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a b s t r a c t

Let n and k be integers with n ≥ k ≥ 0. This paper presents a new class of graphs H(n, k),
which contains hypercubes and some well-known graphs, such as Johnson graphs, Kneser
graphs and Petersen graph, as its subgraphs. The authors present some results of algebraic
and topological properties of H(n, k). For example, H(n, k) is a Cayley graph, the auto-
morphism group of H(n, k) contains a subgroup of order 2nn! and H(n, k) has a maximal
connectivity

( n
k

)
and is hamiltonian if k is odd; it consists of two isomorphic connected

components if k is even. Moreover, the diameter of H(n, k) is determined if k is odd.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, a graph G = (V , E) is considered as an undirected graph where V = V (G) is the vertex-set and E = E(G) is
the edge-set. The symbol Aut(G) denotes the automorphism group of G. A graph G is vertex-transitive (resp. edge-transitive)
if Aut(G) acts transitively on V (G) (resp. on E(G)). An arc in G is an ordered pair of adjacent vertices, and G is arc-transitive
if Aut(G) acts transitively on the set of its arcs. It is well known that a connected arc-transitive graph is necessarily vertex-
and edge-transitive.
Let Γ be a finite group and S a subset of Γ that is closed under taking inverses and does not contain the identity. A Cayley

graph CΓ (S) is a graph with vertex-set Γ and edge-set E(CΓ (S)) = {gh: hg−1 ∈ S}. It is well known that every Cayley graph
is vertex-transitive.
Let n,m and i be fixed integers with n ≥ m ≥ i ≥ 0, and let Ωn be the power set of the set A = {x1, x2, . . . , xn}. Let

Ωmn = {X ∈ Ωn : |X | = m}. In [7], a class of graphs J(n,m, i) is defined as follows. The vertex-set of J(n,m, i) isΩ
m
n , where

two subsets X and Y are adjacent if |X ∩ Y | = i. For n ≥ 2m, the graphs J(n,m,m− 1) are the Johnson graphs, J(n,m, 0) are
the Kneser graphs and J(5, 2, 0) is the Petersen graph. Johnson graphs and Kneser graphs are important classes of graphs in
algebraic graph theory, and have received much research attention; see for example [1–7,9–12,14–16,18].
The n-dimensional hypercube Qn is the graph with vertex-set V consisting of all binary sequences of length n on the set

{0, 1}, two vertices x and y being linked by an edge if and only if they differ in exactly one coordinate. The hypercube is one
of the most popular, versatile and efficient topological structures of interconnection networks; see for example [13,19].
In this paper, we present a new class of graphs H(n, k)(n ≥ k ≥ 0). We will prove that H(n, k) contains hypercubes

and some well-known graphs, such as Johnson graphs and Kneser graphs, as its subgraphs. We present some results about
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algebraic and topological properties of H(n, k). For example, H(n, k) is an arc-transitive Cayley graph; the automorphism
group of H(n, k) contains a subgroup of order 2nn!; H(n, k) has maximal connectivity

( n
k

)
and is hamiltonian if k is odd;

H(n, k) consists of two isomorphic connected components if k is even. Moreover, when k is odd, the diameter of H(n, k) is
equal to d n−1k e + 1 if n ≥ 2k− 1, and equal to d

n−1
n−k e + 1 if n ≤ 2k− 2.

The rest of the paper is organized as follows. Section 2 gives the definition of the graph H(n, k) and some preliminaries.
Section 3 investigates some properties of subgraphs of H(n, k). Section 4 presents some algebraic properties of H(n, k).
Section 5 considers the connectivity ofH(n, k). Section 6 considers hamiltonian properties ofH(n, k). The diameter ofH(n, k)
is determined in Section 7.
The other concepts not defined here can be found in [7,20].

2. Definitions and preliminaries

Recall that Ωn denotes the power set of the set A = {x1, x2, . . . , xn} and Ωmn = {X ∈ Ωn : |X | = m}. Let
Ω ′n = {X ∈ Ωn : |X | is odd} andΩ

′′
n = {X ∈ Ωn : |X | is even}. Then |Ωn| = 2

n, |Ωmn | =
( n
m

)
and |Ω ′n| = |Ω

′′
n | = 2

n−1.
For any two sets X, Y ∈ Ωn, the symmetric difference X1Y of X and Y is the set X ∪ Y − X ∩ Y . It is easy to verify thatΩn

is an Abelian group about the operation∆. We now give the definition of the graph H(n, k).

Definition 2.1. Let n and k be fixed integers with n ≥ k ≥ 0. The graph H(n, k) is defined as follows. H(n, k) has the
vertex-setΩn and there is an edge between two distinct vertices X and Y if and only if |X1Y | = k.

Clearly, H(n, 0) is an empty graph, containing no edges. For any two distinct vertices X and Y in H(n, n), there is an edge
between them if and only if they are mutually complementary, and so H(n, n) = 2n−1K2. Thus, we always suppose that
0 < k < n in our discussion.

Proposition 2.1. H(n, k) is an
( n
k

)
-regular graph with 2n vertices.

Proof. We only need to prove that H(n, k) is
( n
k

)
-regular. Let X be a vertex in H(n, k) with |X | = m. If Y is a neighbor of X

and |X ∩Y | = j, then |Y | = k−m+2j. Thus, the neighbors of X can be partitioned intom+1 parts V0, V1, . . . , Vm such that
|X ∩ Y | = j for any Y ∈ Vj and each j = 0, 1, . . . ,m. By Vandermonde’s identity, it follows that the degree of X is equal to

m∑
j=0

|Vj| =
m∑
j=0

(
m
j

)(
n−m
k−m+ j

)
=

(n
k

)
,

which is independent ofm, and so H(n, k) is
( n
k

)
-regular. �

Proposition 2.2. H(n, k) has
( n
k

)
edge-disjoint perfect matchings, and hence it is 1-factorable.

Proof. For a fixed X ∈ Ωkn and any Y ∈ Ωn, since |(X1Y )1Y | = |X | = k,H(n, k) has an edge, denoted by eXY , between X1Y
and Y . Then, EX = {eXY : Y ∈ Ωn} is a perfect matching of H(n, k), and |EX | = 2n−1. There are

( n
k

)
such perfect matchings

in H(n, k) since |Ωkn | =
( n
k

)
. Moreover, if X1, X2 ∈ Ωkn and X1 6= X2 then EX1 ∩ EX2 = ∅. Thus, H(n, k) has

( n
k

)
edge-disjoint

perfect matchings. Since
( n
k

)
|EX | =

( n
k

)
2n−1 = |E(H(n, k))| by Proposition 2.1, the

( n
k

)
perfect matchings contain all edges

of H(n, k). Thus, H(n, k) is 1-factorable. �

Proposition 2.3. Let X and Y be two adjacent vertices in H(n, k). Then the parity of |X | and |Y | is the same if k is even, and is
different if k is odd.
Proof. Immediate. �

Proposition 2.4. If n is even and k is odd, then H(n, k) ∼= H(n, n− k).
Proof. Since n is even and k is odd, n−k is odd. For any X ∈ Ωn, we use X to denote the complement of X in {x1, x2, . . . , xn}.
Then X 6= ∅ for any X ∈ Ω ′n since n is even. A mapping ϕ : Ωn → Ωn is defined by

ϕ(X) =
{
X, if X ∈ Ω ′n
X, if X ∈ Ω ′′n .

Clearly, if X ∈ Ω ′n, then X ∈ Ω
′
n since n is even. Thus, the mapping ϕ is a permutation on Ωn. Since k is odd, for any two

vertices X and Y in H(n, k), if |X1Y | = k, then |X | and |Y | have different parity by Proposition 2.3. Assume, without loss of
generality, X ∈ Ω ′n and Y ∈ Ω

′′
n .

XY ∈ E(H(n, k)) ⇔ |X1Y | = k
⇔ |X1Y | = n− k
⇔ |ϕ(X)1ϕ(Y )| = n− k
⇔ ϕ(X)ϕ(Y ) ∈ E(H(n, n− k)),

which implies that ϕ is an isomorphism between H(n, k) and H(n, n− k). �
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3. Properties of subgraphs

We use Hm(n, k), H ′(n, k) and H ′′(n, k) to denote the subgraphs of H(n, k) induced byΩmn ,Ω
′
n andΩ

′′
n , respectively.

The following theorem shows that the graphs J(n,m, i) defined in the Introduction are found as subgraphs of H(n, k).

Theorem 3.1. For any integers n, m and i with n ≥ m ≥ i ≥ 0, if n ≥ 2m− 2i then Hm(n, 2m− 2i) = J(n,m, i).

Proof. Clearly, V (Hm(n, 2m− 2i)) = Ωmn = V (J(n,m, i)). Let X and Y be any two distinct sets inΩ
m
n . Then

XY ∈ E(Hm(n, 2m− 2i)) ⇔ |X1Y | = 2m− 2i
⇔ |X | + |Y | − 2|X ∩ Y | = 2m− 2i
⇔ |X ∩ Y | = i⇔ XY ∈ E(J(n,m, i)).

It follows that Hm(n, 2m− 2i) = J(n,m, i). �

By Theorem 3.1, Hm(n, 2) is the Johnson graphs J(n,m,m − 1) and Hm(n, 2m) is the Kneser graphs J(n,m, 0) when
n ≥ 2m.
The following result shows that the hypercubes Qn appear as special cases among H(n, k) for k = 1.

Theorem 3.2. H(n, 1) ∼= Qn for any positive integer n.

Proof. To prove the theorem, it is sufficient to give an isomorphism between H(n, 1) and Qn. Let X = {xi1 , xi2 , . . . , xis} be
a vertex in H(n, 1) for some s ≤ n and let Y = y1y2 · · · yn be a vertex in Qn. Define a mapping φ : V (H(n, 1)) → V (Qn)
such that φ(X) = Y , where the i1th, i2th, . . . , isth coordinates of Y are 1 and all the others are 0. It is easy to see that φ is a
bijection and preservers adjacency. Thus, the mapping φ is an isomorphism between H(n, 1) and Qn. �

Let X be an arbitrary fixed element inΩn. Define the mapping ρX : Ωn → Ωn as follows.

ρX : Y 7→ X1Y , ∀Y ∈ Ωn. (3.1)

Clearly, ρX is a permutation onΩn.

Theorem 3.3. If k is even, then H ′(n, k) ∼= H ′′(n, k).

Proof. It is clear that if X, Y ∈ Ω ′n then X1Y ∈ Ω
′′
n . Thus, the mapping ρX defined as (3.1) is a mapping fromΩ

′
n toΩ

′′
n . For

Y , Z ∈ Ω ′n, if Y 6= Z then X1Y 6= X1Z . It follows that the mapping ρX is injective. Conversely, for any Y ∈ Ω
′′
n , we have

X1Y ∈ Ω ′n, and so ρX (X1Y ) = Y . It follows that ρX is surjective. Thus ρX is a bijective mapping fromΩ
′
n toΩ

′′
n .

We now show that ρX is an isomorphism between H ′(n, k) and H ′′(n, k). It is sufficient to prove that ρX preserves
adjacency. For any two distinct vertices Y , Z ∈ V (H ′(n, k)) and |Y1Z | = k, then |ρX (Y )1ρX (Z)| = |(X1Y )1(X1Z)| =
|Y1Z | = k and vice versa, which implies that ρX (Y )ρX (Z) is an edge in H ′′(n, k) whenever YZ is an edge in H ′(n, k). It
follows that H ′(n, k) ∼= H ′′(n, k). �

Theorem 3.4. If k is odd, then H(n, k) is isomorphic to a spanning subgraph of H ′′(n+ 1, k+ 1).

Proof. Define a mapping ϕ : Ωn → Ω ′′n+1 as follows.

ϕ : X 7→
{
X ∪ {xn+1}, if X ∈ Ω ′n;
X, if X ∈ Ω ′′n .

∀X ∈ Ωn

Since ϕ(X) 6= ϕ(Y ) if X 6= Y , the mapping ϕ is injective, and so |Ωn| ≤ |Ω ′′n+1|. Since |Ωn| = 2
n
= |Ω ′′n+1|, the mapping

ϕ is surjective. It follows that the mapping ϕ is bijective.
Let X, Y ∈ Ωn. If XY ∈ E(H(n, k)), then |X1Y | = k is odd. Thus, |X | and |Y | are of different parity by Proposition 2.3.

Without loss of generality, suppose that X ∈ Ω ′n and Y ∈ Ω
′′
n . Then

|ϕ(X)1ϕ(Y )| = |(X ∪ {xn+1})1Y | = |X1Y | + 1 = k+ 1.

It follows that if X and Y are adjacent in H(n, k) then ϕ(X) and ϕ(Y ) are adjacent in H ′′(n+ 1, k+ 1). Thus, ϕ(H(n, k)) is a
spanning subgraph of H ′′(n+ 1, k+ 1). �
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4. Algebraic properties

In this section, we will investigate some algebraic properties of H(n, k). We start with the following theorem.

Theorem 4.1. Let Γ be the Abelian group for the operation∆ on the set Ωn. Then H(n, k) is a Cayley graph CΓ (S)with S = Ωkn
for k ≥ 1.

Proof. It is clear that the empty set ∅ is the identity of Γ , and so the X−1 = X for any X ∈ Ωn. Let X and Y be two any
vertices in H(n, k). Then

XY ∈ E(H(n, k))⇔ |X1Y | = k⇔ |Y1X−1| = k⇔ Y1X−1 ∈ S.

It follows that H(n, k) is a Cayley graph CΓ (S). �

Lemma 4.1. Let Sn be the symmetric group on the set A = {x1, x2, . . . , xn}. Then Sn is a subgroup of Aut(H(n, k)). In particular,
if k is even, then Sn is a subgroup of Aut(H ′′(n, k)).

Proof. Let σ ∈ Sn and X = {x1, x2, . . . , xm} ∈ Ωn. Define

σ(X) =
{
∅ if X = ∅;
{σ(x1), σ (x2), . . . , σ (xm)} if X 6= ∅. (4.1)

Clearly, σ is a permutation onΩn and |σ(X)| = |X | for each X ∈ Ωn. Let Y ∈ Ωn, since

|X1Y | = k⇔ |σ(X)1σ(Y )| = k, (4.2)

the permutation σ is an automorphism on H(n, k). Thus, Sn is a subgroup of Aut(H(n, k)).
If k is even then, by Proposition 2.3, |X | and |Y | have the same parity for any two adjacent vertices X and Y in H(n, k). For

any X, Y ∈ Ω ′′n and any σ ∈ Sn, both Eqs. (4.1) and (4.2) hold, and so Sn is a subgroup of Aut(H
′′(n, k)). �

Theorem 4.2. H(n, k) is arc-transitive.

Proof. It is clear thatH(n, k) is vertex-transitive sinceH(n, k) is a Cayley graph by Theorem 4.1. To prove thatH(n, k) is arc-
transitive, it is sufficient to prove that there is an automorphism of H(n, k) such that it maps an arc (∅, {x1, x2, . . . , xk}) to
any arcwith the initial vertex ∅ sinceH(n, k) is vertex-transitive. Let (∅, {xi1 , xi2 , . . . , xik}) is any arcwith the initial vertex ∅.
By Lemma 4.1, there is an automorphism ofH(n, k) that maps arc (∅, {x1, x2, . . . , xk}) to (∅, {xi1 , xi2 , . . . , xik}). Thus,H(n, k)
is arc-transitive. �

Lemma 4.2. Let Hn = {ρX : X ∈ Ωn}, where ρX is defined in Eq. (3.1). Then Hn is a subgroup of Aut(H(n, k)).

Proof. By Theorem 4.1, H(n, k) is a Cayley graph and then by the definition of Cayley graphs, Hn is a subgroup of
Aut(H(n, k)). �

Corollary 4.1. If k is even, H ′′(n, k) is arc-transitive.

Proof. For any X, Y ∈ Ω ′′n , there is an automorphism ρX1Y ∈ H
′′
n such that ρX1Y (X) = (X1Y )1X = Y . It follows that

H ′′(n, k) is vertex-transitive.
Let (∅, {xi1 , xi2 , . . . , xik}) is an any arc in H

′′(n, k). By Lemma 4.1, there is an automorphism of H ′′(n, k) that maps arc
(∅, {x1, x2, . . . , xk}) to (∅, {xi1 , xi2 , . . . , xik}). Thus, H

′′(n, k) is arc-transitive. �

Theorem 4.3. Aut(H(n, k)) contains a subgroup HnSn with order 2nn!.

Proof. By Lemma 4.1, Sn is a subgroup of Aut(H(n, k)) with order n!. By Lemma 4.2, Hn is a subgroup of Aut(H(n, k)) with
order 2n. Thus, HnSn is a subgroup of Aut(H(n, k)), and |HnSn| =

|Hn||Sn|
|Hn∩Sn|

. Since Hn∩ Sn is the identity subgroup, |Hn∩ Sn| = 1.
Thus, |HnSn| = 2nn!. �

It has been shown by Harary [8] that Aut(Qn) = [S2]Sn and |Aut(Qn)| = 2nn!. Since H(n, 1) ∼= Qn, by Theorem 4.3 we
have Aut(Qn) ⊇ HnSn with order 2nn!. The following theorem shows that Aut(H(n, 1)) = HnSn, which is another form of
Aut(Qn).

Theorem 4.4. Aut(H(n, 1)) = HnSn.
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Proof. Let Γ = Aut(H(n, 1)). By Theorem 4.3, HnSn is a subgroup of Γ . Thus, if we can prove |Γ | ≤ |HnSn| = 2nn!, then
Γ = HnSn. To this end, let Γ∅ be the stabilizer of the element ∅ ∈ Ωn, that is, Γ∅ = {ρ ∈ Γ : ρ(∅) = ∅}. By the proof of
Lemma 4.1, Sn is a subgroup of Γ∅. We now show that Γ∅ is a subgroup of Sn.
Consider a distance partition {Ω0n ,Ω

1
n , . . . ,Ω

n
n } of H(n, 1), where Ω

0
n = ∅, that is, d(∅, X) = s for any X ∈ Ω

s
n for

each s = 1, 2, . . . , n. For any ρ ∈ Γ∅, ρ(Ω in) = Ω in for each i = 0, 1, . . . , n since H(n, 1) is vertex-transitive. Let
X = {x1, x2, . . . , xs} ∈ Ω sn, where 1 ≤ s ≤ n. We want to prove that ρ(X) = {ρ(x1), ρ(x2), . . . , ρ(xs)} by induction
on s.
There is nothing to do if s = 1. Suppose that the conclusion is true for any integer s − 1 ≥ 1. For each j = 1, 2, . . . , s,

let Xj = X \ {xj}. Clearly, |Xj1X | = 1 and so XjX ∈ E(H(n, 1)) for each j = 1, 2, . . . , s. Moreover, X1, X2, . . . , Xs
are all neighbors of X in Ω s−1n . By the induction hypothesis, ρ(Xj) = {ρ(x1), . . . , ρ(xj−1), ρ(xj+1), . . . , ρ(xs)} for each
j = 1, 2, . . . , s. Since ρ preserves adjacency, ρ(Xj)ρ(X) ∈ E(H(n, 1)) for each j = 1, 2, . . . , s. Thus, ρ(X1), ρ(X2), . . . , ρ(Xs)
must have a common neighbor in Ω sn. Since s ≥ 2, such a common neighbor must be {ρ(x1), ρ(x2), . . . , ρ(xs)}. It follows
that ρ(X) = {ρ(x1), ρ(x2), . . . , ρ(xs)}. By the principle of induction, we have ρ(X) = {ρ(x1), ρ(x2), . . . , ρ(xs)} for each
s = 1, 2, . . . , n. In particular, if X = {x1, x2, . . . , xn}, then ρ(X) = {ρ(x1), ρ(x2), . . . , ρ(xn)}. It follows that

ρ =

(
x1 x2 . . . xn
ρ(x1) ρ(x2) . . . ρ(xn)

)
∈ Sn.

Thus, Γ∅ is a subgroup Sn.
Let ∅Γ be the orbit of Γ with respect to ∅, that is, ∅Γ = {ρ(∅) : ρ ∈ Γ }. Then ∅Γ = Ωn since H(n, 1) is vertex-

transitive. By the orbit-stabilizer theorem (see Lemma 2.2.2 in [7]), we have |Γ | = | ∅Γ | |Γ∅| ≤ |Ωn| |Sn| = 2nn!. The
theorem follows. �

5. Connectivity

In this section, we will show that if k is odd then H(n, k) is a connected bipartite graph with connectivity
( n
k

)
, and if k is

even then H(n, k) consists of two isomorphic connected components with connectivity
( n
k

)
.

We use H+xn+1(n + 1, k) to denote the subgraph of H(n + 1, k) induced by all sets in Ωn+1 that contain xn+1, and
H−xn+1(n+ 1, k) to denote the subgraph of H(n+ 1, k) induced by all sets inΩn+1 that do not contain xn+1.

Lemma 5.1. H+xn+1(n+ 1, k)
∼= H(n, k) ∼= H−xn+1(n+ 1, k).

Proof. Clearly,H−xn+1(n+1, k)
∼= H(n, k). In order to proveH(n, k) ∼= H+xn+1(n+1, k), we define amappingϕ from V (H(n, k))

to V (H+xn+1(n+ 1, k)) as follows.

ϕ : X 7→ X ∪ {xn+1}, ∀X ∈ Ωn.

Clearly, the mapping ϕ is bijective. Since for any two distinct vertices X and Y in H(n, k),

XY ∈ E(H(n, k)) ⇔ |X1Y | = k
⇔ |(X ∪ {xn+1})1(Y ∪ {xn+1})| = k
⇔ |ϕ(X)1ϕ(Y )| = k
⇔ ϕ(X)ϕ(Y ) ∈ E(H+xn+1(n+ 1, k)),

the mapping ϕ is an isomorphism between H(n, k) and H+xn+1(n+ 1, k), and so H
+
xn+1(n+ 1, k)

∼= H(n, k). �

Theorem 5.1. If k is odd then H(n, k) is bipartite and connected, and if k is even then H(n, k) consists of two isomorphic
connected components.

Proof. Suppose that k is odd. Then for any two vertices X and Y in H(n, k), |X1Y | = kmeans that |X | and |Y | have different
parity. Thus, {Ω ′n,Ω

′′
n } is a bipartition of V (H(n, k)). We now prove that H(n, k) is connected by induction on n ≥ 2 and

k ≥ 1. Since H(2, 1) is a 4-cycle, it is connected. Suppose that H(n, k) is connected.
We first prove that H(n+ 1, k) is connected for a fixed k. By Lemma 5.1, H+xn+1(n+ 1, k)

∼= H(n, k) ∼= H−xn+1(n+ 1, k). By
the induction hypothesis, H(n, k) is connected, and so both H+xn+1(n + 1, k) and H

−
xn+1(n + 1, k) are connected. The empty

set ∅ is a vertex in H−xn+1(n + 1, k), and not in H
+
xn+1(n + 1, k). Let X = {x1, . . . , xk−1, xn+1}. Then, X ∈ Ω

k
n+1 is a vertex in

H+xn+1(n+ 1, k), and not in H
−
xn+1(n+ 1, k). Since two vertices ∅ and X are adjacent in H(n+ 1, k), H(n+ 1, k) is connected.

We now prove that H(n, k + 2) is connected. To this end, it suffices to see that H(k + 3, k + 2) is connected since we
have just proved in the previous paragraph that the connectedness of H(n, k) implies that H(n + 1, k) is connected, for a
fixed odd k. Thus, it follows from Proposition 2.4 that H(k+ 3, k+ 2) ∼= H(k+ 3, 1) which is a hypercube and connected.
Hence, by induction, H(n, k) is connected for every odd k and for all n.
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Suppose now that k is even. If XY is an edge, then |X | and |Y | are of the same parity, so there is no edge between H ′(n, k)
and H ′′(n, k) and these two are disconnected from each other. By Theorem 3.3, we only need to prove that H ′′(n, k) is
connected. By Theorem 3.4, H ′′(n, k) contains a spanning subgraph isomorphic to H(n− 1, k− 1). Since k− 1 is odd, by the
first conclusion, H(n− 1, k− 1) is connected, and so is H ′′(n, k).
The theorem follows. �

Theorem 5.2. The connectivity of H(n, k) is equal to
( n
k

)
if k is odd; the connectivities of H ′′(n, k) and H ′(n, k) are both equal

to
( n
k

)
if k is even.

Proof. It has been shown byWatkins [17] that the connectivity of a connected edge-transitive graph is equal to itsminimum
degree. By Theorem 4.2, H(n, k) is edge-transitive. By Theorem 5.1 and Proposition 2.1, if k is odd, then the connectivity of
H(n, k) is equal to

( n
k

)
.

By Corollary 4.1 both H ′(n, k) and H ′′(n, k) are edge-transitive for an even k. Similarly as in the previous paragraph, their

connectivity is equal to
(n
k
)
. �

6. Hamiltonian property

A cycle in a graph is called a Hamilton cycle if it contains all vertices of the graph. A graph is called hamiltonian if it
contains a Hamilton cycle. In the preceding section, we have shown that H(n, k) is connected if k is odd, and consists of two
isomorphic connected components if k is even. In this section, we will prove that H(n, k) is hamiltonian if k is odd, and two
isomorphic connected components are hamiltonian if k is even.

Theorem 6.1. H(n, k) is hamiltonian when k is odd.

Proof. Note that if k is odd then H(n, k) is bipartite and connected by Theorem 5.1. We prove the theorem by induction on
n ≥ 2 and k ≥ 1. H(2, 1) is a 4-cycle and so it is hamiltonian. Suppose that H(n, k) is hamiltonian. We need to prove that
both H(n+ 1, k) and H(n, k+ 2) are hamiltonian.
We first prove that H(n+ 1, k) is hamiltonian for a fixed k. By Lemma 5.1, H+xn+1(n+ 1, k)

∼= H(n, k) ∼= H−xn+1(n+ 1, k).
By the induction hypothesis, both H−xn+1(n+ 1, k) and H

+
xn+1(n+ 1, k) are hamiltonian. Let C

− and C+ be Hamilton cycles of
H−xn+1(n + 1, k) and H

+
xn+1(n + 1, k), respectively. Since H(n, k) is edge-transitive by Theorem 4.2, we can assume that the

edge e1 = ∅{x1, . . . , xk} is in C− and the edge e2 = {xk, xn+1}{x1, . . . , xk−1, xn+1} is in C+. Clearly, e3 = ∅{x1, . . . , xk−1, xn+1}
and e4 = {xk, xn+1}{x1, . . . , xk} are edges of H(n+1, k). Then C−∪C+− e1− e2+ e3+ e4 is a Hamilton cycle in H(n+1, k).
We now prove that H(n, k+ 2) is hamiltonian. To this end, it suffices to see that H(k+ 3, k+ 2) is hamiltonian since we

have just proved in the previous paragraph that the hamiltonicity of H(n, k) implies that H(n+ 1, k) is hamiltonian. Thus, it
follows from Proposition 2.4 that H(k+3, k+2) ∼= H(k+3, 1)which is a hypercube and hamiltonian. Hence, by induction,
H(n, k) is hamiltonian for every odd k and for all n.
By the principle of induction, H(n, k) is hamiltonian when k is odd. The theorem follows. �

Corollary 6.1. If k is even, then H ′′(n, k) is hamiltonian.

Proof. By Theorem3.4,H ′′(n, k) contains a spanning subgraph isomorphic toH(n−1, k−1). By Theorem6.1,H(n−1, k−1)
is hamiltonian, and so is H ′′(n, k). �

7. Diameter

A path P from x0 to xk in G is a sequence of pairwise distinct vertices P = (x0, x1, . . . , xk), where xi−1xi ∈ E(G) for each
i = 1, 2 . . . , k. The length of P , denoted by ε(P), is the number of edges in P . For two distinct vertices x and y in G, the
minimum length among all paths from x to y is called the distance from x to y, denoted by dG(x, y). The maximum distance
among all pairs of vertices in G is called the diameter of G, denoted by d(G), that is, d(G) = max{dG(x, y) : ∀x, y ∈ V (G)}.
In this section, the symbol d(X, Y ) denotes the distance dH(n,k)(X, Y ) between two vertices X and Y in H(n, k). We will

prove that for any odd integer k, d(H(n, k)) = d n−1k e + 1 if n ≥ 2k− 1 and d(H(n, k)) = d
n−1
n−k e + 1 if n ≤ 2k− 2.

We first prove that d(H(n, k)) = d n−1k e + 1 for n ≥ 2k− 1 in Lemma 7.4. The basal outline of the proof is as follows. To
compute d(H(n, k)), we only need to consider d(∅, X) for any vertex X since H(n, k) is vertex-transitive by Theorem 4.2. It
is easy to find a vertex X such that d(∅, X) ≥ d n−1k e + 1, and not easy to prove that d(∅, X) ≤ d

n−1
k e + 1 for every vertex X .

In fact, we prove the latter by constructing a path of required length from ∅ to X by Lemma 7.1. In the same idea, we prove
d(H(n, k)) = d n−1n−k e + 1 for n ≤ 2k− 2 in Lemma 7.8.

Lemma 7.1. Let X and Y be any two distinct elements inΩn. If XY ∈ E(H(n, k)), then k ≤ |X |+|Y | ≤ 2n−k and ||X |−|Y || ≤ k.
For any s ∈ {0, 1, . . . , n} and any X ∈ Ωn, if k ≤ s+ |X | ≤ 2n− k and ||X | − s| ≤ k, k and |X | + s have the same parity, then
there exists Y ∈ Ω sn such that XY ∈ E(H(n, k)).
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Proof. For any two distinct vertices X and Y in H(n, k),

XY ∈ E(H(n, k))⇔ |X1Y | = |X | + |Y | − 2|X ∩ Y | = k

and hence |X | + |Y | ≥ k. Also

|X1Y | = |X ∪ Y | − |X ∩ Y | ≤ n− |X ∩ Y |

and hence |X ∩ Y | ≥ |X | + |Y | − n. It follows that

k ≤ n− |X ∩ Y | ≤ 2n− |X | − |Y |,

that is, |X | + |Y | ≤ 2n− k. Since |X ∩ Y | ≤ min{|X |, |Y |}, we have that ||X | − |Y || ≤ k.
Let X = {x1, x2, . . . , xm}. For any integer s satisfying our hypothesis, let

Y =
{
xm+1−m+s−k2

, xm+1−m+s−k2 +1, . . . , xk+m+s−k2

}
.

Then |Y | = s. Since k andm+ s are the same parity,m+ s− k is even. Since |m− s| ≤ k, we have thatm+ 1− m+s−k
2 ≥ 1.

Also since s+ m ≤ 2n− k, we have that k+ m+s−k
2 ≤ n. It follows that Y is a vertex in H(n, k). Since |X ∩ Y | = m+s−k

2 , we
have that |X1Y | = |X | + |Y | − 2|X ∩ Y | = m+ s− (m+ s− k) = k, which implies that Y is adjacent to X in H(n, k). �

Lemma 7.2. Let P = (∅, X1, X2, . . . , Xs−1, Xs) is a path from ∅ to X = Xs in H(n, k), then |Xs| ≤ sk.

Proof. By Lemma 7.1, if XY ∈ E(H(n, k)) then ||X | − |Y || ≤ k and then |Xi+1− Xi| ≤ k for i = 0, 1, . . . , s− 1 where X0 = ∅,
and hence

∑s−1
i=0 |Xi+1 − Xi| ≤ sk, and then |Xs| ≤ sk. �

Lemma 7.3. Let X ∈ Ωmn with m ≥ 1. Suppose that k ≥ 2, n ≥ 2k− 1 and m ≤ min{n, 2k+ 1}. Then d(∅, X) = 1 if m = k.
For m 6= k, d(∅, X) = 2 if m is even, and d(∅, X) = 3 if both k and m are odd.

Proof. Without loss of generality, let X = {x1, x2, . . . , xm}. Ifm = k, then two vertices ∅ and X are adjacent in H(n, k) since
|∅1X | = k, and so d(∅, X) = 1. Assumem 6= k. Then d(∅, X) ≥ 2 since ∅ and X are not adjacent in H(n, k).
Assume m is even. Then m ≤ min{n, 2k}. Let Y = {xm

2 +1
, xm

2 +2
, . . . , xm

2 +k
}. Then |Y | = k and Y ∈ Ωn since m2 + k ≤ n.

Moreover, |X1Y | = m
2 +

(
k− m

2

)
= k. Thus, (∅, Y , X) is a path from ∅ to X in H(n, k), and so d(∅, X) = 2.

Assume that both k and m are odd. Let P = (∅, X1, X2, . . . , X) be a shortest path from ∅ to X in H(n, k). Then X 6= X1
since any neighbor of ∅ in H(n, k) is a k-set inΩn and m 6= k. Since both k and m are odd, by Proposition 2.3, X1 and X are
not adjacent. It follows that the length of P is at least three, and so d(∅, X) ≥ 3. To prove that d(∅, X) = 3, we only need to
construct a path P = (∅, X1, X2, X) of length three from ∅ to X in H(n, k).
Ifm < k, then let i = 1

2 (k+m), which is an integer withm < i < k. Moreover, max{i+ k,m+ k} ≤ 2k− 1 ≤ n. Let

X1 = {xi+1, xi+2, . . . , xi+k} and X2 = {x1, . . . , xi, . . . , xm+k}.

Then

|X11X2| = |{x1, x2, . . . , xi} ∪ {xm+k+1, . . . , xi+k}| = i+ (i−m) = k

and

|X21X | = |{xm+1, xm+2, . . . , xm+k}| = k,

and so X1X2, X2X ∈ E(H(n, k)). Thus, P = (∅, X1, X2, X) is a path from ∅ to X in H(n, k)with length three.
Ifm > k, then let j = 1

2 (m− k) and let

X1 = {xj+1, xj+2, . . . , xj+k} and X2 = {x1, . . . , xj, . . . , xm−k}.

Then

|X11X2| = |{x1, x2, . . . , xj} ∪ {xm−k+1, . . . , xj+k}| = j+ (2k+ j−m) = k

and

|X21X | = |{xm−k+1, xm−k+2, . . . , xm}| = k,

and so X1X2, X2X ∈ E(H(n, k)). Thus, P = (∅, X1, X2, X) is a path from ∅ to X in H(n, k) with length three. The lemma
follows. �

Lemma 7.4. If k is odd and n ≥ 2k− 1, then d(H(n, k)) = d n−1k e + 1.
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Proof. If k is odd, then H(n, k) is connected by Theorem 5.1, and so the diameter is well defined. To compute the diameter
of H(n, k), we only need to consider the distance from the vertex ∅ to any other vertex since H(n, k) is vertex-transitive by
Theorem 4.2. For k = 1 and X ∈ V (H(n, 1)) it is obvious that d(∅, X) = |X | in H(n, 1), so d(H(n, 1)) = d(∅, {x1, . . . , xn}) =
n = d n−11 e + 1. Now suppose that k ≥ 3.
Let i = d n−1k e. Then i ≥ 2 and (i − 1)k + 2 ≤ n ≤ ik + 1. Let X = {x1, x2, . . . , x(i−1)k+2}. By Lemma 7.2, we have

d(∅, X) ≥ i in H(n, k). Let P be a shortest path from ∅ to X in H(n, k). Then ε(P) ≥ i. Suppose that ε(P) = i. Since k is
odd, by Proposition 2.3, any two adjacent vertices in P have different parity. Since ∅ is even, |X | and i have the same parity.
However, since k is odd, i and (i− 1)k+ 2 = |X | have different parity, a contradiction. It follows that

d(H(n, k)) ≥ d(∅, X) = ε(P) ≥ i+ 1 =
⌈
n− 1
k

⌉
+ 1.

To complete the proof of the lemma, we only need to prove d(H(n, k)) ≤ d n−1k e + 1.
When 2k − 1 ≤ n ≤ 2k + 1, we have that d(H(n, k)) ≤ 3 = d n−1k e + 1 by Lemma 7.3. Assume n ≥ 2k + 2 and let

X ∈ Ωmn . By Lemma 7.3 it suffices to consider those m with m > 2k + 1 only. Thus, there is some integer j (3 ≤ j ≤ i)
such that (j − 1)k + 2 ≤ m ≤ jk + 1. Without loss of generality, let X = {x1, x2, . . . , xm}. For each ` = 1, . . . , j, let
X` = {x1, . . . , xm−(j−`)k}. Then |X`1X`+1| = k for each ` = 1, . . . , j− 1, and Xj = X .
If m − (j − 1)k is even, then substituting s = k into Lemma 7.1 yields k ≤ k + m − (j − 1)k ≤ 2n − k. It follows from

(j − 1)k + 2 ≤ m ≤ jk + 1 that 2 − k ≤ m − (j − 1)k − k ≤ 1, so |m − (j − 1)k − k| ≤ k, and k and m − (j − 1)k + k
are of the same parity. Then, by Lemma 7.1, there exists such an X0 ∈ V (H(n, k)) of size k that is adjacent to X1. Thus,
(∅, X0, X1, . . . , X`, . . . , Xj) is a path of length j+ 1 from ∅ to X . Thus, d(H(n, k)) ≤ i+ 1 = d n−1k e + 1.
If m − (j − 1)k is odd, then substituting s = k into Lemma 7.1 yields k ≤ k + m − (j − 2)k ≤ 2n − k. It follows from

(j − 1)k + 2 ≤ m ≤ k + 1 that 2 ≤ m − (j − 2)k − k ≤ k + 1, and then 3 ≤ m − (j − 2)k − k ≤ k since m − (j − 1)k is
odd, so |m − (j − 2)k − k| ≤ k, and k and m − (j − 2)k + k are of the same parity. Then, by Lemma 7.1, there exists such
an X0 ∈ V (H(n, k)) of size k that is adjacent to X2. Thus, (∅, X0, X2, . . . , X`, . . . , Xj) is a path of length j from ∅ to X , that is,
d(H(n, k)) ≤ i = d n−1k e.
The Lemma follows. �

Lemma 7.5. Let k be even and let d′′(n, k) denote the diameter of H ′′(n, k). If n ≥ 2k− 1, then d′′(n, k) = d n−1k e.

Proof. By Theorem 5.1, H ′′(n, k) is connected, and so d′′(n, k) is well defined.
We first consider n ∈ {2k − 1, 2k, 2k + 1}. If k = 2, then n ∈ {3, 4, 5}. It is easy to verify that d′′(3, 2) = 1,

d′′(4, 2) = d′′(5, 2) = 2, and so the lemma holds for n ∈ {3, 4, 5}. Assume k ≥ 4.
By Lemma 7.3, d′′(2k− 1, k) = d′′(2k, k) = d′′(2k+ 1, k) = 2, which satisfy d n−1k e.
Assume that n ≥ 2k+ 2 and let i = d n−1k e. Then i ≥ 3, and (i− 1)k+ 2 ≤ n ≤ ik+ 1. Let Z = {x1, x2, . . . , x(i−1)k+2}. By

Lemma 7.2, we have d′′(∅, Z) ≥ i = d n−1k e.
To complete our proof, we only need to prove that d′′(∅, X) ≤ d n−1k e for any vertex X different from ∅ since H

′′(n, k) is
vertex-transitive by Corollary 4.1.
Without loss of generality, let X = {x1, x2, . . . , xm} be any vertex in H ′′(n, k), where m is even. Since k is even and

m ≤ n ≤ ik+ 1,m ≤ ik. Ifm ≤ 2k, then k ≤ k+m ≤ 2n− k, |m− k| ≤ k, k and k+m are both even. By Lemma 7.1, there
is some X1 ∈ Ωkn such that it is adjacent to X in H

′′(n, k). Thus, (∅, X1, X) is a path of length two from ∅ to X in H ′′(n, k).
Assumem ≥ 2k+ 2. Then there is an integer j (2 ≤ j ≤ i− 1) such that jk+ 2 ≤ m ≤ (j+ 1)k. Let

X` = {x1, x2, . . . , xm−(j−`)k}, ` = 1, . . . , j.

Clearly, for each ` = 1, 2, . . . , j, X` is a vertex in H ′′(n, k) since m − (j − `)k is even. Moreover, |X`−11X`| =
|{xm−(j−`+1)k+1, . . . , xm−(j−`)k}| = k, that is, X`−1 and X` are adjacent in H ′′(n, k), where X = Xj. By Lemma 7.1, there is
some X0 ∈ Ωkn such that X0 and X1 are adjacent in H

′′(n, k). Thus, P = (∅, X0, X1, . . . , Xj) is a path from ∅ to X in H ′′(n, k),
its length is equal to j+ 1 ≤ i = d n−1k e. Thus, d

′′(n, k) = d n−1k e. �

Lemma 7.6. If both n and k are odd, then d(H(n, k)) ≥ d(H ′′(n, n− k))+ 1.

Proof. Define a mapping ϕ from V (H(n, k)) to V (H ′′(n, n− k)) as follows.

ϕ : X 7→
{
X, if X ∈ Ω ′n;
X, if X ∈ Ω ′′n ,

∀X ∈ V (H(n, k)).

It is easy to see that ϕ is a surjectivemapping from V (H(n, k)) to V (H ′′(n, n−k)). For any two vertices X and Y inH(n, k),
if |X1Y | = k then |X | and |Y | have different parity by Proposition 2.3 since k is odd. Without loss of generality, suppose that
|X | is odd and |Y | is even. Then, |X1Y | = n−|X1Y | = n− k. Thus, ϕ(X)ϕ(Y ) = XY is an edge in H(n, n− k), which implies
thatϕ is a surjective homomorphism fromH(n, k) toH ′′(n, n−k). Thus, it is not hard to see that d(H(n, k)) ≥ d(H ′′(n, n−k)).
Use d′(X, Y ) to denote the distance from X to Y in H(n, k) and d′′(X, Y ) to denote the distance from X to Y in H ′′(n, n− k).
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Let X and Y be two vertices in H ′′(n, n− k) such that d′′(X, Y ) = d(H ′′(n, n− k)).
Suppose that d′′(X, Y ) is odd. Since |X | and |Y | are even, both X and Y are in H(n, k), and so ϕ(X) = X and ϕ(Y ) = Y .

Then d′(X, Y ) is even by Proposition 2.3. Thus, d′(X, Y ) ≥ d′′(X, Y ) + 1, and so d(H(n, k)) ≥ d′(X, Y ) ≥ d′′(X, Y ) + 1 =
d(H ′′(n, n− k))+ 1.
Suppose that d′′(X, Y ) is even. As |Y | is even, |Ȳ | is odd. By Proposition 2.3, d′(X, Ȳ ) is odd. Thus, d(H(n, k)) ≥ d′(X, Y ) ≥

d′′(X, Y )+ 1 = d(H ′′(n, n− k))+ 1. �

Lemma 7.7. Suppose that k is odd and n ≤ 2k−2. Then for any X ∈ Ωmn , d(∅, X) ≤ 2 if m is even and m ∈ {0, 2, 4, . . . , 2(n−
k)}, and d(∅, X) ≤ 3 if m is odd and m ∈ {3k− 2n, 3k− 2n+ 1, . . . , n}.

Proof. Ifm = k, then d(∅, X) = 1, clearly. Ifm = 0, then X = ∅ and d(∅, X) = 0. Assumem 6= 0, k.
Without loss of generality, let X = {x1, x2, . . . , xm}. Suppose that m is even and m ∈ {2, 4, . . . , 2(n − k)}. Let

X0 = {x1, x2, . . . , xm2 , xm+1, xm+2, . . . , xk+m2 }. Then X0 ∈ Ωn since k +
m
2 ≤ k + (n − k) = n. Moreover, |X0| = k and

|X01X | = k. It follows that (∅, X0, X) is a path of length two from ∅ to X in H(n, k), and so d(∅, X) ≤ 2.
Suppose thatm is odd andm ∈ {3k− 2n, 3k− 2n+ 1, . . . , n}. Ifm > k, let X0 = {x1, x2, . . . , xm−k

2
, xm−k+1, xm−k+2, . . . ,

xk+m−k2 } and X1 = {x1, x2, . . . , xm−k}; if m < k, let X0 = {x1, . . . , xm, xm+1, . . . , xm+ k−m2 , xk+1, . . . , xk+ k−m2 }, X1 =
{xm+1, xm+2, . . . , xk}. Then |X0| = k and |X01X1| = |X11X | = k. Thus, (∅, X0, X1, X) is a path of length three from ∅ to
X , and so d(∅, X) ≤ 3. �

Lemma 7.8. If k is odd and n ≤ 2k− 2, then d(H(n, k)) = d n−1n−k e + 1.

Proof. We first note that k ≥ 3 since n ≤ 2k − 2. If n is even, then H(n, k) ∼= H(n, n − k) by Proposition 2.4.
Since n ≤ 2k − 2, we have n ≥ 2(n − k) − 1. Since n is even and k is odd, n − k is odd. By Lemma 7.4, we have
d(H(n, k)) = d(H(n, n− k)) = d n−1n−k e + 1.
Suppose that n is odd. Since k is odd, n− k is even. By Lemma 7.5, we have d′′(n, n− k) = d n−1n−k e. By Lemma 7.6, we have

d(H(n, k)) ≥ d(H ′′(n, n− k))+ 1. Thus, d(H(n, k)) ≥ d n−1n−k e + 1.
We now need to prove that d(H(n, k)) ≤ d n−1n−k e+1. To complete the proof, it is sufficient to show that the distance from

∅ to any other vertex in H(n, k) is at most d n−1n−k e + 1 since H(n, k) is vertex-transitive.
Let i = d n−1n−k e. Then 3 ≤ i ≤ k since k+ 1 ≤ n ≤ 2k− 2. Then (i− 1)(n− k)+ 2 ≤ n ≤ i(n− k)+ 1. Let X be any vertex

different from ∅ in H(n, k). Without loss of generality, let |X | = m and X = {x1, x2, . . . , xm}.
Case 1.m is odd.
Since n ≤ i(n − k) + 1, we have 3k − 2n ≤ (i − 3)(n − k) + 1. There is an integer j with 0 ≤ 2j ≤ i − 2 such that

(i− 3)(n− k)+ 1 ≤ m+ 2j(n− k) ≤ n since (i− 1)(n− k)+ 2 ≤ n ≤ i(n− k)+ 1. Let

X` = {x1, . . . , xm+2`(n−k)}, ` = 0, 1, . . . , j;
X ′` = {xm+(2`+1)(n−k)+1, . . . , xn}, ` = 0, 1, . . . , j− 1.

Then X`, X ′` ∈ Ωn and |X`1X
′

`| = |X
′

`1X`+1| = k. Thus, the sequence (X0, X
′

0, X1, . . . , Xl, X
′

l , . . . , Xj−1, X
′

j−1, Xj) is a path of
length 2j from X to Xj. Since |Xj| = m + 2j(n − k) ≥ (i − 3)(n − k) + 1 ≥ 3k − 2n, by Lemma 7.7, we have d(∅, Xj) ≤ 3.
Thus, d(∅, X) ≤ 2j+ 3 ≤ i+ 1 = d n−1n−k e + 1.
Case 2.m is even.
There is an integer jwith 0 ≤ 2j ≤ i−2 such that 0 ≤ m−2j(n−k) ≤ 2(n−k) since (i−1)(n−k)+2 ≤ n ≤ i(n−k)+1.

Let

X` = {x1, . . . , xm−2`(n−k)}, ` = 0, 1, . . . , j;
X ′` = {xm−(2`+1)(n−k)+1, . . . , xn}, ` = 0, 1, . . . , j− 1.

Then X`, X ′` ∈ Ωn and |X`1X ′`| = |X
′

`1X`+1| = k. Thus, the sequence (X0, X ′0, X1, . . . , Xl, X
′

l , . . . , Xj−1, X
′

j−1, Xj) is a
path of length 2j from X to Xj. Since |Xj| = m − 2`(n − k) ≤ 2(n − k), by Lemma 7.7, we have d(∅, Xj) ≤ 2. Thus,
d(∅, X) ≤ 2j+ 2 ≤ i = d n−1n−k e.
The proof of the lemma is complete. �

By Lemmas 7.4 and 7.8, we immediately have the following result.

Theorem 7.1. For any odd integer k, d(H(n, k)) = d n−1k e + 1 if n ≥ 2k− 1; d(H(n, k)) = d
n−1
n−k e + 1 if n ≤ 2k− 2.
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