertex of degree at least
p adjacent to a p-leaf. In this note, we show that γp(T ) ≥ (n+ |Lp(T )| − |Sp(T )|)/2, where
Lp(T ) and Sp(T ) are the sets of p-leaves and p-support vertices of T , respectively. Moreover,
we characterize all trees attaining this lower bound.
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1. INTRODUCTION

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G).
The Open neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of adjacent
vertices of v, and the Closed neighborhood NG[v] = NG(v) ∪ {v}. Let degG(v) =
|NG(v)| denote the degree of v. The maximum degree ∆(G) = max{degG(v) : v ∈
V (G)}. For S ⊆ V (G), the subgraph induced by S is denoted by G[S]. For a pair
of vertices u, v ∈ V (G), the distance dG(u, v) between u and v is the length of the
shortest uv-paths in G. The diameter of G is d(G) = max{dG(u, v) : u, v ∈ V (G)}.

Let T be a nontrivial tree and p ≥ 2 a positive integer. A p-leaf of T is a vertex
with degree at most p− 1, while a p-support vertex of T is a vertex of degree at least
p adjacent to a p-leaf. We denote the sets of p-leaves and p-support vertices of T by
Lp(T ) and Sp(T ), respectively. Notice that if p = 2 then the 2-leaves (resp. 2-support
vertices) are the usual leaves (resp. support vertices) of T , while L2(T ) (resp. S2(T ))
is the set of leaves (resp. support vertices) of T . A tree T is a double star if it contains
exactly two vertices that are not leaves. A double star with two support vertices a
and b is denoted by Sa,b.
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For notation and graph theory terminology we follow [2, 5, 6]. For a vertex v in
a rooted tree T , we let C(v) and D(v) denote the set of children and descendants,
respectively, of v, and we define D[v] = D(v) ∪ {v}.

In [4], Fink and Jacobson introduced the concept of p-domination. Let p be a
positive integer. A subset S of V (G) is a p-dominating set of G if for every vertex
v ∈ V (G) − S, |S ∩ NG(v)| ≥ p. The p-domination number γp(G) is the minimum
cardinality among the p-dominating sets of G. Any p-dominating set of G with
cardinality γp(G) will be called a γp-set of G. Note that the 1-domination number
γ1(G) is the classical domination number γ(G). For any S, T ⊆ V (G), S p-dominates
T in G if for every vertex v ∈ T − S, |S ∩NG(v)| ≥ p.

Some bounds of the p-domination number of a tree T are given in literature.
Let T be a nontrivial tree of order n ≥ 3 and with l leaves and s support vertices.
Lemańska [7] showed that γ(T ) ≥ (n + 2 − l)/2. Chellali [3] proved that γ2(T ) ≥
(n+ l−s)/2 and this lower bound is sharp. In [1], Blidia et al. proved that, for p ≥ 2,
γp(T ) ≤ (n+ |Lp(T )|)/2.

In this note, we give a lower bound of γp(T ) in terms of n, |Lp(T )|, |Sp(T )|, that
is: Let T be a tree of order n. Then

γp(T ) ≥ (n+ |Lp(T )| − |Sp(T )|)/2

for p ≥ 2, which generalizes the lower bounds of Chellali [3]. Moreover, we characterize
all trees attaining this lower bound.

Note that Fink and Jacobson [4] also provided a lower bound of γp(T ) in terms of
the order n of a tree T and p, that is: γp(T ) ≥ (p−1)n+1

p . And recently Volkmann [8]

characterized the family of trees with γp(T ) = d (p−1)n+1
p e. Now we show that our

bound is better than Fink and Jacobson’s in some cases. Let Xp(T ) denote the set
of vertices with degree at least p in T . Let lp = |Lp(T )| and xp = |Xp(T )|. ThenP

v∈Lp(T ) degT (v)

lp
≥ 1 and

P
v∈Xp(T ) degT (v)

xp
≥ p. Let T be a tree satisfying the following

conditions: ∑
v∈Lp(T ) degT (v)

lp
≥ 1 + α and

∑
v∈Xp(T ) degT (v)

xp
≥ p+ β, (1.1)

where α and β are any two nonnegative constants satisfying (p− 1)α+ β = 1. Hence
2n− 2 =

∑
v∈Lp(T ) degT (v) +

∑
v∈Xp(T ) degT (v) ≥ (1 +α)lp + (p+β)xp = (1 +α)n+

p(1 − α)xp, the second equality holds since lp + xp = n and (p − 1)α + β = 1. So
xp ≤ n

p −
2

p(1−α) . Therefore,

n+ |Lp(T )| − |Sp(T )|
2

≥ n+ lp − xp
2

= n− xp ≥ n−
n

p
+

2
p(1− α)

>
(p− 1)n+ 1

p
.

This implies that our bound is better than the bound given by Fink and Jacobson for
the trees satisfying condition (1.1). [Such trees satisfying condition (1.1) exist. For
example, let T be a tree of order n ≥ 2 and corp(T ) a tree obtained from T by adding
p pendant edges to each vertex of T . Then Lp(corp(T )) = V (corp(T )) − V (T ) and
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Xp(corp(T )) = V (T ). Let T ′ = corp(T ). Then we have
P

v∈Lp(T ′) degT ′ (v)

lp
= 1 = 1 + 0

and
P

v∈Xp(T ′) degT ′ (v)

xp
= p+ 1

n

∑
v∈V (T ) degT (v) = p+ 2n−2

n ≥ p+ 1.]

2. MAIN RESULTS

The following result is straightforward and can be found in [1].

Lemma 2.1. ([1]) Every p-dominating set of a graph G contains any vertex of degree
at most p− 1.

A vertex is a central vertex of a star K1,t (t ≥ 1) if either t ≥ 2 and it is the
support vertex or t = 1 and it is one of the two leaves. For convenience, we call
an isolated vertex a star, denoted by K1,0, and the only vertex is called the central
vertex.

We define the family Tp as:
Tp = {T : T is obtained from a sequence T1, T2, · · · , Tk (k ≥ 1) of trees, where T1 =

K1,t (t ≥ p), T = Tk, and, if k ≥ 2, Ti+1(1 ≤ i ≤ k − 1) is obtained from Ti
by using Operation Oj (j = 1, 2 or 3) listed below.}

• Operation O1 : Attach a copy of K1,t (0 ≤ t ≤ p− 2) by joining the central
vertex to a p-support vertex of Ti or to a vertex of degree
at most p− 2 in Ti.

• Operation O2 : Attach a copy of K1,t (t ≥ p) by joining the central vertex
to a p-support vertex of Ti.

• Operation O3 : Attach a copy of K1,t (t ≥ p− 1) by joining the central
vertex to a vertex of degree at most p− 2 in Ti.

From the way in which a tree T ∈ Tp is constructed we make the following lemma.

Lemma 2.2. Let T be a tree in the family Tp with p ≥ 2. Then, V (T ) = Lp(T )∪Sp(T )
and each vertex of Sp(T ) is adjacent to at least p p-leaves in T .

From Lemma 2.1 and Lemma 2.2, it is straightforward to obtain the follow result.

Lemma 2.3. For any positive integer p ≥ 2, if T ∈ Tp, then Lp(T ) is the unique
γp-set of T , and

γp(T ) = |Lp(T )| = (|V (T )|+ |Lp(T )| − |Sp(T )|)/2.

Theorem 2.4. Let T be a tree with order n ≥ 2 and p ≥ 2 a positive integer. Then

γp(T ) ≥ (n+ |Lp(T )| − |Sp(T )|)/2

with equality if and only if either ∆(T ) ≤ p− 1 or T ∈ Tp.

Proof. Let lp = |Lp(T )| and sp = |Sp(T )|. We proceed by induction on the order n. If
n = 2, then T = P2, and so ∆(T ) ≤ p−1. The result holds. This establishes the base
case. Assume that the result is true for every tree T ′ with order 2 ≤ |V (T ′)| = n′ < n
and let T be a tree of order n.
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If ∆(T ) ≤ p−1, then lp = n, sp = 0 and by Lemma 2.1, γp(T ) = n = (n+lp−sp)/2.
The result follows. Assume now that ∆(T ) ≥ p, then d(T ) ≥ 2. If d(T ) = 2, then
T = K1,t (t ≥ p) belongs to Tp. By Lemma 2.3, γp(T ) = (n+ lp − sp)/2. If d(T ) = 3,
then T is a double star Sa,b with degT (a) ≥ p or degT (b) ≥ p. Without loss of
generality, assume degT (a) ≥ p. If 2 ≤ degT (b) ≤ p − 1, then T can be obtained
recursively from K1,t (t = degT (a) ≥ p) by attaching degT (b)− 1 vertices to one leaf
of K1,t. Hence T is obtained recursively from K1,t by using degT (b) − 1 Operations
O1. Hence T ∈ Tp and, by Lemma 2.3, γp(T ) = (n+ lp− sp)/2. If degT (b) = p, then,
to p-dominate b, one of a, b must be contained in a p-dominating set of T . Hence
γp(T ) ≥ lp+1 = (n+ lp−sp)/2+1 > (n+ lp−sp)/2. If degT (b) > p and degT (a) = p,
then, to p-dominate a, one of a, b must be contained in a p-dominating set of T . Hence
γp(T ) ≥ lp+1 = (n+ lp−sp)/2+1 > (n+ lp−sp)/2. If degT (b) > p and degT (a) > p,
then T can be seen as a tree constructed from a star K1,t (t = degT (a) − 1 ≥ p) by
using Operation O2 by attaching a star K1,m (m = degT (b) − 1 ≥ p) to vertex a.
Hence T ∈ Tp. By Lemma 2.3, γp(T ) = (n + lp − sp)/2. Therefore, in the following
we assume that T is a tree with d(T ) ≥ 4 and ∆(T ) ≥ p.

We now root T at a vertex r of maximum eccentricity. Let P = uvwxy · · · r be a
longest path such that d(u, r) = d(T ) ≥ 4 and degT (v) is as large as possible. Then,
each vertex in D(w)− C(w) has degree one.
Case 1. degT (v) ≥ p.

Let T ′ = T −D[v] and S be a γp-set of T such that S contains the vertices of D[v]
as few as possible. Since every vertex of D(v) has degree one, D(v) ⊆ S. Hence v /∈ S
(otherwise, we can replace v by w and get a γp-set of T which contains fewer vertices
of D[v] than S, a contradiction). Thus S ∩ V (T ′) is a p-dominating set of T ′, and so

γp(T ) = |S| = |D(v)|+ |S ∩ V (T ′)| ≥ |D(v)|+ γp(T ′).

Subcase 1.1. degT (w) 6= p.
Then n′ = n−|D[v]|, l′p = lp−|D(v)| and s′p = sp−1. By the inductive hypothesis

on T ′,

γp(T ) ≥ |D(v)|+ γp(T ′) ≥ |D(v)|+ (n′ + l′p − s′p)/2 = (n+ lp − sp)/2.

Further, if γp(T ) = (n+ lp−sp)/2, then γp(T ′) = (n′+ l′p−s′p)/2. By the inductive
hypothesis on T ′, ∆(T ′) ≤ p− 1 or T ′ ∈ Tp.

If ∆(T ′) ≤ p−1, then degT (w) = degT ′(w)+1 ≤ ∆(T ′)+1 ≤ p. Since degT (w) 6= p,
degT (w) ≤ p− 1, and so v is the unique vertex with degree at least p in T . Hence T
can be obtained recursively from a star K1,t (t = degT (v) ≥ p) by attaching n− t− 1
isolated vertices. Hence T is obtained recursively from the star K1,t by using n− t−1
operations O1, and so T ∈ Tp.

If T ′ ∈ Tp, then, by Lemma 2.3, S ∩ V (T ′) = Lp(T ′). If degT (w) ≤ p − 1,
then degT ′(w) ≤ p − 2. Thus T is obtained from T ′ by using Operation O3 by
attaching the star K1,t (= T [D[v]], t = degT (v)− 1 ≥ p− 1) to w. Hence T ∈ Tp. If
degT (w) ≥ p+1 and degT (v) ≥ p+1, then degT ′(w) ≥ p. Thus T is obtained from T ′

by using Operation O2 by attaching the star K1,t (= T [D[v]], t = degT (v) − 1 ≥ p)
to w. Hence T ∈ Tp. If degT (w) ≥ p + 1 and degT (v) = p, we claim that the
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equality doesn’t hold in this case. Since degT (w) ≥ p+ 1, then degT ′(w) ≥ p. Hence,
w /∈ Lp(T ′) = S ∩ V (T ′). Since v /∈ S and to p-dominates v, w ∈ S, a contradiction.
Subcase 1.2. degT (w) = p.

Then n′ = n − |D[v]| and l′p = lp − |D(v)| + 1. Now we count the number of
the p-support vertices of T ′. Note that a p-support vertex of T in C(w) \ {v} is a
p-support vertex of T ′, too. Define δ1 to be equal to 1, if w ∈ Sp(T ); and 0, otherwise.
Define δ2 to be equal to 1, if degT (x) ≥ p and x /∈ Sp(T ); and 0, otherwise. Then
s′p = sp − 1− δ1 + δ2. By the inductive hypothesis on T ′,

γp(T ) ≥ |D(v)|+ γp(T ′) ≥
≥ |D(v)|+ (n′ + l′p − s′p)/2 =

= (n+ lp − sp)/2 + (δ1 + 1− δ2)/2 ≥
≥ (n+ lp − sp)/2.

We claim that the equality doesn’t hold in this case. Suppose to the contrary
that γp(T ) = (n + lp − sp)/2. Then δ1 + 1 = δ2, and γp(T ′) = (n′ + l′p − s′p)/2.
By the definitions of δ1 and δ2, δ1 = 0 and δ2 = 1. So degT (x) ≥ p and x /∈
Sp(T ). By inductive hypothesis on T ′, T ′ ∈ Tp. By Lemma 2.3, Lp(T ′) is the unique
p-dominating set of T ′. Since degT ′(w) = p − 1, w is a p-leaf of T ′. Hence x is a
p-support vertex of T ′. By Lemma 2.2, x be adjacent to at least p p-leaves of T ′, and
so x must be adjacent to at least p − 1 (≥ 1) p-leaves in T . Thus x is a p-support
vertex of T since degT (x) ≥ p, which contradicts x /∈ Sp(T ).
Case 2. degT (v) ≤ p− 1

By our choice of the path P = uvwxy · · · r, each vertex in D(w)−C(w) has degree
one, and for each vertex a ∈ C(w), degT (a) ≤ degT (v) ≤ p−1. Hence D(w) ⊆ Lp(T ).
Subcase 2.1. degT (w) ≤ p− 1 or degT (w) ≥ p+ 2.

Let T ′ = T −D[v]. Let S be a γp-set of T . Then n′ = n− |D[v]|, l′p = lp − |D[v]|
and s′p = sp. If degT (w) ≤ p− 1, then, by Lemma 2.1, w ∈ S. Hence S ∩ V (T ′) is a
p-dominating set of T ′. If degT (w) ≥ p + 2, then C(w) \ {v} ⊆ D(w) ⊆ Lp(T ) ⊆ S.
Hence C(w)\{v} ⊆ S∩V (T ′). Since |C(w)|−1 = |degT (w)|−2 ≥ p, w is p-dominated
by S ∩ V (T ′) and hence S ∩ V (T ′) is a p-dominating set of T ′, too. By the induction
on T ′,

γp(T ) = |S| = |D[v]|+ |S ∩ V (T ′)| ≥
≥ |D[v]|+ γp(T ′) ≥
≥ |D[v]|+ (n′ + l′p − s′p)/2 =

= (n+ lp − sp)/2.

Further if γp(T ) = (n+ lp−sp)/2, then γp(T ′) = (n′+ l′p−s′p)/2. By the inductive
hypothesis on T ′, ∆(T ′) ≤ p − 1 or T ′ ∈ Tp. We claim that the equality does not
hold for ∆(T ′) ≤ p− 1. If not, then degT (w) = degT ′(w) + 1 ≤ ∆(T ′) + 1 ≤ p. Since
degT (w) ≤ p− 1 or degT (w) ≥ p+ 2, we have degT (w) ≤ p− 1. Thus ∆(T ) ≤ p− 1,
which contradicts the assumption that ∆(T ) ≥ p.
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Note that degT ′(w) ≤ p−2 or degT ′(w) ≥ p+1 ( w ∈ Sp(T ′) since D(w) ⊆ Lp(T )).
Since T ′ ∈ Tp, T can be constructed from T ′ by Operation O1 by attaching the star
K1,t (= T [D[v]], t = degT (v)− 1 ≤ p− 2) to w. Hence, T ∈ Tp.
Subcase 2.2. degT (w) = p and degT (x) 6= p or degT (w) = p+ 1 and degT (x) 6= p.

Let T ′ = T −D[w], then n′ = n−|D[w]| and l′p = lp−|D(w)| (since D(w) ⊆ Lp(T )
and degT (x) 6= p). Since degT (x) 6= p, Sp(T ′) = Sp(T ) \ {w} and s′p = sp − 1. Let S
be a γp-set of T that contains the vertices of D[w] as few as possible. Then w /∈ S
(otherwise, we can replace w by x). Hence S ∩ V (T ′) is a p-dominating set of T ′. By
the induction on T ′,

γp(T ) = |S| = |D(w)|+ |S ∩ V (T ′)| ≥
≥ |D(w)|+ γp(T ′) ≥
≥ |D(w)|+ (n′ + l′p − s′p)/2 =

= (n+ lp − sp)/2.

Further if γp(T ) = (n+ lp − sp)/2, then γp(T ′) = (n′ + l′p − s′p)/2 = |S ∩ V (T ′)|.
Hence S∩V (T ′) is a γp-set of T ′. By the induction on T ′, ∆(T ′) ≤ p−1 or T ′ ∈ Tp. If
∆(T ′) ≤ p− 1, then degT (w) = degT ′(w) + 1 ≤ ∆(T ′) + 1 ≤ p. Since degT (w) = p or
p+ 1, degT (w) = p. Thus w is a unique vertex of degree at least p in T . Hence T can
be obtained recursively from K1,t (t = degT (w) = p) by attaching n − t − 1 isolated
vertices. Hence T can be obtained recursively from K1,t by using n− t− 1 operations
O1, and so T ∈ Tp. Assume now that T ′ ∈ Tp. By Lemma 2.3, S ∩ V (T ′) = Lp(T ′).

If degT (w) = p and degT (x) ≥ p + 1, we claim that the equality doesn’t hold in
this case. Since degT (x) ≥ p + 1, degT ′(x) = degT (x) − 1 ≥ p and so x /∈ Lp(T ′) =
S ∩V (T ′). Hence x /∈ S. Note that degT (w) = p and w /∈ S, to p-dominate w, x ∈ S,
a contradiction.

If degT (w) = p+ 1 and degT (x) ≥ p+ 1, then let T ′′ = T [V (T )− (D(w)−C(w))].
Note that degT ′(x) = degT (x)−1 ≥ p, by Lemma 2.2, x ∈ Sp(T ′). Thus T ′′ is obtained
from T ′ by using Operation O2 by attaching the star K1,t (= T [C(w) ∪ {w}], t =
degT (w) − 1 = p) to x, and so T ′′ ∈ Tp. By 2 ≤ degT (v) ≤ p − 1, p ≥ 3. Since
T [D(w)−C(w)] consists of |D(w)−C(w)| isolated vertices, T is obtained recursively
from T ′′ by attaching |D(w)−C(w)| isolated vertices to some vertices of C(w). Hence
T is obtained recursively from T ′′ by using |D(w) − C(w)| operations O1, and so
T ∈ Tp.

If degT (x) ≤ p − 1, then p ≥ 3 and let T ′′ = T [V (T ) − (D(w) − C(w))]. Since
degT ′(x) = degT (x) − 1 ≤ p − 2. T ′′ is obtained from T ′ by using Operation O3

by attaching the star K1,t (= T [C(w) ∪ {w}], t = degT (w) − 1 ≥ p − 1) to x. So,
T ′′ ∈ Tp. Since T [D(w) − C(w)] consists of |D(w) − C(w)| isolated vertices, T is
obtained recursively from T ′′ by attaching |D(w) − C(w)| isolated vertices to some
vertices of C(w). Hence T is obtained recursively from T ′′ by using |D(w) − C(w)|
operations O1, and so T ∈ Tp.
Subcase 2.3. degT (w) = p+ 1 and degT (x) = p.

Let T ′ = T−D[v]. Note thatD[v] ⊆ Lp(T ), we have n′ = n−|D[v]|, l′p = lp−|D[v]|
and s′p = sp. Let S be a γp-set of T , then by Lemma 2.1, D[v] ⊆ S. If w ∈ S, then
S ∩ V (T ′) is a p-dominating set of T ′. Since degT (x) = p and S p-dominates w,
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w ∈ S or x ∈ S. If w /∈ S, then, to p-dominate x, x ∈ S since degT (x) = p. Hence
|(S∩V (T ′))∩NT ′(w)| = |(C(w)−{v})∪{x}| = degT (w)−1 = p. So, w is p-dominated
by S ∩ V (T ′). Thus S ∩ V (T ′) is a p-dominating set of T ′. By the induction on T ′,

γp(T ) = |S| = |D[v]|+ |S ∩ V (T ′)| ≥
≥ |D[v]|+ γp(T ′) ≥
≥ |D[v]|+ (n′ + l′p − s′p)/2 =

= (n+ lp − sp)/2.

We claim that the equality doesn’t hold in this case. Suppose to the contrary that
γp(T ) = (n+lp−sp)/2. Then γp(T ′) = (n′+l′p−s′p)/2 = |S∩V (T ′)|. Hence S∩V (T ′)
is a γp-set of T ′. Since degT ′(w) = degT (w) − 1 = p, ∆(T ′) ≥ p. By the inductive
hypothesis on T ′, T ′ ∈ Tp. By Lemma 2.3, S ∩ V (T ′) = Lp(T ′). Since degT ′(w) = p
and degT ′(x) = degT (x) = p, by Lemma 2.2, w /∈ Lp(T ′) and x /∈ Lp(T ′). Hence
w, x /∈ S. But, to p-dominate w and x, at least one of w, x is contained by S, a
contradiction.
Subcase 2.4. degT (w) = p and degT (x) = p.

Since d(T ) ≥ 4, the father y of x in the rooted tree T exists. Let Cp(x) be the
set of children of x with degree at least p. Since degT (w) = p, w ∈ Cp(x). Let
Cp(x) = {w1, · · · , wt} (t ≥ 1). Then, for 1 ≤ i ≤ t, D(wi) 6= ∅. By the choice of the
path P , each vertex of ∪ti=1D(wi) has degree at most p− 1. So ∪ti=1D(wi) ⊆ Lp(T )
and Cp(x) ⊆ Sp(T ). Define δ to be equal to 1, if degT (y) ≥ p and y /∈ Sp(T ); and 0,
otherwise.

Let T ′ = T − ∪ti=1D[wi]. Then we have n′ = n − | ∪ti=1 D[wi]|, l′p = lp − | ∪ti=1

D(wi)| + 1 and s′p = sp − t + δ. Let S be a γp-set of T that contains the vertices of
∪ti=1D[wi] as few as possible. Then wi /∈ S for i = 1, · · · , t (otherwise, we can replace
wi by x). Hence, to p-dominate w, x must be in S for degT (w) = p. Thus S ∩ V (T ′)
is a p-dominating set of T ′. By the induction on T ′,

γp(T ) = |S| = | ∪ti=1 D(wi)|+ |S ∩ V (T ′)| ≥

≥
t∑
i=1

|D(wi)|+ γp(T ′) ≥

≥
t∑
i=1

|D(wi)|+ (n′ + l′p − s′p)/2 =

= (n+ lp − sp)/2 + (1− δ)/2 ≥
≥ (n+ lp − sp)/2.

We claim that the equality doesn’t hold in this case. If γp(T ) = (n + lp − sp)/2,
then δ = 1 and γp(T ′) = (n′+l′p−s′p)/2 = |S∩V (T ′)|. Hence degT ′(y) = degT (y) ≥ p,
y /∈ Sp(T ) and S ∩ V (T ′) is a γp-set of T ′. Thus ∆(T ′) ≥ p and y ∈ Sp(T ′). By
the inductive hypothesis on T ′, T ′ ∈ Tp. By Lemma 2.3, S ∩ V (T ′) = Lp(T ′). Then
y /∈ S ∩ V (T ′). So y /∈ S. Hence, to p-dominate y, there are at least p p-leaves in T ′
(and hence p− 1 ≥ 1 p-leaves in T ) that are adjacent to y. That is y ∈ Sp(T ), which
contradicts to y /∈ Sp(T ).
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