A new class of transitive graphs ${ }^{\star}$

Fu-Tao Hu, Jian-Wei Wang, Jun-Ming Xu*
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

ARTICLE INFO

Article history:
Received 13 May 2009
Received in revised form 9 October 2009
Accepted 9 October 2009
Available online 22 October 2009

Keywords:

Hypercubes
Johnson graphs
Kneser graphs
Petersen graph
Cayley graphs
Connectivity
Automorphism group
Hamiltonian
Diameter

Abstract

Let n and k be integers with $n \geq k \geq 0$. This paper presents a new class of graphs $H(n, k)$, which contains hypercubes and some well-known graphs, such as Johnson graphs, Kneser graphs and Petersen graph, as its subgraphs. The authors present some results of algebraic and topological properties of $H(n, k)$. For example, $H(n, k)$ is a Cayley graph, the automorphism group of $H(n, k)$ contains a subgroup of order $2^{n} n$! and $H(n, k)$ has a maximal connectivity $\binom{n}{k}$ and is hamiltonian if k is odd; it consists of two isomorphic connected components if k is even. Moreover, the diameter of $H(n, k)$ is determined if k is odd.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, a graph $G=(V, E)$ is considered as an undirected graph where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set. The symbol $\operatorname{Aut}(G)$ denotes the automorphism group of G. A graph G is vertex-transitive (resp. edge-transitive) if Aut (G) acts transitively on $V(G)$ (resp. on $E(G)$). An arc in G is an ordered pair of adjacent vertices, and G is arc-transitive if Aut (G) acts transitively on the set of its arcs. It is well known that a connected arc-transitive graph is necessarily vertexand edge-transitive.

Let Γ be a finite group and S a subset of Γ that is closed under taking inverses and does not contain the identity. A Cayley $\operatorname{graph} C_{\Gamma}(S)$ is a graph with vertex-set Γ and edge-set $E\left(C_{\Gamma}(S)\right)=\left\{g h: h g^{-1} \in S\right\}$. It is well known that every Cayley graph is vertex-transitive.

Let n, m and i be fixed integers with $n \geq m \geq i \geq 0$, and let Ω_{n} be the power set of the set $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let $\Omega_{n}^{m}=\left\{X \in \Omega_{n}:|X|=m\right\}$. In [7], a class of graphs $J(n, m, i)$ is defined as follows. The vertex-set of $J(n, m, i)$ is Ω_{n}^{m}, where two subsets X and Y are adjacent if $|X \cap Y|=i$. For $n \geq 2 m$, the graphs $J(n, m, m-1)$ are the Johnson graphs, $J(n, m, 0)$ are the Kneser graphs and $J(5,2,0)$ is the Petersen graph. Johnson graphs and Kneser graphs are important classes of graphs in algebraic graph theory, and have received much research attention; see for example [1-7,9-12,14-16,18].

The n-dimensional hypercube Q_{n} is the graph with vertex-set V consisting of all binary sequences of length n on the set $\{0,1\}$, two vertices x and y being linked by an edge if and only if they differ in exactly one coordinate. The hypercube is one of the most popular, versatile and efficient topological structures of interconnection networks; see for example [13,19].

In this paper, we present a new class of graphs $H(n, k)(n \geq k \geq 0)$. We will prove that $H(n, k)$ contains hypercubes and some well-known graphs, such as Johnson graphs and Kneser graphs, as its subgraphs. We present some results about

[^0]algebraic and topological properties of $H(n, k)$. For example, $H(n, k)$ is an arc-transitive Cayley graph; the automorphism group of $H(n, k)$ contains a subgroup of order $2^{n} n!; H(n, k)$ has maximal connectivity $\binom{n}{k}$ and is hamiltonian if k is odd; $H(n, k)$ consists of two isomorphic connected components if k is even. Moreover, when k is odd, the diameter of $H(n, k)$ is equal to $\left\lceil\frac{n-1}{k}\right\rceil+1$ if $n \geq 2 k-1$, and equal to $\left\lceil\frac{n-1}{n-k}\right\rceil+1$ if $n \leq 2 k-2$.

The rest of the paper is organized as follows. Section 2 gives the definition of the graph $H(n, k)$ and some preliminaries. Section 3 investigates some properties of subgraphs of $H(n, k)$. Section 4 presents some algebraic properties of $H(n, k)$. Section 5 considers the connectivity of $H(n, k)$. Section 6 considers hamiltonian properties of $H(n, k)$. The diameter of $H(n, k)$ is determined in Section 7.

The other concepts not defined here can be found in $[7,20]$.

2. Definitions and preliminaries

Recall that Ω_{n} denotes the power set of the set $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\Omega_{n}^{m}=\left\{X \in \Omega_{n}:|X|=m\right\}$. Let $\Omega_{n}^{\prime}=\left\{X \in \Omega_{n}:|X|\right.$ is odd $\}$ and $\Omega_{n}^{\prime \prime}=\left\{X \in \Omega_{n}:|X|\right.$ is even $\}$. Then $\left|\Omega_{n}\right|=2^{n},\left|\Omega_{n}^{m}\right|=\binom{n}{m}$ and $\left|\Omega_{n}^{\prime}\right|=\left|\Omega_{n}^{\prime \prime}\right|=2^{n-1}$.

For any two sets $X, Y \in \Omega_{n}$, the symmetric difference $X \Delta Y$ of X and Y is the set $X \cup Y-X \cap Y$. It is easy to verify that Ω_{n} is an Abelian group about the operation Δ. We now give the definition of the graph $H(n, k)$.

Definition 2.1. Let n and k be fixed integers with $n \geq k \geq 0$. The graph $H(n, k)$ is defined as follows. $H(n, k)$ has the vertex-set Ω_{n} and there is an edge between two distinct vertices X and Y if and only if $|X \Delta Y|=k$.

Clearly, $H(n, 0)$ is an empty graph, containing no edges. For any two distinct vertices X and Y in $H(n, n)$, there is an edge between them if and only if they are mutually complementary, and so $H(n, n)=2^{n-1} K_{2}$. Thus, we always suppose that $0<k<n$ in our discussion.
Proposition 2.1. $H(n, k)$ is an $\binom{n}{k}$-regular graph with 2^{n} vertices.
Proof. We only need to prove that $H(n, k)$ is $\binom{n}{k}$-regular. Let X be a vertex in $H(n, k)$ with $|X|=m$. If Y is a neighbor of X and $|X \cap Y|=j$, then $|Y|=k-m+2 j$. Thus, the neighbors of X can be partitioned into $m+1$ parts $V_{0}, V_{1}, \ldots, V_{m}$ such that $|X \cap Y|=j$ for any $Y \in V_{j}$ and each $j=0,1, \ldots, m$. By Vandermonde's identity, it follows that the degree of X is equal to

$$
\sum_{j=0}^{m}\left|V_{j}\right|=\sum_{j=0}^{m}\binom{m}{j}\binom{n-m}{k-m+j}=\binom{n}{k}
$$

which is independent of m, and so $H(n, k)$ is $\binom{n}{k}$-regular.
Proposition 2.2. $H(n, k)$ has $\binom{n}{k}$ edge-disjoint perfect matchings, and hence it is 1-factorable.
Proof. For a fixed $X \in \Omega_{n}^{k}$ and any $Y \in \Omega_{n}$, since $|(X \Delta Y) \Delta Y|=|X|=k, H(n, k)$ has an edge, denoted by $e_{X Y}$, between $X \Delta Y$ and Y. Then, $E_{X}=\left\{e_{X Y}: Y \in \Omega_{n}\right\}$ is a perfect matching of $H(n, k)$, and $\left|E_{X}\right|=2^{n-1}$. There are $\binom{n}{k}$ such perfect matchings in $H(n, k)$ since $\left|\Omega_{n}^{k}\right|=\binom{n}{k}$. Moreover, if $X_{1}, X_{2} \in \Omega_{n}^{k}$ and $X_{1} \neq X_{2}$ then $E_{X_{1}} \cap E_{X_{2}}=\emptyset$. Thus, $H(n, k)$ has $\binom{n}{k}$ edge-disjoint perfect matchings. Since $\binom{n}{k}\left|E_{X}\right|=\binom{n}{k} 2^{n-1}=|E(H(n, k))|$ by Proposition 2.1, the $\binom{n}{k}$ perfect matchings contain all edges of $H(n, k)$. Thus, $H(n, k)$ is 1-factorable.

Proposition 2.3. Let X and Y be two adjacent vertices in $H(n, k)$. Then the parity of $|X|$ and $|Y|$ is the same if k is even, and is different if k is odd.
Proof. Immediate.
Proposition 2.4. If n is even and k is odd, then $H(n, k) \cong H(n, n-k)$.
Proof. Since n is even and k is odd, $n-k$ is odd. For any $X \in \Omega_{n}$, we use \bar{X} to denote the complement of X in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then $\bar{X} \neq \emptyset$ for any $X \in \Omega_{n}^{\prime}$ since n is even. A mapping $\varphi: \Omega_{n} \rightarrow \Omega_{n}$ is defined by

$$
\varphi(X)= \begin{cases}\bar{X}, & \text { if } X \in \Omega_{n}^{\prime} \\ X, & \text { if } X \in \Omega_{n}^{\prime \prime}\end{cases}
$$

Clearly, if $X \in \Omega_{n}^{\prime}$, then $\bar{X} \in \Omega_{n}^{\prime}$ since n is even. Thus, the mapping φ is a permutation on Ω_{n}. Since k is odd, for any two vertices X and Y in $H(n, k)$, if $|X \Delta Y|=k$, then $|X|$ and $|Y|$ have different parity by Proposition 2.3. Assume, without loss of generality, $X \in \Omega_{n}^{\prime}$ and $Y \in \Omega_{n}^{\prime \prime}$.

$$
\begin{aligned}
X Y \in E(H(n, k)) & \Leftrightarrow|X \Delta Y|=k \\
& \Leftrightarrow|\bar{X} \Delta Y|=n-k \\
& \Leftrightarrow|\varphi(X) \Delta \varphi(Y)|=n-k \\
& \Leftrightarrow \varphi(X) \varphi(Y) \in E(H(n, n-k)),
\end{aligned}
$$

which implies that φ is an isomorphism between $H(n, k)$ and $H(n, n-k)$.

3. Properties of subgraphs

We use $H^{m}(n, k), H^{\prime}(n, k)$ and $H^{\prime \prime}(n, k)$ to denote the subgraphs of $H(n, k)$ induced by $\Omega_{n}^{m}, \Omega_{n}^{\prime}$ and $\Omega_{n}^{\prime \prime}$, respectively.
The following theorem shows that the graphs $J(n, m, i)$ defined in the Introduction are found as subgraphs of $H(n, k)$.

Theorem 3.1. For any integers n, m and i with $n \geq m \geq i \geq 0$, if $n \geq 2 m-2 i$ then $H^{m}(n, 2 m-2 i)=J(n, m, i)$.
Proof. Clearly, $V\left(H^{m}(n, 2 m-2 i)\right)=\Omega_{n}^{m}=V(J(n, m, i))$. Let X and Y be any two distinct sets in Ω_{n}^{m}. Then

$$
\begin{aligned}
X Y \in E\left(H^{m}(n, 2 m-2 i)\right) & \Leftrightarrow|X \Delta Y|=2 m-2 i \\
& \Leftrightarrow|X|+|Y|-2|X \cap Y|=2 m-2 i \\
& \Leftrightarrow|X \cap Y|=i \Leftrightarrow X Y \in E(J(n, m, i)) .
\end{aligned}
$$

It follows that $H^{m}(n, 2 m-2 i)=J(n, m, i)$.
By Theorem 3.1, $H^{m}(n, 2)$ is the Johnson graphs $J(n, m, m-1)$ and $H^{m}(n, 2 m)$ is the Kneser graphs $J(n, m, 0)$ when $n \geq 2 m$.

The following result shows that the hypercubes Q_{n} appear as special cases among $H(n, k)$ for $k=1$.

Theorem 3.2. $H(n, 1) \cong Q_{n}$ for any positive integer n.
Proof. To prove the theorem, it is sufficient to give an isomorphism between $H(n, 1)$ and Q_{n}. Let $X=\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{s}}\right\}$ be a vertex in $H(n, 1)$ for some $s \leq n$ and let $Y=y_{1} y_{2} \cdots y_{n}$ be a vertex in Q_{n}. Define a mapping $\phi: V(H(n, 1)) \rightarrow V\left(Q_{n}\right)$ such that $\phi(X)=Y$, where the i_{1} th, i_{2} th, \ldots, i_{s} th coordinates of Y are 1 and all the others are 0 . It is easy to see that ϕ is a bijection and preservers adjacency. Thus, the mapping ϕ is an isomorphism between $H(n, 1)$ and Q_{n}.

Let X be an arbitrary fixed element in Ω_{n}. Define the mapping $\rho_{X}: \Omega_{n} \rightarrow \Omega_{n}$ as follows.

$$
\begin{equation*}
\rho_{X}: Y \mapsto X \Delta Y, \quad \forall Y \in \Omega_{n} . \tag{3.1}
\end{equation*}
$$

Clearly, ρ_{X} is a permutation on Ω_{n}.

Theorem 3.3. If k is even, then $H^{\prime}(n, k) \cong H^{\prime \prime}(n, k)$.
Proof. It is clear that if $X, Y \in \Omega_{n}^{\prime}$ then $X \Delta Y \in \Omega_{n}^{\prime \prime}$. Thus, the mapping ρ_{X} defined as (3.1) is a mapping from Ω_{n}^{\prime} to $\Omega_{n}^{\prime \prime}$. For $Y, Z \in \Omega_{n}^{\prime}$, if $Y \neq Z$ then $X \Delta Y \neq X \Delta Z$. It follows that the mapping ρ_{X} is injective. Conversely, for any $Y \in \Omega_{n}^{\prime \prime}$, we have $X \Delta Y \in \Omega_{n}^{\prime}$, and so $\rho_{X}(X \Delta Y)=Y$. It follows that ρ_{X} is surjective. Thus ρ_{X} is a bijective mapping from Ω_{n}^{\prime} to $\Omega_{n}^{\prime \prime}$.

We now show that ρ_{X} is an isomorphism between $H^{\prime}(n, k)$ and $H^{\prime \prime}(n, k)$. It is sufficient to prove that ρ_{X} preserves adjacency. For any two distinct vertices $Y, Z \in V\left(H^{\prime}(n, k)\right)$ and $|Y \Delta Z|=k$, then $\left|\rho_{X}(Y) \Delta \rho_{X}(Z)\right|=|(X \Delta Y) \Delta(X \Delta Z)|=$ $|Y \Delta Z|=k$ and vice versa, which implies that $\rho_{X}(Y) \rho_{X}(Z)$ is an edge in $H^{\prime \prime}(n, k)$ whenever $Y Z$ is an edge in $H^{\prime}(n, k)$. It follows that $H^{\prime}(n, k) \cong H^{\prime \prime}(n, k)$.

Theorem 3.4. If k is odd, then $H(n, k)$ is isomorphic to a spanning subgraph of $H^{\prime \prime}(n+1, k+1)$.
Proof. Define a mapping $\varphi: \Omega_{n} \rightarrow \Omega_{n+1}^{\prime \prime}$ as follows.

$$
\varphi: X \mapsto\left\{\begin{array}{ll}
X \cup\left\{x_{n+1}\right\}, & \text { if } X \in \Omega_{n}^{\prime} ; \\
X, & \text { if } X \in \Omega_{n}^{\prime \prime} .
\end{array} \quad \forall X \in \Omega_{n}\right.
$$

Since $\varphi(X) \neq \varphi(Y)$ if $X \neq Y$, the mapping φ is injective, and so $\left|\Omega_{n}\right| \leq\left|\Omega_{n+1}^{\prime \prime}\right|$. Since $\left|\Omega_{n}\right|=2^{n}=\left|\Omega_{n+1}^{\prime \prime}\right|$, the mapping φ is surjective. It follows that the mapping φ is bijective.

Let $X, Y \in \Omega_{n}$. If $X Y \in E(H(n, k))$, then $|X \Delta Y|=k$ is odd. Thus, $|X|$ and $|Y|$ are of different parity by Proposition 2.3. Without loss of generality, suppose that $X \in \Omega_{n}^{\prime}$ and $Y \in \Omega_{n}^{\prime \prime}$. Then

$$
|\varphi(X) \Delta \varphi(Y)|=\left|\left(X \cup\left\{x_{n+1}\right\}\right) \Delta Y\right|=|X \Delta Y|+1=k+1
$$

It follows that if X and Y are adjacent in $H(n, k)$ then $\varphi(X)$ and $\varphi(Y)$ are adjacent in $H^{\prime \prime}(n+1, k+1)$. Thus, $\varphi(H(n, k))$ is a spanning subgraph of $H^{\prime \prime}(n+1, k+1)$.

4. Algebraic properties

In this section, we will investigate some algebraic properties of $H(n, k)$. We start with the following theorem.

Theorem 4.1. Let Γ be the Abelian group for the operation Δ on the set Ω_{n}. Then $H(n, k)$ is a Cayley graph $C_{\Gamma}(S)$ with $S=\Omega_{n}^{k}$ for $k \geq 1$.

Proof. It is clear that the empty set \emptyset is the identity of Γ, and so the $X^{-1}=X$ for any $X \in \Omega_{n}$. Let X and Y be two any vertices in $H(n, k)$. Then

$$
X Y \in E(H(n, k)) \Leftrightarrow|X \Delta Y|=k \Leftrightarrow\left|Y \Delta X^{-1}\right|=k \Leftrightarrow Y \Delta X^{-1} \in S .
$$

It follows that $H(n, k)$ is a Cayley graph $C_{\Gamma}(S)$.
Lemma 4.1. Let S_{n} be the symmetric group on the set $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then S_{n} is a subgroup of $\operatorname{Aut}(H(n, k))$. In particular, if k is even, then S_{n} is a subgroup of $\operatorname{Aut}\left(H^{\prime \prime}(n, k)\right)$.

Proof. Let $\sigma \in S_{n}$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \in \Omega_{n}$. Define

$$
\sigma(X)= \begin{cases}\emptyset & \text { if } X=\emptyset \tag{4.1}\\ \left\{\sigma\left(x_{1}\right), \sigma\left(x_{2}\right), \ldots, \sigma\left(x_{m}\right)\right\} & \text { if } X \neq \emptyset\end{cases}
$$

Clearly, σ is a permutation on Ω_{n} and $|\sigma(X)|=|X|$ for each $X \in \Omega_{n}$. Let $Y \in \Omega_{n}$, since

$$
\begin{equation*}
|X \Delta Y|=k \Leftrightarrow|\sigma(X) \Delta \sigma(Y)|=k \tag{4.2}
\end{equation*}
$$

the permutation σ is an automorphism on $H(n, k)$. Thus, S_{n} is a subgroup of $\operatorname{Aut}(H(n, k))$.
If k is even then, by Proposition 2.3, $|X|$ and $|Y|$ have the same parity for any two adjacent vertices X and Y in $H(n, k)$. For any $X, Y \in \Omega_{n}^{\prime \prime}$ and any $\sigma \in S_{n}$, both Eqs. (4.1) and (4.2) hold, and so S_{n} is a subgroup of $\operatorname{Aut}\left(H^{\prime \prime}(n, k)\right.$).

Theorem 4.2. $H(n, k)$ is arc-transitive.
Proof. It is clear that $H(n, k)$ is vertex-transitive since $H(n, k)$ is a Cayley graph by Theorem 4.1. To prove that $H(n, k)$ is arctransitive, it is sufficient to prove that there is an automorphism of $H(n, k)$ such that it maps an arc $\left(\emptyset,\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\right)$ to any arc with the initial vertex \emptyset since $H(n, k)$ is vertex-transitive. Let $\left(\emptyset,\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}\right)$ is any arc with the initial vertex \emptyset. By Lemma 4.1, there is an automorphism of $H(n, k)$ that maps arc ($\left.\emptyset,\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}\right)$ to ($\left.\emptyset,\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}\right)$. Thus, $H(n, k)$ is arc-transitive.

Lemma 4.2. Let $H_{n}=\left\{\rho_{X}: X \in \Omega_{n}\right\}$, where ρ_{X} is defined in Eq. (3.1). Then H_{n} is a subgroup of $\operatorname{Aut}(H(n, k))$.
Proof. By Theorem 4.1, $H(n, k)$ is a Cayley graph and then by the definition of Cayley graphs, H_{n} is a subgroup of $\operatorname{Aut}(H(n, k))$.

Corollary 4.1. If k is even, $H^{\prime \prime}(n, k)$ is arc-transitive.
Proof. For any $X, Y \in \Omega_{n}^{\prime \prime}$, there is an automorphism $\rho_{X \Delta Y} \in H_{n}^{\prime \prime}$ such that $\rho_{X \Delta Y}(X)=(X \Delta Y) \Delta X=Y$. It follows that $H^{\prime \prime}(n, k)$ is vertex-transitive.

Let $\left(\emptyset,\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}\right)$ is an any arc in $H^{\prime \prime}(n, k)$. By Lemma 4.1, there is an automorphism of $H^{\prime \prime}(n, k)$ that maps arc ($\emptyset,\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$) to ($\left.\emptyset,\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}\right)$. Thus, $H^{\prime \prime}(n, k)$ is arc-transitive.

Theorem 4.3. $\operatorname{Aut}(H(n, k))$ contains a subgroup $H_{n} S_{n}$ with order $2^{n} n$!.
Proof. By Lemma 4.1, S_{n} is a subgroup of $\operatorname{Aut}(H(n, k))$ with order $n!$. By Lemma 4.2, H_{n} is a subgroup of $\operatorname{Aut}(H(n, k))$ with order 2^{n}. Thus, $H_{n} S_{n}$ is a subgroup of $\operatorname{Aut}(H(n, k))$, and $\left|H_{n} S_{n}\right|=\frac{\left|H_{n}\right|\left|S_{n}\right|}{\left|H_{n} \cap S_{n}\right|}$. Since $H_{n} \cap S_{n}$ is the identity subgroup, $\left|H_{n} \cap S_{n}\right|=1$. Thus, $\left|H_{n} S_{n}\right|=2^{n} n!$.

It has been shown by Harary [8] that $\operatorname{Aut}\left(Q_{n}\right)=\left[S_{2}\right]^{S_{n}}$ and $\left|\operatorname{Aut}\left(Q_{n}\right)\right|=2^{n} n!$. Since $H(n, 1) \cong Q_{n}$, by Theorem 4.3 we have $\operatorname{Aut}\left(Q_{n}\right) \supseteq H_{n} S_{n}$ with order $2^{n} n$!. The following theorem shows that $\operatorname{Aut}(H(n, 1))=H_{n} S_{n}$, which is another form of $\operatorname{Aut}\left(Q_{n}\right)$.

Theorem 4.4. $\operatorname{Aut}(H(n, 1))=H_{n} S_{n}$.

Proof. Let $\Gamma=\operatorname{Aut}(H(n, 1))$. By Theorem 4.3, $H_{n} S_{n}$ is a subgroup of Γ. Thus, if we can prove $|\Gamma| \leq\left|H_{n} S_{n}\right|=2^{n} n$!, then $\Gamma=H_{n} S_{n}$. To this end, let Γ_{\emptyset} be the stabilizer of the element $\emptyset \in \Omega_{n}$, that is, $\Gamma_{\emptyset}=\{\rho \in \Gamma: \rho(\emptyset)=\emptyset\}$. By the proof of Lemma 4.1, S_{n} is a subgroup of Γ_{\emptyset}. We now show that Γ_{\emptyset} is a subgroup of S_{n}.

Consider a distance partition $\left\{\Omega_{n}^{0}, \Omega_{n}^{1}, \ldots, \Omega_{n}^{n}\right\}$ of $H(n, 1)$, where $\Omega_{n}^{0}=\emptyset$, that is, $d(\emptyset, X)=s$ for any $X \in \Omega_{n}^{s}$ for each $s=1,2, \ldots, n$. For any $\rho \in \Gamma_{\emptyset}, \rho\left(\Omega_{n}^{i}\right)=\Omega_{n}^{i}$ for each $i=0,1, \ldots, n$ since $H(n, 1)$ is vertex-transitive. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{s}\right\} \in \Omega_{n}^{s}$, where $1 \leq s \leq n$. We want to prove that $\rho(X)=\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{s}\right)\right\}$ by induction on s.

There is nothing to do if $s=1$. Suppose that the conclusion is true for any integer $s-1 \geq 1$. For each $j=1,2, \ldots, s$, let $X_{j}=X \backslash\left\{x_{j}\right\}$. Clearly, $\left|X_{j} \Delta X\right|=1$ and so $X_{j} X \in E\left(H(n, 1)\right.$) for each $j=1,2, \ldots, s$. Moreover, $X_{1}, X_{2}, \ldots, X_{s}$ are all neighbors of X in Ω_{n}^{s-1}. By the induction hypothesis, $\rho\left(X_{j}\right)=\left\{\rho\left(x_{1}\right), \ldots, \rho\left(x_{j-1}\right), \rho\left(x_{j+1}\right), \ldots, \rho\left(x_{s}\right)\right\}$ for each $j=1,2, \ldots$, s. Since ρ preserves adjacency, $\rho\left(X_{j}\right) \rho(X) \in E(H(n, 1))$ for each $j=1,2, \ldots, s$. Thus, $\rho\left(X_{1}\right), \rho\left(X_{2}\right), \ldots, \rho\left(X_{s}\right)$ must have a common neighbor in Ω_{n}^{s}. Since $s \geq 2$, such a common neighbor must be $\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{s}\right)\right\}$. It follows that $\rho(X)=\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{s}\right)\right\}$. By the principle of induction, we have $\rho(X)=\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{s}\right)\right\}$ for each $s=1,2, \ldots, n$. In particular, if $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, then $\rho(X)=\left\{\rho\left(x_{1}\right), \rho\left(x_{2}\right), \ldots, \rho\left(x_{n}\right)\right\}$. It follows that

$$
\rho=\left(\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n} \\
\rho\left(x_{1}\right) & \rho\left(x_{2}\right) & \ldots & \rho\left(x_{n}\right)
\end{array}\right) \in S_{n} .
$$

Thus, Γ_{\varnothing} is a subgroup S_{n}.
Let \emptyset^{Γ} be the orbit of Γ with respect to \emptyset, that is, $\emptyset^{\Gamma}=\{\rho(\emptyset): \rho \in \Gamma\}$. Then $\emptyset^{\Gamma}=\Omega_{n}$ since $H(n, 1)$ is vertextransitive. By the orbit-stabilizer theorem (see Lemma 2.2 .2 in [7]), we have $|\Gamma|=\left|\emptyset^{\Gamma}\right|\left|\Gamma_{\emptyset}\right| \leq\left|\Omega_{n}\right|\left|S_{n}\right|=2^{n} n!$. The theorem follows.

5. Connectivity

In this section, we will show that if k is odd then $H(n, k)$ is a connected bipartite graph with connectivity $\binom{n}{k}$, and if k is even then $H(n, k)$ consists of two isomorphic connected components with connectivity $\binom{n}{k}$.

We use $H_{x_{n+1}}^{+}(n+1, k)$ to denote the subgraph of $H(n+1, k)$ induced by all sets in Ω_{n+1} that contain x_{n+1}, and $H_{x_{n+1}}^{-}(n+1, k)$ to denote the subgraph of $H(n+1, k)$ induced by all sets in Ω_{n+1} that do not contain x_{n+1}.

Lemma 5.1. $H_{x_{n+1}}^{+}(n+1, k) \cong H(n, k) \cong H_{x_{n+1}}^{-}(n+1, k)$.
Proof. Clearly, $H_{x_{n+1}}^{-}(n+1, k) \cong H(n, k)$. In order to prove $H(n, k) \cong H_{x_{n+1}}^{+}(n+1, k)$, we define a mapping φ from $V(H(n, k))$ to $V\left(H_{x_{n+1}}^{+}(n+1, k)\right)$ as follows.

$$
\varphi: X \mapsto X \cup\left\{x_{n+1}\right\}, \quad \forall X \in \Omega_{n}
$$

Clearly, the mapping φ is bijective. Since for any two distinct vertices X and Y in $H(n, k)$,

$$
\begin{aligned}
X Y \in E(H(n, k)) & \Leftrightarrow|X \Delta Y|=k \\
& \Leftrightarrow\left|\left(X \cup\left\{x_{n+1}\right\}\right) \Delta\left(Y \cup\left\{x_{n+1}\right\}\right)\right|=k \\
& \Leftrightarrow|\varphi(X) \Delta \varphi(Y)|=k \\
& \Leftrightarrow \varphi(X) \varphi(Y) \in E\left(H_{x_{n+1}}^{+}(n+1, k)\right),
\end{aligned}
$$

the mapping φ is an isomorphism between $H(n, k)$ and $H_{x_{n+1}}^{+}(n+1, k)$, and so $H_{x_{n+1}}^{+}(n+1, k) \cong H(n, k)$.
Theorem 5.1. If k is odd then $H(n, k)$ is bipartite and connected, and if k is even then $H(n, k)$ consists of two isomorphic connected components.

Proof. Suppose that k is odd. Then for any two vertices X and Y in $H(n, k),|X \Delta Y|=k$ means that $|X|$ and $|Y|$ have different parity. Thus, $\left\{\Omega_{n}^{\prime}, \Omega_{n}^{\prime \prime}\right\}$ is a bipartition of $V(H(n, k))$. We now prove that $H(n, k)$ is connected by induction on $n \geq 2$ and $k \geq 1$. Since $H(2,1)$ is a 4 -cycle, it is connected. Suppose that $H(n, k)$ is connected.

We first prove that $H(n+1, k)$ is connected for a fixed k. By Lemma 5.1, $H_{x_{n+1}}^{+}(n+1, k) \cong H(n, k) \cong H_{x_{n+1}}^{-}(n+1, k)$. By the induction hypothesis, $H(n, k)$ is connected, and so both $H_{x_{n+1}}^{+}(n+1, k)$ and $H_{x_{n+1}}^{-}(n+1, k)$ are connected. The empty set \emptyset is a vertex in $H_{x_{n+1}}^{-}(n+1, k)$, and not in $H_{x_{n+1}}^{+}(n+1, k)$. Let $X=\left\{x_{1}, \ldots, x_{k-1}, x_{n+1}\right\}$. Then, $X \in \Omega_{n+1}^{k}$ is a vertex in $H_{x_{n+1}}^{+}(n+1, k)$, and not in $H_{x_{n+1}}^{-}(n+1, k)$. Since two vertices \emptyset and X are adjacent in $H(n+1, k), H(n+1, k)$ is connected.

We now prove that $H(n, k+2)$ is connected. To this end, it suffices to see that $H(k+3, k+2)$ is connected since we have just proved in the previous paragraph that the connectedness of $H(n, k)$ implies that $H(n+1, k)$ is connected, for a fixed odd k. Thus, it follows from Proposition 2.4 that $H(k+3, k+2) \cong H(k+3,1)$ which is a hypercube and connected. Hence, by induction, $H(n, k)$ is connected for every odd k and for all n.

Suppose now that k is even. If $X Y$ is an edge, then $|X|$ and $|Y|$ are of the same parity, so there is no edge between $H^{\prime}(n, k)$ and $H^{\prime \prime}(n, k)$ and these two are disconnected from each other. By Theorem 3.3, we only need to prove that $H^{\prime \prime}(n, k)$ is connected. By Theorem 3.4, $H^{\prime \prime}(n, k)$ contains a spanning subgraph isomorphic to $H(n-1, k-1)$. Since $k-1$ is odd, by the first conclusion, $H(n-1, k-1)$ is connected, and so is $H^{\prime \prime}(n, k)$.

The theorem follows.
Theorem 5.2. The connectivity of $H(n, k)$ is equal to $\binom{n}{k}$ if k is odd; the connectivities of $H^{\prime \prime}(n, k)$ and $H^{\prime}(n$, $k)$ are both equal to $\binom{n}{k}$ if k is even.
Proof. It has been shown by Watkins [17] that the connectivity of a connected edge-transitive graph is equal to its minimum degree. By Theorem 4.2, $H(n, k)$ is edge-transitive. By Theorem 5.1 and Proposition 2.1, if k is odd, then the connectivity of $H(n, k)$ is equal to $\binom{n}{k}$.

By Corollary 4.1 both $H^{\prime}(n, k)$ and $H^{\prime \prime}(n, k)$ are edge-transitive for an even k. Similarly as in the previous paragraph, their connectivity is equal to $\binom{n}{k}$.

6. Hamiltonian property

A cycle in a graph is called a Hamilton cycle if it contains all vertices of the graph. A graph is called hamiltonian if it contains a Hamilton cycle. In the preceding section, we have shown that $H(n, k)$ is connected if k is odd, and consists of two isomorphic connected components if k is even. In this section, we will prove that $H(n, k)$ is hamiltonian if k is odd, and two isomorphic connected components are hamiltonian if k is even.

Theorem 6.1. $H(n, k)$ is hamiltonian when k is odd.
Proof. Note that if k is odd then $H(n, k)$ is bipartite and connected by Theorem 5.1. We prove the theorem by induction on $n \geq 2$ and $k \geq 1 . H(2,1)$ is a 4-cycle and so it is hamiltonian. Suppose that $H(n, k)$ is hamiltonian. We need to prove that both $H(n+1, k)$ and $H(n, k+2)$ are hamiltonian.

We first prove that $H(n+1, k)$ is hamiltonian for a fixed k. By Lemma 5.1, $H_{x_{n+1}}^{+}(n+1, k) \cong H(n, k) \cong H_{x_{n+1}}^{-}(n+1, k)$. By the induction hypothesis, both $H_{x_{n+1}}^{-}(n+1, k)$ and $H_{x_{n+1}}^{+}(n+1, k)$ are hamiltonian. Let C^{-}and C^{+}be Hamilton cycles of $H_{x_{n+1}}^{-}(n+1, k)$ and $H_{x_{n+1}}^{+}(n+1, k)$, respectively. Since $H(n, k)$ is edge-transitive by Theorem 4.2, we can assume that the edge $e_{1}=\emptyset\left\{x_{1}, \ldots, x_{k}\right\}$ is in C^{-}and the edge $e_{2}=\left\{x_{k}, x_{n+1}\right\}\left\{x_{1}, \ldots, x_{k-1}, x_{n+1}\right\}$ is in C^{+}. Clearly, $e_{3}=\emptyset\left\{x_{1}, \ldots, x_{k-1}, x_{n+1}\right\}$ and $e_{4}=\left\{x_{k}, x_{n+1}\right\}\left\{x_{1}, \ldots, x_{k}\right\}$ are edges of $H(n+1, k)$. Then $C^{-} \cup C^{+}-e_{1}-e_{2}+e_{3}+e_{4}$ is a Hamilton cycle in $H(n+1, k)$.

We now prove that $H(n, k+2)$ is hamiltonian. To this end, it suffices to see that $H(k+3, k+2)$ is hamiltonian since we have just proved in the previous paragraph that the hamiltonicity of $H(n, k)$ implies that $H(n+1, k)$ is hamiltonian. Thus, it follows from Proposition 2.4 that $H(k+3, k+2) \cong H(k+3,1)$ which is a hypercube and hamiltonian. Hence, by induction, $H(n, k)$ is hamiltonian for every odd k and for all n.

By the principle of induction, $H(n, k)$ is hamiltonian when k is odd. The theorem follows.
Corollary 6.1. If k is even, then $H^{\prime \prime}(n, k)$ is hamiltonian.
Proof. By Theorem $3.4, H^{\prime \prime}(n, k)$ contains a spanning subgraph isomorphic to $H(n-1, k-1)$. By Theorem 6.1, $H(n-1, k-1)$ is hamiltonian, and so is $H^{\prime \prime}(n, k)$.

7. Diameter

A path P from x_{0} to x_{k} in G is a sequence of pairwise distinct vertices $P=\left(x_{0}, x_{1}, \ldots, x_{k}\right)$, where $x_{i-1} x_{i} \in E(G)$ for each $i=1,2 \ldots, k$. The length of P, denoted by $\varepsilon(P)$, is the number of edges in P. For two distinct vertices x and y in G, the minimum length among all paths from x to y is called the distance from x to y, denoted by $d_{G}(x, y)$. The maximum distance among all pairs of vertices in G is called the diameter of G, denoted by $d(G)$, that is, $d(G)=\max \left\{d_{G}(x, y): \forall x, y \in V(G)\right\}$.

In this section, the symbol $d(X, Y)$ denotes the distance $d_{H(n, k)}(X, Y)$ between two vertices X and Y in $H(n, k)$. We will prove that for any odd integer $k, d(H(n, k))=\left\lceil\frac{n-1}{k}\right\rceil+1$ if $n \geq 2 k-1$ and $d(H(n, k))=\left\lceil\frac{n-1}{n-k}\right\rceil+1$ if $n \leq 2 k-2$.

We first prove that $d(H(n, k))=\left\lceil\frac{n-1}{k}\right\rceil+1$ for $n \geq 2 k-1$ in Lemma 7.4. The basal outline of the proof is as follows. To compute $d(H(n, k))$, we only need to consider $d(\emptyset, X)$ for any vertex X since $H(n, k)$ is vertex-transitive by Theorem 4.2. It is easy to find a vertex X such that $d(\emptyset, X) \geq\left\lceil\frac{n-1}{k}\right\rceil+1$, and not easy to prove that $d(\emptyset, X) \leq\left\lceil\frac{n-1}{k}\right\rceil+1$ for every vertex X. In fact, we prove the latter by constructing a path of required length from \emptyset to X by Lemma 7.1. In the same idea, we prove $d(H(n, k))=\left\lceil\frac{n-1}{n-k}\right\rceil+1$ for $n \leq 2 k-2$ in Lemma 7.8.

Lemma 7.1. Let X and Y be any two distinct elements in Ω_{n}. If $X Y \in E(H(n, k))$, then $k \leq|X|+|Y| \leq 2 n-k$ and $\| X|-|Y|| \leq k$. For any $s \in\{0,1, \ldots, n\}$ and any $X \in \Omega_{n}$, if $k \leq s+|X| \leq 2 n-k$ and $||X|-s| \leq k, k$ and $|X|+s$ have the same parity, then there exists $Y \in \Omega_{n}^{s}$ such that $X Y \in E(H(n, k))$.

Proof. For any two distinct vertices X and Y in $H(n, k)$,

$$
X Y \in E(H(n, k)) \Leftrightarrow|X \Delta Y|=|X|+|Y|-2|X \cap Y|=k
$$

and hence $|X|+|Y| \geq k$. Also

$$
|X \Delta Y|=|X \cup Y|-|X \cap Y| \leq n-|X \cap Y|
$$

and hence $|X \cap Y| \geq|X|+|Y|-n$. It follows that

$$
k \leq n-|X \cap Y| \leq 2 n-|X|-|Y|
$$

that is, $|X|+|Y| \leq 2 n-k$. Since $|X \cap Y| \leq \min \{|X|,|Y|\}$, we have that $\| X|-|Y|| \leq k$.
Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. For any integer s satisfying our hypothesis, let

$$
Y=\left\{x_{m+1-\frac{m+s-k}{2}}, x_{m+1-\frac{m+s-k}{2}+1}, \ldots, x_{k+\frac{m+s-k}{2}}\right\} .
$$

Then $|Y|=s$. Since k and $m+s$ are the same parity, $m+s-k$ is even. Since $|m-s| \leq k$, we have that $m+1-\frac{m+s-k}{2} \geq 1$. Also since $s+m \leq 2 n-k$, we have that $k+\frac{m+s-k}{2} \leq n$. It follows that Y is a vertex in $H(n, k)$. Since $|X \cap Y|=\frac{m+s-k}{2}$, we have that $|X \Delta Y|=|X|+|Y|-2|X \cap Y|=m+s-(m+s-k)=k$, which implies that Y is adjacent to X in $H(n, k)$.

Lemma 7.2. Let $P=\left(\emptyset, X_{1}, X_{2}, \ldots, X_{s-1}, X_{s}\right)$ is a path from \emptyset to $X=X_{s}$ in $H(n, k)$, then $\left|X_{s}\right| \leq s k$.
Proof. By Lemma 7.1, if $X Y \in E(H(n, k))$ then $\| X|-|Y|| \leq k$ and then $\left|X_{i+1}-X_{i}\right| \leq k$ for $i=0,1, \ldots, s-1$ where $X_{0}=\emptyset$, and hence $\sum_{i=0}^{s-1}\left|X_{i+1}-X_{i}\right| \leq s k$, and then $\left|X_{s}\right| \leq s k$.

Lemma 7.3. Let $X \in \Omega_{n}^{m}$ with $m \geq 1$. Suppose that $k \geq 2, n \geq 2 k-1$ and $m \leq \min \{n, 2 k+1\}$. Then $d(\emptyset, X)=1$ if $m=k$. For $m \neq k, d(\emptyset, X)=2$ if m is even, and $d(\emptyset, X)=3$ if both k and m are odd.

Proof. Without loss of generality, let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. If $m=k$, then two vertices \emptyset and X are adjacent in $H(n, k)$ since $|\emptyset \Delta X|=k$, and so $d(\emptyset, X)=1$. Assume $m \neq k$. Then $d(\emptyset, X) \geq 2$ since \emptyset and X are not adjacent in $H(n, k)$.

Assume m is even. Then $m \leq \min \{n, 2 k\}$. Let $Y=\left\{x_{\frac{m}{2}+1}, x_{\frac{m}{2}+2}, \ldots, x_{\frac{m}{2}+k}\right\}$. Then $|Y|=k$ and $Y \in \Omega_{n}$ since $\frac{m}{2}+k \leq n$. Moreover, $|X \Delta Y|=\frac{m}{2}+\left(k-\frac{m}{2}\right)=k$. Thus, (\emptyset, Y, X) is a path from \emptyset to X in $H(n, k)$, and so $d(\emptyset, X)=2$.

Assume that both k and m are odd. Let $P=\left(\emptyset, X_{1}, X_{2}, \ldots, X\right)$ be a shortest path from \emptyset to X in $H(n, k)$. Then $X \neq X_{1}$ since any neighbor of \emptyset in $H(n, k)$ is a k-set in Ω_{n} and $m \neq k$. Since both k and m are odd, by Proposition $2.3, X_{1}$ and X are not adjacent. It follows that the length of P is at least three, and so $d(\emptyset, X) \geq 3$. To prove that $d(\emptyset, X)=3$, we only need to construct a path $P=\left(\emptyset, X_{1}, X_{2}, X\right)$ of length three from \emptyset to X in $H(n, k)$.

If $m<k$, then let $i=\frac{1}{2}(k+m)$, which is an integer with $m<i<k$. Moreover, $\max \{i+k, m+k\} \leq 2 k-1 \leq n$. Let

$$
X_{1}=\left\{x_{i+1}, x_{i+2}, \ldots, x_{i+k}\right\} \quad \text { and } \quad X_{2}=\left\{x_{1}, \ldots, x_{i}, \ldots, x_{m+k}\right\} .
$$

Then

$$
\left|X_{1} \Delta X_{2}\right|=\left|\left\{x_{1}, x_{2}, \ldots, x_{i}\right\} \cup\left\{x_{m+k+1}, \ldots, x_{i+k}\right\}\right|=i+(i-m)=k
$$

and

$$
\left|X_{2} \Delta X\right|=\left|\left\{x_{m+1}, x_{m+2}, \ldots, x_{m+k}\right\}\right|=k
$$

and so $X_{1} X_{2}, X_{2} X \in E(H(n, k))$. Thus, $P=\left(\emptyset, X_{1}, X_{2}, X\right)$ is a path from \emptyset to X in $H(n, k)$ with length three.
If $m>k$, then let $j=\frac{1}{2}(m-k)$ and let

$$
X_{1}=\left\{x_{j+1}, x_{j+2}, \ldots, x_{j+k}\right\} \quad \text { and } \quad X_{2}=\left\{x_{1}, \ldots, x_{j}, \ldots, x_{m-k}\right\} .
$$

Then

$$
\left|X_{1} \Delta X_{2}\right|=\left|\left\{x_{1}, x_{2}, \ldots, x_{j}\right\} \cup\left\{x_{m-k+1}, \ldots, x_{j+k}\right\}\right|=j+(2 k+j-m)=k
$$

and

$$
\left|X_{2} \Delta X\right|=\left|\left\{x_{m-k+1}, x_{m-k+2}, \ldots, x_{m}\right\}\right|=k
$$

and so $X_{1} X_{2}, X_{2} X \in E(H(n, k))$. Thus, $P=\left(\emptyset, X_{1}, X_{2}, X\right)$ is a path from \emptyset to X in $H(n, k)$ with length three. The lemma follows.

Lemma 7.4. If k is odd and $n \geq 2 k-1$, then $d(H(n, k))=\left\lceil\frac{n-1}{k}\right\rceil+1$.

Proof. If k is odd, then $H(n, k)$ is connected by Theorem 5.1, and so the diameter is well defined. To compute the diameter of $H(n, k)$, we only need to consider the distance from the vertex \emptyset to any other vertex since $H(n, k)$ is vertex-transitive by Theorem 4.2. For $k=1$ and $X \in V(H(n, 1))$ it is obvious that $d(\emptyset, X)=|X|$ in $H(n, 1)$, so $d(H(n, 1))=d\left(\emptyset,\left\{x_{1}, \ldots, x_{n}\right\}\right)=$ $n=\left\lceil\frac{n-1}{1}\right\rceil+1$. Now suppose that $k \geq 3$.

Let $i=\left\lceil\frac{n-1}{k}\right\rceil$. Then $i \geq 2$ and $(i-1) k+2 \leq n \leq i k+1$. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{(i-1) k+2}\right\}$. By Lemma 7.2, we have $d(\emptyset, X) \geq i$ in $H(n, k)$. Let P be a shortest path from \emptyset to X in $H(n, k)$. Then $\varepsilon(P) \geq i$. Suppose that $\varepsilon(P)=i$. Since k is odd, by Proposition 2.3, any two adjacent vertices in P have different parity. Since \emptyset is even, $|X|$ and i have the same parity. However, since k is odd, i and $(i-1) k+2=|X|$ have different parity, a contradiction. It follows that

$$
d(H(n, k)) \geq d(\emptyset, X)=\varepsilon(P) \geq i+1=\left\lceil\frac{n-1}{k}\right\rceil+1
$$

To complete the proof of the lemma, we only need to prove $d(H(n, k)) \leq\left\lceil\frac{n-1}{k}\right\rceil+1$.
When $2 k-1 \leq n \leq 2 k+1$, we have that $d(H(n, k)) \leq 3=\left\lceil\frac{n-1}{k}\right\rceil+1$ by Lemma 7.3 . Assume $n \geq 2 k+2$ and let $X \in \Omega_{n}^{m}$. By Lemma 7.3 it suffices to consider those m with $m>2 k+1$ only. Thus, there is some integer $j(3 \leq j \leq i)$ such that $(j-1) k+2 \leq m \leq j k+1$. Without loss of generality, let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. For each $\ell=1, \ldots, j$, let $X_{\ell}=\left\{x_{1}, \ldots, x_{m-(j-\ell) k}\right\}$. Then $\left|X_{\ell} \Delta X_{\ell+1}\right|=k$ for each $\ell=1, \ldots, j-1$, and $X_{j}=X$.

If $m-(j-1) k$ is even, then substituting $s=k$ into Lemma 7.1 yields $k \leq k+m-(j-1) k \leq 2 n-k$. It follows from $(j-1) k+2 \leq m \leq j k+1$ that $2-k \leq m-(j-1) k-k \leq 1$, so $|m-(j-1) k-k| \leq k$, and k and $m-(j-1) k+k$ are of the same parity. Then, by Lemma 7.1, there exists such an $X_{0} \in V(H(n, k))$ of size k that is adjacent to X_{1}. Thus, $\left(\emptyset, X_{0}, X_{1}, \ldots, X_{\ell}, \ldots, X_{j}\right)$ is a path of length $j+1$ from \emptyset to X. Thus, $d(H(n, k)) \leq i+1=\left\lceil\frac{n-1}{k}\right\rceil+1$.

If $m-(j-1) k$ is odd, then substituting $s=k$ into Lemma 7.1 yields $k \leq k+m-(j-2) k \leq 2 n-k$. It follows from $(j-1) k+2 \leq m \leq k+1$ that $2 \leq m-(j-2) k-k \leq k+1$, and then $3 \leq m-(j-2) k-k \leq k$ since $m-(j-1) k$ is odd, so $|m-(j-2) k-k| \leq k$, and k and $m-(j-2) k+k$ are of the same parity. Then, by Lemma 7.1, there exists such an $X_{0} \in V(H(n, k))$ of size k that is adjacent to X_{2}. Thus, $\left(\emptyset, X_{0}, X_{2}, \ldots, X_{\ell}, \ldots, X_{j}\right)$ is a path of length j from \emptyset to X, that is, $d(H(n, k)) \leq i=\left\lceil\frac{n-1}{k}\right\rceil$.

The Lemma follows.
Lemma 7.5. Let k be even and let $d^{\prime \prime}(n, k)$ denote the diameter of $H^{\prime \prime}(n, k)$. If $n \geq 2 k-1$, then $d^{\prime \prime}(n, k)=\left\lceil\frac{n-1}{k}\right\rceil$.
Proof. By Theorem 5.1, $H^{\prime \prime}(n, k)$ is connected, and so $d^{\prime \prime}(n, k)$ is well defined.
We first consider $n \in\{2 k-1,2 k, 2 k+1\}$. If $k=2$, then $n \in\{3,4,5\}$. It is easy to verify that $d^{\prime \prime}(3,2)=1$, $d^{\prime \prime}(4,2)=d^{\prime \prime}(5,2)=2$, and so the lemma holds for $n \in\{3,4,5\}$. Assume $k \geq 4$.

By Lemma $7.3, d^{\prime \prime}(2 k-1, k)=d^{\prime \prime}(2 k, k)=d^{\prime \prime}(2 k+1, k)=2$, which satisfy $\left\lceil\frac{n-1}{k}\right\rceil$.
Assume that $n \geq 2 k+2$ and let $i=\left\lceil\frac{n-1}{k}\right\rceil$. Then $i \geq 3$, and $(i-1) k+2 \leq n \leq i k+1$. Let $Z=\left\{x_{1}, x_{2}, \ldots, x_{(i-1) k+2}\right\}$. By Lemma 7.2, we have $d^{\prime \prime}(\emptyset, Z) \geq i=\left\lceil\frac{n-1}{k}\right\rceil$.

To complete our proof, we only need to prove that $d^{\prime \prime}(\emptyset, X) \leq\left\lceil\frac{n-1}{k}\right\rceil$ for any vertex X different from \emptyset since $H^{\prime \prime}(n, k)$ is vertex-transitive by Corollary 4.1.

Without loss of generality, let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be any vertex in $H^{\prime \prime}(n, k)$, where m is even. Since k is even and $m \leq n \leq i k+1, m \leq i k$. If $m \leq 2 k$, then $k \leq k+m \leq 2 n-k,|m-k| \leq k, k$ and $k+m$ are both even. By Lemma 7.1, there is some $X_{1} \in \Omega_{n}^{k}$ such that it is adjacent to X in $H^{\prime \prime}(n, k)$. Thus, ($\left.\emptyset, X_{1}, X\right)$ is a path of length two from \emptyset to X in $H^{\prime \prime}(n, k)$.

Assume $m \geq 2 k+2$. Then there is an integer $j(2 \leq j \leq i-1)$ such that $j k+2 \leq m \leq(j+1) k$. Let

$$
X_{\ell}=\left\{x_{1}, x_{2}, \ldots, x_{m-(j-\ell) k}\right\}, \quad \ell=1, \ldots, j
$$

Clearly, for each $\ell=1,2, \ldots, j, X_{\ell}$ is a vertex in $H^{\prime \prime}(n, k)$ since $m-(j-\ell) k$ is even. Moreover, $\left|X_{\ell-1} \Delta X_{\ell}\right|=$ $\left|\left\{x_{m-(j-\ell+1) k+1}, \ldots, x_{m-(j-\ell) k}\right\}\right|=k$, that is, $X_{\ell-1}$ and X_{ℓ} are adjacent in $H^{\prime \prime}(n, k)$, where $X=X_{j}$. By Lemma 7.1, there is some $X_{0} \in \Omega_{n}^{k}$ such that X_{0} and X_{1} are adjacent in $H^{\prime \prime}(n, k)$. Thus, $P=\left(\emptyset, X_{0}, X_{1}, \ldots, X_{j}\right)$ is a path from \emptyset to X in $H^{\prime \prime}(n, k)$, its length is equal to $j+1 \leq i=\left\lceil\frac{n-1}{k}\right\rceil$. Thus, $d^{\prime \prime}(n, k)=\left\lceil\frac{n-1}{k}\right\rceil$.

Lemma 7.6. If both n and k are odd, then $d(H(n, k)) \geq d\left(H^{\prime \prime}(n, n-k)\right)+1$.
Proof. Define a mapping φ from $V(H(n, k))$ to $V\left(H^{\prime \prime}(n, n-k)\right)$ as follows.

$$
\varphi: X \mapsto\left\{\begin{array}{ll}
\bar{X}, & \text { if } X \in \Omega_{n}^{\prime} ; \\
X, & \text { if } X \in \Omega_{n}^{\prime \prime}
\end{array} \quad \forall X \in V(H(n, k))\right.
$$

It is easy to see that φ is a surjective mapping from $V(H(n, k))$ to $V\left(H^{\prime \prime}(n, n-k)\right)$. For any two vertices X and Y in $H(n, k)$, if $|X \Delta Y|=k$ then $|X|$ and $|Y|$ have different parity by Proposition 2.3 since k is odd. Without loss of generality, suppose that $|X|$ is odd and $|Y|$ is even. Then, $|\bar{X} \Delta Y|=n-|X \Delta Y|=n-k$. Thus, $\varphi(X) \varphi(Y)=\bar{X} Y$ is an edge in $H(n, n-k)$, which implies that φ is a surjective homomorphism from $H(n, k)$ to $H^{\prime \prime}(n, n-k)$. Thus, it is not hard to see that $d(H(n, k)) \geq d\left(H^{\prime \prime}(n, n-k)\right)$. Use $d^{\prime}(X, Y)$ to denote the distance from X to Y in $H(n, k)$ and $d^{\prime \prime}(X, Y)$ to denote the distance from X to \bar{Y} in $H^{\prime \prime}(n, n-k)$.

Let X and Y be two vertices in $H^{\prime \prime}(n, n-k)$ such that $d^{\prime \prime}(X, Y)=d\left(H^{\prime \prime}(n, n-k)\right)$.
Suppose that $d^{\prime \prime}(X, Y)$ is odd. Since $|X|$ and $|Y|$ are even, both X and Y are in $H(n, k)$, and so $\varphi(X)=X$ and $\varphi(Y)=Y$. Then $d^{\prime}(X, Y)$ is even by Proposition 2.3. Thus, $d^{\prime}(X, Y) \geq d^{\prime \prime}(X, Y)+1$, and so $d(H(n, k)) \geq d^{\prime}(X, Y) \geq d^{\prime \prime}(X, Y)+1=$ $d\left(H^{\prime \prime}(n, n-k)\right)+1$.

Suppose that $d^{\prime \prime}(X, Y)$ is even. As $|Y|$ is even, $|\bar{Y}|$ is odd. By Proposition 2.3, $d^{\prime}(X, \bar{Y})$ is odd. Thus, $d(H(n, k)) \geq d^{\prime}(X, \bar{Y}) \geq$ $d^{\prime \prime}(X, Y)+1=d\left(H^{\prime \prime}(n, n-k)\right)+1$.

Lemma 7.7. Suppose that k is odd and $n \leq 2 k-2$. Then for any $X \in \Omega_{n}^{m}, d(\emptyset, X) \leq 2$ if m is even and $m \in\{0,2,4, \ldots, 2(n-$ $k)\}$, and $d(\emptyset, X) \leq 3$ if m is odd and $m \in\{3 k-2 n, 3 k-2 n+1, \ldots, n\}$.
Proof. If $m=k$, then $d(\emptyset, X)=1$, clearly. If $m=0$, then $X=\emptyset$ and $d(\emptyset, X)=0$. Assume $m \neq 0, k$.
Without loss of generality, let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. Suppose that m is even and $m \in\{2,4, \ldots, 2(n-k)\}$. Let $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{\frac{m}{2}}, x_{m+1}, x_{m+2}, \ldots, x_{k+\frac{m}{2}}\right\}$. Then $X_{0} \in \Omega_{n}$ since $k+\frac{m}{2} \leq k+(n-k)=n$. Moreover, $\left|X_{0}\right|=k$ and $\left|X_{0} \Delta X\right|=k$. It follows that ($\left.\emptyset, X_{0}, X\right)$ is a path of length two from \emptyset to X in $H(n, k)$, and so $d(\emptyset, X) \leq 2$.

Suppose that m is odd and $m \in\{3 k-2 n, 3 k-2 n+1, \ldots, n\}$. If $m>k$, let $X_{0}=\left\{x_{1}, x_{2}, \ldots, x_{\frac{m-k}{2}}, x_{m-k+1}, x_{m-k+2}, \ldots\right.$, $\left.x_{k+\frac{m-k}{2}}\right\}$ and $X_{1}=\left\{x_{1}, x_{2}, \ldots, x_{m-k}\right\}$; if $m<k$, let $X_{0}=\left\{x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{\left.m+\frac{k-m}{2}, x_{k+1}^{2}, \ldots, x_{k+\frac{k-m}{2}}\right\}, X_{1}=}\right.$ $\left\{x_{m+1}, x_{m+2}, \ldots, x_{k}\right\}$. Then $\left|X_{0}\right|=k$ and $\left|X_{0} \Delta X_{1}\right|=\left|X_{1} \Delta X\right|=k$. Thus, $\left(\emptyset, X_{0}, X_{1}, X\right)$ is a path of length three from \emptyset to X, and so $d(\emptyset, X) \leq 3$.

Lemma 7.8. If k is odd and $n \leq 2 k-2$, then $d(H(n, k))=\left\lceil\frac{n-1}{n-k}\right\rceil+1$.
Proof. We first note that $k \geq 3$ since $n \leq 2 k-2$. If n is even, then $H(n, k) \cong H(n, n-k)$ by Proposition 2.4. Since $n \leq 2 k-2$, we have $n \geq 2(n-k)-1$. Since n is even and k is odd, $n-k$ is odd. By Lemma 7.4, we have $d(H(n, k))=d(H(n, n-k))=\left\lceil\frac{n-1}{n-k}\right\rceil+1$.

Suppose that n is odd. Since k is odd, $n-k$ is even. By Lemma 7.5, we have $d^{\prime \prime}(n, n-k)=\left\lceil\frac{n-1}{n-k}\right\rceil$. By Lemma 7.6, we have $d(H(n, k)) \geq d\left(H^{\prime \prime}(n, n-k)\right)+1$. Thus, $d(H(n, k)) \geq\left\lceil\frac{n-1}{n-k}\right\rceil+1$.

We now need to prove that $d(H(n, k)) \leq\left\lceil\frac{n-1}{n-k}\right\rceil+1$. To complete the proof, it is sufficient to show that the distance from \emptyset to any other vertex in $H(n, k)$ is at most $\left\lceil\frac{n-1}{n-k}\right\rceil+1$ since $H(n, k)$ is vertex-transitive.

Let $i=\left\lceil\frac{n-1}{n-k}\right\rceil$. Then $3 \leq i \leq k$ since $k+1 \leq n \leq 2 k-2$. Then $(i-1)(n-k)+2 \leq n \leq i(n-k)+1$. Let X be any vertex different from \emptyset in $H(n, k)$. Without loss of generality, let $|X|=m$ and $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$.

Case 1. m is odd.
Since $n \leq i(n-k)+1$, we have $3 k-2 n \leq(i-3)(n-k)+1$. There is an integer j with $0 \leq 2 j \leq i-2$ such that $(i-3)(n-k)+1 \leq m+2 j(n-k) \leq n$ since $(i-1)(n-k)+2 \leq n \leq i(n-k)+1$. Let

$$
\begin{array}{ll}
X_{\ell}=\left\{x_{1}, \ldots, x_{m+2 \ell(n-k)}\right\}, & \ell=0,1, \ldots, j ; \\
X_{\ell}^{\prime}=\left\{x_{m+(2 \ell+1)(n-k)+1}, \ldots, x_{n}\right\}, & \ell=0,1, \ldots, j-1 .
\end{array}
$$

Then $X_{\ell}, X_{\ell}^{\prime} \in \Omega_{n}$ and $\left|X_{\ell} \Delta X_{\ell}^{\prime}\right|=\left|X_{\ell}^{\prime} \Delta X_{\ell+1}\right|=k$. Thus, the sequence ($X_{0}, X_{0}^{\prime}, X_{1}, \ldots, X_{l}, X_{l}^{\prime}, \ldots, X_{j-1}, X_{j-1}^{\prime}, X_{j}$) is a path of length $2 j$ from X to X_{j}. Since $\left|X_{j}\right|=m+2 j(n-k) \geq(i-3)(n-k)+1 \geq 3 k-2 n$, by Lemma 7.7 , we have $d\left(\emptyset, X_{j}\right) \leq 3$. Thus, $d(\emptyset, X) \leq 2 j+3 \leq i+1=\left\lceil\frac{n-1}{n-k}\right\rceil+1$.

Case 2. m is even.
There is an integer j with $0 \leq 2 j \leq i-2$ such that $0 \leq m-2 j(n-k) \leq 2(n-k)$ since $(i-1)(n-k)+2 \leq n \leq i(n-k)+1$. Let

$$
\begin{array}{ll}
X_{\ell}=\left\{x_{1}, \ldots, x_{m-2 \ell(n-k)}\right\}, & \ell=0,1, \ldots, j \\
X_{\ell}^{\prime}=\left\{x_{m-(2 \ell+1)(n-k)+1}, \ldots, x_{n}\right\}, & \ell=0,1, \ldots, j-1 .
\end{array}
$$

Then $X_{\ell}, X_{\ell}^{\prime} \in \Omega_{n}$ and $\left|X_{\ell} \Delta X_{\ell}^{\prime}\right|=\left|X_{\ell}^{\prime} \Delta X_{\ell+1}\right|=k$. Thus, the sequence $\left(X_{0}, X_{0}^{\prime}, X_{1}, \ldots, X_{l}, X_{l}^{\prime}, \ldots, X_{j-1}, X_{j-1}^{\prime}, X_{j}\right)$ is a path of length $2 j$ from X to X_{j}. Since $\left|X_{j}\right|=m-2 \ell(n-k) \leq 2(n-k)$, by Lemma 7.7 , we have $d\left(\emptyset, X_{j}\right) \leq 2$. Thus, $d(\emptyset, X) \leq 2 j+2 \leq i=\left\lceil\frac{n-1}{n-k}\right\rceil$.

The proof of the lemma is complete.
By Lemmas 7.4 and 7.8, we immediately have the following result.
Theorem 7.1. For any odd integer $k, d(H(n, k))=\left\lceil\frac{n-1}{k}\right\rceil+1$ if $n \geq 2 k-1 ; d(H(n, k))=\left\lceil\frac{n-1}{n-k}\right\rceil+1$ if $n \leq 2 k-2$.

References

[1] Y.-C. Chen, Kneser graphs are hamiltonian for $n \geq 3 k$, J. Combin. Theory Ser. B 80 (1) (2000) 69-79.
[2] Y. Chen, Y. Wang, On the diameter of generalized Kneser graphs, Discrete Math. 308 (18) (2008) 4276-4279
[3] S.-Y. Choi, Large maximal $\{0,1,2, \ldots, t\}$-cliques of theq-analog of the Johnson graph, European J. Combin. 17 (8) (1996) 699-707.
[4] A. Daneshgar, H. Hajiabolhassan, Circular colouring and algebraic no-homomorphism theorems, European J. Combin. 28 (6) (2007) $1843-1853$.
[5] I.J. Dejter, J. Cordova, J.A. Quintana, Two hamilton cycles in bipartite reflective kneser graphs, Discrete Math. 72 (1-3) (1988) 63-70.
[6] A. Devillers, M. Giudici, C.-H. Li, C.E. Praeger, Primitive decompositions of Johnson graphs, J. Combin. Theory Ser. A 115 (2008) 925-966.
[7] C. Godsil, G. Royle, Algebraic Graph Theory, Springer Press, New York, 2004.
[8] F. Harary, The automorphism group of a hypercube, J. UCS 6 (2000) 136-138.
[9] G.A. Jones, Automorphisms and regular embeddings of merged Johnson graphs, European J. Combin. 26 (3-4) (2005) 417-435.
[10] K. Metsch, On the characterization of the folded Johnson graphs and the folded halved cubes by their intersection arrays, European J. Combin. 18 (1) (1997) 65-74.
[11] K. Metsch, Characterization of the folded Johnson graphs of small diameter by their intersection arrays, European J. Combin. 18 (8) (1997) 901-913.
[12] B. Omoomi, A. Pourmiri, Local coloring of Kneser graphs, Discrete Math. 308 (24) (2008) 5922-5927.
[13] Y. Saad, M.H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput. 37 (7) (1998) 867-872.
[14] G. Simonyi, G. Tardos, Colorful subgraphs in Kneser-like graphs, European J. Combin. 28 (2007) 2188-2200.
[15] S. Stahl, The multichromatic numbers of some Kneser graphs, Discrete Math. 185 (1-3) (1998) 287-291.
[16] M. Valencia-Pabon, J.-C. Vera, On the diameter of Kneser graphs, Discrete Math. 305 (1-3) (2005) 383-385.
[17] M.E. Watkins, Connectivity of transitive graphs, J. Combin. Theory 8 (1970) 23-29.
[18] K. Wang, Z. Li, Lattices associated with distance-regular graphs, European J. Combin. 29 (2) (2008) 379-385.
[19] J.-M. Xu, Toplogical Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[20] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[^0]: 4. The work was supported by NNSF of China (No. 10671191).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

