Connectivity and super-connectivity of Cartesian product graphs^{*}

Jun-Ming Xu Chao Yang

Department of Mathematics University of Science and Technology of China Hefei, 230026, China

Abstract

This paper determines that the connectivity of the Cartesian product $G_1 \Box G_2$ of two graphs G_1 and G_2 is equal to $\min\{\kappa_1 v_2, \kappa_2 v_1, \delta_1 + \delta_2\}$, where v_i, κ_i, δ_i is the order, the connectivity and the minimum degree of G_i , respectively, for i = 1, 2, and gives some necessary and sufficient conditions for $G_1 \Box G_2$ to be maximally connected and super-connected.

1 Introduction

All graphs in this paper are finite and simple. For graph theoretical terminology and notation not defined here, we refer the reader to [5]. Let G_1 and G_2 be two graphs, v_i , δ_i , κ_i and V_i denote the number of vertices, the minimum degree, the connectivity and the vertex-set of G_i , respectively, for i = 1, 2. The Cartesian product graph $G_1 \square G_2$ has the vertex-set $V = V_1 \times V_2 = \{xy | x \in V_1, y \in V_2\}$, and two vertices x_1x_2 and y_1y_2 are adjacent if and only if either $x_1 = y_1$, x_2 and y_2 are adjacent in G_2 , or $x_2 = y_2$, x_1 and y_1 are adjacent in G_1 . A graph is said to be maximally connected if $\kappa = \delta$. A connected graph is said to be super-connected if every minimum cut-set is the neighbor-set of some vertex. It is clear that any super-connected graph is certainly maximally connected.

The recent study on connectivity of the Cartesian product can be found in [1, 2, 3, 4], where the lower bounds of the connectivity of $G_1 \square G_2$ and some sufficient conditions for it to be maximally or super-connected are given. In the present paper, we determine that $\kappa(G_1 \square G_2) = \min\{\kappa_1 v_2, \kappa_2 v_1, \delta_1 + \delta_2\}$ and give some necessary and sufficient conditions for $G_1 \square G_2$ to be maximally connected and super-connected.

^{*} The work was supported by NNSF of China (No.10271114).

¹

2 Connectivity

Lemma 1 Let p, q, a, b be integers with $1 \leq a \leq p-1$ and $1 \leq b \leq q-1$. Then $a(q-b) + b(p-a) \geq p+q-2$ and the equality holds if and only if one of the following conditions holds

i) q = 2, b = 1,ii) p = 2, a = 1,iii) a = 1, b = 1,vi) a = p - 1, b = q - 1.

Proof. If $q \ge 2b$, then

$$\begin{array}{ll} a(q-b) + b(p-a) &= (q-2b)a + p \, b \\ &\geqslant (q-2b) + p \, b \\ &= p+q-2 + (p-2)(b-1) \\ &\geqslant p+q-2. \end{array}$$

If q < 2b, then

$$\begin{array}{ll} a(q-b) + b(p-a) &= (q-2b)a + p \, b \\ &\geqslant (q-2b)(p-1) + p \, b \\ &= p+q-2 + (p-2)(q-b-1) \\ &\geqslant p+q-2. \end{array}$$

And it is easy to check the conditions for the equality to hold.

Lemma 2 Let G be a graph and $A \subseteq V(G)$. Then $|A \cup N(A)| \ge \delta(G) + 1$.

Proof. Arbitrarily take a vertex x in A. Its neighbors must be in $A \cup N(A) - \{x\}$. Thus $|A \cup N(A)| = |\{x\}| + |A \cup N(A) - \{x\}| \ge 1 + d_G(x) \ge 1 + \delta(G)$. \Box

Two vertices x_1x_2 and y_1y_2 in $G_1 \square G_2$ are said to be *parallel with* G_1 (resp. G_2) if $x_2 = y_2$ (resp. $x_1 = y_1$). Two vertices are said to be *parallel* if they are parallel with either G_1 or G_2 .

Theorem 1 For every two connected graphs $G_1 \neq K_1$ and $G_2 \neq K_1$,

$$\kappa(G_1 \square G_2) = \min\{\kappa_1 v_2, \kappa_2 v_1, \delta_1 + \delta_2\}$$

Proof. Let $G = G_1 \Box G_2$. Clearly, $\kappa(G) \leq \delta(G) = \delta_1 + \delta_2$. If G_2 is not a complete graph, let S_0 be a minimum cut-set of G_2 , then $V_1 \times S_0$ is a cut-set of G, which implies $\kappa(G) \leq \kappa_2 v_1$; if G_2 is a complete graph, then $\kappa_2 = \delta_2$, therefore $\kappa(G) \leq \delta_1 + \delta_2 \leq \delta_2(\delta_1 + 1) \leq \kappa_2 v_1$. By symmetry, we have $\kappa(G) \leq \kappa_1 v_2$. So it remains to prove that $\kappa(G_1 \Box G_2) \geq \min\{\kappa_1 v_2, \kappa_2 v_1, \delta_1 + \delta_2\}$. Let S be a minimum cut-set in G.

Case 1: There exist no pair of parallel vertices in distinct components of G-S. Take a component C of G-S, let $A = \{x \in V_1 | xy \in V(C) \text{ for some } y\} \subseteq V_1$ and $B = \{y \in V_2 | xy \in V(C) \text{ for some } x\} \subseteq V_2$. Obviously, $|A| \ge 1$. Because vertices in other components of G-S must not be parallel with any vertex in C, we have $|A| \le v_1 - 1$. Similarly, $1 \le |B| \le v_2 - 1$. Thus, $(V_1 - A) \times B$ and $A \times (V_2 - B)$ must be in S because vertices in them are parallel with some vertex in C and not in C. Let a = |A|, b = |B|, by Lemma 1, we have

$$\begin{aligned}
\kappa(G) &= |S| \geqslant |(V_1 - A) \times B| + |A \times (V_2 - B)| \\
&= (v_1 - a)b + a(v_2 - b) \\
&\geqslant v_1 + v_2 - 2 \\
&\geqslant \delta_1 + \delta_2.
\end{aligned}$$
(1)

Case 2: There exist a pair of parallel vertices in distinct components of G-S. Without loss of generality, suppose that u and w are parallel vertices with G_2 and are in components C_1 and C_2 of G-S, respectively. Let $V_1 = \{x_1, x_2, \dots, x_{v_1}\}$ and $S_i = S \cap (\{x_i\} \times V_2)$. Without loss of generality, assume $u, w \in \{x_1\} \times V_2$. Note that if $\{x_i\} \times V_2$ contains vertices of distinct components of G-S, then $|S_i| \ge \kappa_2$. If for each $x_i \in V_1, \{x_i\} \times V_2$ contains vertices in both C_1 and C_2 , then

$$\kappa(G) = |S| = \sum_{i=1}^{v_1} |S_i| \ge v_1 \kappa_2.$$

$$\tag{2}$$

So we may suppose that there exist $x \in V(G_1)$ such that $\{x\} \Box G_2$ does not contain vertices of C_1 . Split the vertex-set of G_1 into two subsets X_1 and X_2 , X_1 containing the vertices x such that $xy \notin C_1$ for all $y \in V(G_2)$ and X_2 all the other vertices of G_1 . Since G_1 is connected there is an edge e with one end-vertex in X_1 and the other in X_2 . We may assume the two end-vertices of e are x_k and x_1 . Let $H = \{x_1\} \Box G_2$. Let $D = C_1 \cap V(H)$ and D' be the neighbors of D in $\{x_k\} \Box G_2$. It is clear that both D' and $N_H(D)$ must be in S. By Lemma 2, $|D'| + |N_H(D)| = |D| + |N_H(D)| \ge \delta_2 + 1$. Besides x_k , the vertex x_1 has at least $\delta_1 - 1$ neighbors in G_1 . For each $x_i \in N_{G_1}(x_1) - \{x_k\}, S_i \neq \emptyset$, otherwise u and w will be connected through $\{x_i\} \Box G_2$, a contraction. Therefore,

$$\kappa(G) = |S| \ge (|D'| + |N_H(D)|) + \sum_{x_i \in N_{G_1}(x_1) - \{x_k\}} |S_i|$$

$$\ge (\delta_2 + 1) + (\delta_1 - 1)$$
(3)
$$= \delta_1 + \delta_2.$$

In all cases, we prove $\kappa(G) \ge \min\{\kappa_1 v_2, \kappa_2 v_1, \delta_1 + \delta_2\}$. The proof of the theorem is complete.

From Theorem 1, we obtain the following corollary, a necessary and sufficient condition for the Cartesian product graph to be maximally connected, immediately.

Corollary 1 Let G_1 and G_2 be two connected graphs, then $G_1 \Box G_2$ is maximally connected if and only if $\min\{\kappa_1 v_2, \kappa_2 v_1\} \ge \delta_1 + \delta_2$.

3 Super-connectivity

We say a connected graph G to have the property \mathscr{P} if there is a subset $A \subset V(G)$ with $|A| \ge 2$ and $|A \cup N(A)| = \delta(G) + 1$ such that G - N(A) is disconnected. It follows from the definition that A is a complete subgraph of G and that any vertex from A is adjacent to every vertex from N(A). So $|A| \ge 2$ can be replaced by |A| = 2 in the definition without changing the meaning.

Lemma 3 Any maximally connected graph has no property \mathscr{P} .

Proof. Suppose to the contrary that there is a maximally connected graph G with the property \mathscr{P} . Then there is a subset $A \subset V(G)$ with $|A| \ge 2$ and $|A \cup N(A)| = \delta(G) + 1$ such that G - N(A) is disconnected. Thus, $1 + \delta(G) = |A \cup N(A)| \ge 2 + \kappa(G) = 2 + \delta(G)$, a contradiction. \Box

Figure 1: A non-maximally connected graph without the property \mathscr{P}

The graph shown in Figure 1 shows that the reverse of Lemma 3 is not always true. The importance of the property \mathscr{P} in the study of superconnectivity of Cartesian graphs is indicated in the following lemma.

Lemma 4 Let G_1 and G_2 be two connected graphs, G_1 has the property \mathscr{P} and $\delta_2 = 1$. Then $G_1 \square G_2$ is not super-connected.

Proof. Suppose to the contrary that $G_1 \square G_2$ is super-connected. Then $G_1 \square G_2$ is maximally connected, i.e., $\kappa(G_1 \square G_2) = \delta_1 + \delta_2$. Since G_1 has the property \mathscr{P} , there is a subset $A \subset V_1$ with $|A| \ge 2$ and $|A \cup N(A)| = \delta_1 + 1$ such that $G_1 - N(A)$ is disconnected. Let x be a vertex of degree one in G_2 and y be the only neighbor of x. Then $S = (N(A) \times \{x\}) \cup (A \times \{y\})$ is a cutset of $G = G_1 \square G_2$ and $|S| = |N(A) \cup A| = \delta_1 + 1 = \delta_1 + \delta_2 = \kappa(G_1 \square G_2)$, which implies that S is a minimum cut-set. If A and N(A) both have at least two vertices then the set S is not a neighborhood of any vertex. $|A| \ge 2$ by definition. If |N(A)| = 1, then S is a neighborhood of a vertex if and only if N(N(A)) = A, that is, G_1 is a complete graph. Since complete graphs do not have property \mathscr{P} , $|N(A)| \ge 2$. So there is no isolated vertex in $G_1 \square G_2 - S$, a contradiction. This completes the proof.

Another class of graphs, which will be called the locally complete graphs, also gives rise to non-super-connected Cartesian product graphs. A connected non-complete graph with $\delta \ge 2$ is said to be *locally complete* if it has a block isomorphic to $K_{\delta+1}$. By the definition, a connected locally complete graph has connectivity $\kappa = 1$ and has the property \mathscr{P} . For a connected graph, the relations among the property \mathscr{P} , locally complete and maximally connected are shown on Figure 2.

Figure 2: Relations among the property \mathscr{P} , locally complete and maximally connected

Lemma 5 Let G_1 and G_2 be two connected locally complete graphs, then $G_1 \square G_2$ is not super-connected.

Proof. Suppose to the contrary that $G_1 \square G_2$ is super-connected. Then $G_1 \square G_2$ is maximally connected, i.e., $\kappa(G_1 \square G_2) = \delta_1 + \delta_2$. By the hypothesis, let $\{x_0, x_1, \dots, x_{\delta_1}\}$ and $\{y_0, y_1, \dots, y_{\delta_2}\}$ be the vertex-set of a complete block of G_1 and G_2 , respectively. And assume that x_0 is a cut-vertex of G_1 and that y_0 is a cut-vertex of G_2 . Then $S = \{x_1y_0, x_2y_0, \dots, x_{\delta_1}y_0\} \cup$

 $\{x_0y_1, x_0y_2, \dots, x_0y_{\delta_2}\}$ is a cut-set of $G_1 \square G_2$ and $|S| = \delta_1 + \delta_2$. But there are no isolated vertices in $G_1 \square G_2 - S$, a contradiction. \square

Lemma 6 Let G be a connected graph with $\kappa = 1$ and $\delta \ge 2$, $D \subset V(G)$ with $|D \cup N(D)| = \delta + 1$ and $|D| \ge 2$. Then any element of D and at least one element of V(G) - D - N(D) are not cut-vertices of G.

Proof. We first note that $N(x) = D \cup N(D) - \{x\}$ for each vertex $x \in D$ since $|D \cup N(D) - \{x\}| = |D \cup N(D)| - 1 = \delta$. This fact means that each vertex in D is adjacent to all vertices in N(D). As $|D| \ge 2$, the neighbors of x are still connected in G - x for any $x \in D$, which implies any vertex in D is not a cut-vertex of G.

It is clear that $N(D) \neq \emptyset$ and $V(G) - D - N(D) \neq \emptyset$ since $\kappa = 1$ and $\delta \ge 2$. If $y \in V(G) - D - N(D)$ is a cut-vertex of G, then at least one of connected components of G - y contains no vertices in $D \cup N(D)$ since any two vertices of $D \cup N(D)$ is connected in G - y. Choose such a cut-vertex $y \in V(G) - D - N(D)$ such that the number of vertices of the smallest component C of G - y which contains no vertices in $D \cup N(D)$ is as small as possible. Let y' be a neighbor of y in C. If y' is a cut-vertex, then G - y' has a component $C' \subset C$ as $y' \notin C'$, which contradicts to our choice of y. So y' is not a cut-vertex.

Lemma 7 Let G_1 and G_2 be two connected graphs, $\kappa_2 = 1$, $\delta_2 \ge 2$. Let $S \subset V_1 \times V_2$, S has no vertices parallel with G_2 and $|S| < v_1$. Then $G_1 \square G_2 - S$ is connected.

Proof. Let $V_1 = \{x_1, x_2, \dots, x_n\}$ and $S_i = S \cap (\{x_i\} \times V_2)$, by the hypothesis, $|S_i| \leq 1$. Without loss of generality, assume that $|S_i| = 1$ for $1 \leq i \leq t = |S|$. We need the following simple fact:

Fact 1 If x_j and x_h are adjacent, then for each vertex v in $\{x_j\} \Box G_2 - S_j$ there exist a vertex w in $\{x_h\} \Box G_2 - S_h$ such that v and w are connected in $G[x_j, x_h] \Box G_2 - S_j - S_h$.

Proof of Fact 1. Because $\kappa_2 = 1$ and $\delta_2 \ge 2$, $v_2 \ge 5$, $\{x_i\} \Box G_2 - S_i$ is either connected with at least 4 vertices, or disconnected with each component having at least two vertices. If the neighbor v' of v in $\{x_h\} \Box G_2$ does not belong to S_h , P = vv' is the desired path and w = v'. If $v' \in S_h$, because v is always in a component of at least two vertices in $\{x_j\} \Box G_2 - S_j$, let w' be a neighbor of v in the component, and w be the neighbor of w' in $\{x_h\} \Box G_2$. So P = vw'w is a vw-path. \Box

Come back to the proof of the lemma. Because $t = |S| < v_1$, there exist $x_k(k > t)$ such that $S_k = \emptyset$, namely $\{x_k\} \Box G_2 - S_k$ is connected. For each vertex u in $\{x_i\} \Box G_2 - S_i$ for $i \neq k$, there is a path from x_i to x_k ,

following that path, u can be connected to some vertex in $\{x_k\} \Box G_2 - S_k$ in $G_1 \Box G_2 - S$ by Fact 1. \Box

It is ready to present our second major result.

Theorem 2 Let $G_1 \neq K_1$ and $G_2 \neq K_1$ be two connected graphs, then $G_1 \square G_2$ is super-connected if and only if one of the following conditions is satisfied:

i) $G_1 \square G_2$ is isomorphic to $K_2 \square K_2$ or $K_2 \square K_3$,

ii) $\min\{v_1\kappa_2, v_2\kappa_1\} > \delta_1 + \delta_2$ but none of following three situation: $\delta_1 = 1, G_2$ has the property \mathscr{P} ; $\delta_2 = 1, G_1$ has the property \mathscr{P} ; both G_1 and G_2 are locally complete.

Proof. Let $G = G_1 \square G_2$. We prove the necessity first. Assume G is superconnected, then it is maximally connected, by Corollary 1, $\kappa_1 v_2 \ge \delta_1 + \delta_2$ and $\kappa_2 v_1 \ge \delta_1 + \delta_2$. If $\kappa_1 v_2 = \delta_1 + \delta_2$, then G_1 must be a complete graph. Otherwise, let S_1 be a minimum cut-set of G_1 , then $S_1 \times V_2$ is a minimum cut-set of G without isolated vertices, a contradiction. So G_1 is a complete graph, we have $\delta_1 + \delta_2 = \kappa_1 v_2 = \delta_1 v_2 \ge \delta_1(\delta_2 + 1)$. From this inequality, we have $\delta_1 = 1$ and $v_2 = \delta_2 + 1$, which means $G_1 = K_2$ and G_2 is also a complete graph. If $G_2 = K_n$ with $n \ge 4$, let R be a set of two adjacent vertices of $\{x_1\} \square G_2$, where $x_1 \in V_1$. Then $N_G(R)$ is a minimum cut-set without leaving isolated vertices, a contradiction. So G_2 must be K_2 or K_3 . Thus the condition i) is satisfied. If $\kappa_2 v_a = \delta_1 + \delta_2$, the same argument gives that G_1 and G_2 satisfy the condition i).

Now assume $\min\{v_1\kappa_2, v_2\kappa_1\} > \delta_1 + \delta_2$. If $\delta_1 = 1$ and G_2 has the property \mathscr{P} , or $\delta_2 = 1$ and G_1 has the property \mathscr{P} , then $G_1 \square G_2$ is not super-connected by Lemma 4. If both G_1 and G_2 are locally complete then $G_1 \square G_2$ is not super-connected by Lemma 5. Thus, the condition ii) is satisfied.

Next, we will show either of the two conditions is sufficient for G to be super-connected. Clearly, the condition i) is sufficient since both $K_2 \Box K_2$ and $K_2 \Box K_3$ are super-connected. If the condition ii) holds, then G is maximally connected by Corollary 1. Let S be a minimum cut-set, then $|S| = \delta_1 + \delta_2$. We only need to prove that G - S contains isolated vertices. Following the notations and the argument of Theorem 1, we consider two cases.

Case 1: There exist no pair of parallel vertices in distinct components of G-S. In this case, all the equalities in the inequality (1) in the proof of Theorem 1 hold since $|S| = \delta_1 + \delta_2$. So $|S| = |(V_1 - A) \times B| + |A \times (V_2 - B)|$. And both G_1 and G_2 are complete graphs by $v_1 + v_2 - 2 = \delta_1 + \delta_2$. But neither of them is K_2 , otherwise if, for example, $G_1 = K_2$, then $v_2\kappa_1 =$ $v_2 \cdot 1 = 1 + \delta_2 = \delta_1 + \delta_2$, which contradicts the hypothesis. So $v_1 \neq 2$ and $v_2 \neq 2$. Therefore, by $(v_1 - a)b + a(v_2 - b) = v_1 + v_2 - 2$ and Lemma 1,

either a = b = 1 or $a = v_1 - 1$ and $b = v_2 - 1$, in both situations, there is an isolated vertex in G - S.

Case 2: There exist some pair of parallel vertices in distinct components of G-S. Assume that u and w in $\{x_1\} \times V_2$ are parallel with G_2 and belong to components C_1 and C_2 , respectively. If for each $x_i \in V_1$, $\{x_i\} \times V_2$ contains vertices of both C_1 and C_2 , then $|S| \ge v_1 \kappa_2 > \delta_1 + \delta_2$ by the inequality (2), a contradiction.

Thus, there is some $x \neq x_1$ such that $\{x\} \times V_2$ contains no vertices of C_1 . Since $|S| = \delta_1 + \delta_2$, all the equalities in the inequality (3) hold. So

$$|S| = (|D'| + |N_H(D)|) + \sum_{x_i \in N_{G_1}(x_1) - \{x_k\}} |S_i|.$$

Furthermore, $d_{G_1}(x_1) = \delta_1$ and $|D'| + |N_H(D)| = \delta_2 + 1$.

If $\delta_1 = 1$, by the hypothesis, G_2 does not have the property \mathscr{P} , so $H = \{x_1\} \Box G_2$ does not have the property \mathscr{P} . Note that $|D| + |N_H(D)| = |D'| + |N_H(D)| = |S| = \delta_2 + 1$, therefore |D| = 1, so D is an isolated vertex in G - S.

Now assume $\delta_1 \ge 2$. We proceed by considering three subcases. The outline of each subcase is as follows. We first prove |D| = 1, then prove that $(G_1 - x_1) \Box G_2 - S$ is connected. If so, let $D = \{u\}$, and one of its neighbors belongs to D' and hence to S. So each vertex of $\{x_1\} \Box G_2 - S - D$ has at least one neighbor in $(G_1 - x_1) \Box G_2 - S$ and this makes G - S - D connected. Therefore $D = \{u\}$ must be the other component of G - S, which will complete the proof.

It remains for us to show that |D| = 1 and $(G_1 - x_1) \Box G_2 - S$ is connected. We mention some more facts which are obvious but used often in the rest of the proof.

Fact 2 Let G_1 and G_2 be two connected graphs with $\min\{v_1\kappa_2, v_2\kappa_1\} > \delta_1 + \delta_2$. If $\kappa_1 = 1$, then $v_2 > \delta_1 + \delta_2$ and G_2 is not a complete graph. If $\kappa_2 = 1$, then $v_1 > \delta_1 + \delta_2$.

Subcase A: $\delta_2 = 1$. So $|D| = |N_H(D)| = 1$. Let $K \subseteq V_1$ such that if $x_i \in K$, then $\{x_i\} \Box G_2$ contains vertices of distinct components of G - S. Obvious, $x_1 \in K$ and $K \subseteq \{x_1\} \cup N_{G_1}(x_1)$. Because $\delta_2 = 1$, $V_1 - \{x_1\} - N_{G_1}(x_1) \neq \emptyset$ by Fact 2. Note that each vertex in K is not adjacent with those in $V_1 - \{x_1\} - N_{G_1}(x_1)$. Thus $N_{G_1}(K) = \{x_1\} \cup N_{G_1}(x_1) - K$ is a cut-set of G_1 and $|K \cup N_{G_1}(K)| = |\{x_1\} \cup N_{G_1}(x_1)| = \delta_1 + 1$. Because G_1 does not have the property \mathscr{P} , |K| = 1, namely $K = \{x_1\}$. So for each $x_i \neq x_1$, the vertices of $\{x_i\} \Box G_2 - S$ are in the same component of G - S. If $\kappa_1 \geq 2$, then $G_1 - x_1$ is connected, hence $(G_1 - x_1) \Box G_2 - S$ is connected. If $\kappa_1 = 1$, then $v_2 > \delta_1 + \delta_2$ by Fact 2, so there exists $y \in V_2$ such that

 $G_1 \Box \{y\}$ contains no vertices in S, which implies that $(G_1 - x_1) \Box G_2 - S$ connected. In either case, $(G_1 - x_1) \Box G_2 - S$ is connected.

Subcase B: $\kappa_2 \ge 2$. First, we deduce |D| = 1. Suppose to the contrary that $|D| \ge 2$. Then $|N_H(D)| < \delta_2$ and so there is no isolated vertex in $H - S_1$. Because $\kappa_2 \ge 2$, but for any $x_i \in N_{G_1}(x_1) - \{x_k\}, |S_i| = 1$, we have $\{x_i\} \square G_2 - S$ is connected. Thus all distinct components of H - S will be connected through $\{x_i\} \square G_2 - S$, a contradiction. So |D| = 1, $|S_{t_1}| = |D'| = |D| = 1$, and $\{x_k\} \square G_2 - S$ is also connected. Therefore, for any $x_i \in V_1$ except $x_1, \{x_i\} \square G_2 - S$ is connected. As in **Subcase A**, if $\kappa_1 \ge 2$, then $G_1 - x_1$ is connected. If $\kappa_1 = 1$, there exists $y \in V_2$ such that $G_1 \square \{y\}$ contains no vertices in S. So $(G_1 - x_1) \square G_2 - S$ is connected.

Subcase C: $\kappa_2 = 1$ and $\delta_2 \ge 2$. As before, first prove |D| = 1. Suppose to the contrary that $|D| \ge 2$. Let $D_0 = \{y \in V_2 | x_1 y \in D\}$. By applying G_2 to Lemma 6, any vertex of D_0 is not a cut-vertex of G_2 and $V_2 - D_0 - N_{G_2}(D_0)$ contains at least one non-cut-vertex. Consider each $x_i \in$ $N_{G_1}(x_1) - \{x_k\}$. Because $|S_i| = 1$, the element of S_i must be a cut-vertex of $\{x_i\} \square G_2$, otherwise H - S would be connected through $\{x_i\} \square G_2 - S_i$. So S consists of N(D), D' and $\delta_1 - 1$ cut-vertices (of $\{x_i\} \Box G_2$). Let $u = x_1 y_1$, then $G_1 \square \{y_1\}$ contains exactly one vertex of S, that is $x_k y_1$. If $G_1 - x_k$ is connected, because $\kappa_2 = 1$, let x_j be a vertex besides x_1 and its neighbors in $V_1(x_i \text{ exists by Fact 2})$. If $G_1 - x_k$ is not connected but x_1 lies in a component that there exist a vertex besides itself and its neighbors, let x_i denote that vertex. In either case, there is an (x_1, x_j) -path in $G_1 - x_k$ and $\{x_j\} \square G_2$ contains no vertices of S. Furthermore there exist a noncut-vertex z in $V_2 - D_0 - N(D_0)$, thus $G_1 \Box \{z\}$ contains no vertices of S. Then $u = x_1 y_1$ is connected with $x_1 z$ through $(G_1 - x_k) \Box \{y_1\}, \{x_i\} \Box G_2$ and $G_1 \square \{z\}$, as illustrated in Figure 3, a contradiction.

 $\text{Figure 3: } x_1y_1 \overset{(G_1-x_k)\Box\{y_1\}}{\longrightarrow} x_jy_1 \overset{\{x_j\}\Box G_2}{\longrightarrow} x_jz \overset{G_1\Box\{z\}}{\longrightarrow} x_1z$

Now there is one condition we have not yet considered: $G_1 - x_k$ is not connected and x_1 lies in a component that consist of only itself and its neighbors, which means that G_1 is locally complete. Then by hypothesis G_2 must not be locally complete, which imply $|N(D)| \ge 2$. Let $x_2 \in N_{G_1}(x_1) - \{x_k\}, x_j \in N_{G_1}(x_k) - \{x_1\} - N_{G_1}(x_1), y_1 \in D_0, z \in V_2 - D_0 - N_{G_2}(D_0)$. And choose $y_2 \in N_{G_2}(D_0)$ such that $x_2y_2 \notin S_2$ (y_2 exists because $|S_2| = 1$ and $|N(D)| \ge 2$). Then x_1y_1 and x_1z is connected in G - S as follows (see Figure 4), a contradiction.

 $\text{Figure 4: } x_1y_1 \to x_2y_1 \to x_2y_2 \to x_ky_2 \to x_jy_2 \stackrel{\{x_j\} \Box G_2}{\longrightarrow} x_jz \to x_kz \to x_1z \\$

So |D| = 1, next we will show $(G_1 - x_1)\Box G_2 - S$ is connected. If $G_1 - x_1$ is connected, just apply $G_1 - x_1$ and G_2 to Lemma 7. If $G_1 - x_1$ is disconnected, $\kappa_1 = 1$ and $\delta_1 \ge 2$, then the number of neighbors of x_1 in each component F is strictly less than δ_1 , thus each component contains vertices besides those neighbors of x_1 . By applying F and G_2 to Lemma 7, we know that $F \Box G_2 - S$ is connected. And as $\kappa_1 = 1$, $v_2 > \delta_1 + \delta_2$, there exists a $y \in V_2$ such that $G_1 \Box \{y\}$ contains no vertices of S, and connects each $F \Box G_2 - S$.

Thus in all cases, G - S isolates a vertex, this completes the proof. The following result proved in [1] will be a direct consequence of Theo-

rem 2.

Corollary 2 [1] Assume $G_1 \Box G_2 \ncong K_2 \Box K_n$ for $n \ge 4$. If G_i is regular and maximally connected for i = 1, 2, then $G_1 \Box G_2$ is super-connected.

Proof. Because both G_1 and G_2 are maximally connected, $v_1\kappa_2 = v_1\delta_2 \ge (\delta_1 + 1)\delta_2 \ge \delta_1 + \delta_2$. By the same reason, $v_2\kappa_1 \ge \delta_1 + \delta_2$. If $v_1\kappa_2 = \delta_1 + \delta_2$, because G_2 is maximally connected, $\delta_1 + \delta_2 = v_1\kappa_2 = v_1\delta_2 \ge (\delta_1 + 1)\delta_2 = \delta_1\delta_2 + \delta_2$. So $\delta_2 = 1$ and $v_1 = \delta_1 + 1$, which means that $G_2 = K_2$ (because G_2)

is regular) and G_1 is a complete graph, hence $G_1 \square G_2$ must be isomorphic to $K_2 \square K_n$. By the hypothesis, n = 2, 3. Thus the condition i) of Theorem 2 is satisfied. If $v_2 \kappa_1 = \delta_1 + \delta_2$, the same argument shows the condition i) of Theorem 2 is also satisfied. Now assume that $\min\{v_1\kappa_2, v_2\kappa_1\} > \delta_1 + \delta_2$. By Lemma 3, a maximally connected graph is neither locally complete nor have the the property \mathscr{P} (see Figure 2). Thus the condition ii) of Theorem 2 is always satisfied. This completes the proof. \square

Acknowledgements

We would like to thank the anonymous referees for their valuable comments and suggestions, which result in the improvement of the presentation of this paper.

References

- W.-S. Chiue and B.-S. Shieh, On connectivity of the Cartesian product of two graphs. Appl. Math. and Comput., 102 (1999), 129-137.
- [2] B.S. Shieh, Super edge- and point-connectivities of the Cartesian product of regual graphs. *Networks*, 40 (2) (2002), 91-96.
- [3] J.-M. Xu, Connectivity of Cartesian product digraphs and faulttolerant routings of generalized hypercubes. Applied Math. J. Chinese Univ., 13B (2) (1998), 179-187.
- [4] J.-M. Xu and C. Yang, Connectivity of Cartesian product grpahs. Discrete Math., 306 (1) (2006), 159-165.
- [5] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.