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Abstract
This paper determines that the connectivity of the Cartesian
product G10G> of two graphs G and G5 is equal to min{ki vz, K2v1,
01 + 82}, where v;, ki, d; is the order, the connectivity and the mini-
mum degree of G;, respectively, for i = 1, 2, and gives some necessary
and sufficient conditions for G1JG2 to be maximally connected and
super-connected.

1 Introduction

All graphs in this paper are finite and simple. For graph theoretical ter-
minology and notation not defined here, we refer the reader to [5]. Let
G171 and G2 be two graphs, v;, d;, k; and V; denote the number of vertices,
the minimum degree, the connectivity and the vertex-set of G;, respec-
tively, for ¢ = 1, 2. The Cartesian product graph G100G5 has the vertex-set
V=V x Vo ={ay|l x € Vi,y € Va}, and two vertices z1z2 and y,y2 are
adjacent if and only if either z; = y1, x2 and yo are adjacent in Gs, or
To = ya, 1 and y; are adjacent in G;. A graph is said to be mazimally
connected if Kk = 0. A connected graph is said to be super-connected if
every minimum cut-set is the neighbor-set of some vertex. It is clear that
any super-connected graph is certainly maximally connected.

The recent study on connectivity of the Cartesian product can be found
in [1, 2, 3, 4], where the lower bounds of the connectivity of GiO0G2 and
some sufficient conditions for it to be maximally or super-connected are
given. In the present paper, we determine that x(G10G2) = min{k1ve, kav1,
01+ d2} and give some necessary and sufficient conditions for G10G2 to be
maximally connected and super-connected.
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2 Connectivity

Lemma 1 Let p,q,a,b be integers with 1 <a<p—1and1 <b<q—1.
Then a(q —b) + b(p — a) = p+ g — 2 and the equality holds if and only if
one of the following conditions holds

i)qg=2,b=1,
i)p=2,a=1,
i) a=1,b=1,

vi)a=p—1,b=q—1.
Proof. If ¢ > 2b, then

=(qg—2b)a+pb
> (g —2b)+pbd
=p+tq—2+(p-2)(0b-1)
>p+q—2.

a(qg —b) +b(p — a)

If ¢ < 2b, then

=(q—2b)a+pb

> (¢—2b)(p—1) +pb
=p+q—2+(P-2)(g-b-1)
Zp+q—2.

a(g —b) +b(p — a)

And it is easy to check the conditions for the equality to hold. ]
Lemma 2 Let G be a graph and A C V(QG). Then |AUN(A)| > §(G) + 1.

Proof. Arbitrarily take a vertex x in A. Its neighbors must be in A U
N(4) — {x}. Thus [4UN(A)] = [{z}] + AU N(A) — {a}] > 1 +da(x) >
1+0(G). O

Two vertices z1x2 and y1ys in G10G> are said to be parallel with G
(resp. Ga) if xo = yo (resp. 1 = y1). Two vertices are said to be parallel
if they are parallel with either G; or Gs.

Theorem 1 For every two connected graphs Gy # K1 and G4 # K1,
H(GlmGg) = min{mvg, R2U1, (51 + 52}

Proof. Let G = G10G3. Clearly, (G) < 6(G) = §1 + d2. If G2 is not a
complete graph, let Sy be a minimum cut-set of G2, then V; x S is a cut-set
of G, which implies k(G) < kaur; if G is a complete graph, then ko = da,
therefore k(G) < d1+92 < 02(d1+1) < K2v1. By symmetry, we have x(G) <
K1v2. So it remains to prove that x(G10G2) > min{kyve, kav1, o1 + d2}.
Let S be a minimum cut-set in G.



Case 1: There exist no pair of parallel vertices in distinct components of
G—S. Take a component C of G—S5,let A = {z € Vi|zy € V(C) for some y}
C Vi and B = {y € Valzy € V(C) for some x} C V. Obviously, |4| > 1.
Because vertices in other components of G — S must not be parallel with
any vertex in C, we have |A| < v; — 1. Similarly, 1 < |B| < v2 — 1. Thus,
(Vi — A) x B and A x (Vo — B) must be in S because vertices in them
are parallel with some vertex in C' and not in C. Let a = |A|,b = |B]|, by
Lemma 1, we have

G) =15 = [(Vi—A)xB|+[Ax (V2 - B)|
= (v1 —a)b+a(vy —D) (1)
> v+ v —2
> 01 + 02

Case 2: There exist a pair of parallel vertices in distinct components of
G —S. Without loss of generality, suppose that u and w are parallel vertices
with G5 and are in components C; and Cy of G — S, respectively. Let
Vi ={x1,29, -, 2y, } and S; = SN ({z;} x V2). Without loss of generality,
assume u, w € {x1} x V. Note that if {z;} x Vo contains vertices of distinct
components of G— S, then |S;| > ko. If for each x; € V1, {z;} x V5 contains
vertices in both C7 and Cs, then

= 5| = Z|S| (2)

So we may suppose that there exist € V(G1) such that {x}00G2 does
not contain vertices of C7. Split the vertex-set of G; into two subsets X7
and X5, X7 containing the vertices = such that zy ¢ C; for all y € V(G2)
and X5 all the other vertices of G;. Since Gy is connected there is an edge
e with one end-vertex in X; and the other in X5. We may assume the two
end-vertices of e are x, and 1. Let H = {x1}0G,. Let D = C1NV(H) and
D’ be the neighbors of D in {2} }0Gs. It is clear that both D’ and Ny (D)
must be in S. By Lemma 2, |D’| + [Ny (D)| = |D| + |Nu(D)| > 62 + 1.
Besides zj, the vertex x; has at least J; — 1 neighbors in G;. For each
x; € Ng, (z1) — {xr}, Si # 0, otherwise u and w will be connected through
{z;}0G3, a contraction. Therefore,

k(G)=1S] = (ID'|+INu(D)|)+ Z 1S3
z;€Ng, (z1)—{zr }
> (G2 +1)+ (61— 1) (3)
= 01+ 09.

In all cases, we prove k(G) > min{kjvs, kov1,d1 +d2}. The proof of the
theorem is complete. O



From Theorem 1, we obtain the following corollary, a necessary and
sufficient condition for the Cartesian product graph to be maximally con-
nected, immediately.

Corollary 1 Let G1 and G2 be two connected graphs, then G100G5 is maz-
imally connected if and only if min{kive, kov1} = 01 + da.

3 Super-connectivity

We say a connected graph G to have the property &2 if there is a subset
A C V(G) with |A] > 2 and |AUN(A)| = 0(G) + 1 such that G — N(A) is
disconnected. It follows from the definition that A is a complete subgraph
of G and that any vertex from A is adjacent to every vertex from N(A).
So |A| = 2 can be replaced by |A| = 2 in the definition without changing
the meaning.

Lemma 3 Any mazimally connected graph has no property &.

Proof. Suppose to the contrary that there is a maximally connected graph
G with the property &. Then there is a subset A C V(G) with |A| > 2
and |[A U N(A4)| = 6(G) + 1 such that G — N(A) is disconnected. Thus,
14+0(G)=|AUN(A)| =22+ k(G) =2+ §(G), a contradiction. O

Figure 1: A non-maximally connected graph without the property &2

The graph shown in Figure 1 shows that the reverse of Lemma 3 is not
always true. The importance of the property & in the study of super-
connectivity of Cartesian graphs is indicated in the following lemma.

Lemma 4 Let G; and G5 be two connected graphs, G1 has the property
P and 6o = 1. Then G10G5 is not super-connected.



Proof. Suppose to the contrary that Gi0G is super-connected. Then
G10Gs is maximally connected, i.e., K(G10G2) = d;+d2. Since Gy has the
property Z, there is a subset A C V; with |A| > 2 and |AUN(A)| =, +1
such that G; — N(A) is disconnected. Let = be a vertex of degree one in G
and y be the only neighbor of z. Then S = (N(A)x{z})U(Ax{y}) is a cut-
set of G = G;0G5 and |S| = |N(A) U A‘ =01 +1=6;+6 = Ii(Gﬂ:le),
which implies that S is a minimum cut-set. If A and N(A) both have
at least two vertices then the set S is not a neighborhood of any vertex.
|A] > 2 by definition. If |[N(A)| = 1, then S is a neighborhood of a vertex if
and only if N(N(A)) = A, that is, G; is a complete graph. Since complete
graphs do not have property &, |[N(A)| > 2. So there is no isolated vertex
in G10G5 — S, a contradiction. This completes the proof. O

Another class of graphs, which will be called the locally complete graphs,
also gives rise to non-super-connected Cartesian product graphs. A con-
nected non-complete graph with § > 2 is said to be locally complete if it
has a block isomorphic to K;si1. By the definition, a connected locally
complete graph has connectivity k = 1 and has the property &. For a
connected graph, the relations among the property &, locally complete
and maximally connected are shown on Figure 2.

locally

Comp]ete maximally

connected

the property &

connected

Figure 2: Relations among the property £, locally complete and maximally
connected

Lemma 5 Let G; and Gy be two connected locally complete graphs, then
G10G, is not super-connected.

Proof. Suppose to the contrary that Gi100G is super-connected. Then
G10G5 is maximally connected, i.e., K(G10G2) = §; + 2. By the hypothe-
sis, let {zg, 1, -+, s, } and {yo, y1,- -, Ys, } be the vertex-set of a complete
block of G; and Gs, respectively. And assume that xg is a cut-vertex of
G1 and that yo is a cut-vertex of Ga. Then S = {x1y0, 220, -+, %5, Yo} U



{,Iioyl, oY, - ,l‘oy(;z} is a cut-set of G10G5 and |S| = 01 + d2. But there
are no isolated vertices in G1JG5 — S, a contradiction. O

Lemma 6 Let G be a connected graph with k =1 and 6 > 2, D C V(Q)
with [DUN(D)| =0+1 and |D| > 2. Then any element of D and at least
one element of V(G) — D — N(D) are not cut-vertices of G.

Proof. We first note that N(z) = DU N(D) — {z} for each vertex z € D
since [DUN(D) — {z}| = |DUN(D)| —1 = 4. This fact means that each
vertex in D is adjacent to all vertices in N(D). As |D| > 2, the neighbors
of = are still connected in G — z for any x € D, which implies any vertex
in D is not a cut-vertex of G.

It is clear that N(D) # 0 and V(G) — D — N(D) # () since x = 1 and
022 IfyeV(G)— D — N(D) is a cut-vertex of G, then at least one of
connected components of G — y contains no vertices in DU N (D) since any
two vertices of DU N(D) is connected in G —y. Choose such a cut-vertex
y € V(G) — D — N(D) such that the number of vertices of the smallest
component C' of G — y which contains no vertices in D U N (D) is as small
as possible. Let 3’ be a neighbor of y in C. If 3/ is a cut-vertex, then G — 3/
has a component C’ C C as y’ ¢ C’, which contradicts to our choice of y.
So ¢ is not a cut-vertex. O

Lemma 7 Let G and G2 be two connected graphs, ko = 1, 0o > 2. Let
S C Vi x Va, S has no wvertices parallel with Gy and |S| < v1. Then
G10G9 — S is connected.

Proof. Let Vi = {z1, 29, -+, z,} and S; = SN ({x;} x V2), by the hy-
pothesis, |S;| < 1. Without loss of generality, assume that |S;| = 1 for
1 <i<t=|S]. We need the following simple fact:

Fact 1 Ifz; and x}, are adjacent, then for each vertex v in {z;}0G2 — S;
there exist a vertex w in {x,}0Gs — Sp, such that v and w are connected
m G[{L‘j, iL'h]DGQ — Sj — Sh.

Proof of Fact 1. Because ko = 1 and dy > 2, vo = 5, {z; }00G2—S; is either
connected with at least 4 vertices, or disconnected with each component
having at least two vertices. If the neighbor v’ of v in {z;, }JG5 does not
belong to Sj,, P = vv’ is the desired path and w = v'. If v € S}, because
v is always in a component of at least two vertices in {z;}0Gs — §;, let
w’ be a neighbor of v in the component, and w be the neighbor of w’ in
{24 }0G;. So P = vw'w is a vw-path. O

Come back to the proof of the lemma. Because t = |S| < vy, there
exist xp(k > t) such that Sy = 0, namely {z)}00Gy — Sy is connected. For
each vertex u in {x;}00G2 — S; for i # k, there is a path from z; to zy,



following that path, u can be connected to some vertex in {zx}0Gy — Sk
in G10G5 — S by Fact 1. O
It is ready to present our second major result.

Theorem 2 Let G; # Ky and Gy # Ky be two connected graphs, then
G10Gs is super-connected if and only if one of the following conditions is
satisfied:

i) G10G3 is isomorphic to KoOKy or KyOKs,

it) min{vika,vak1} > 01 + d2 but none of following three situation:
01 = 1, Go has the property &; 6o = 1, G1 has the property P; both G
and Gy are locally complete.

Proof. Let G = G10G>. We prove the necessity first. Assume G is super-
connected, then it is maximally connected, by Corollary 1, kjve > d1 + 02
and kov1 = 01 + 09. If K1v9 = &1 + 02, then G7 must be a complete graph.
Otherwise, let S be a minimum cut-set of G, then S; x V5 is a minimum
cut-set of G without isolated vertices, a contradiction. So G is a complete
graph, we have §; + d2 = K1v2 = d1v2 > §1(d2 + 1). From this inequality,
we have §; = 1 and vy = 0o + 1, which means G; = K5 and G4 is also a
complete graph. If G2 = K,, with n > 4, let R be a set of two adjacent
vertices of {x1}00G2, where 1 € V1. Then Ng(R) is a minimum cut-set
without leaving isolated vertices, a contradiction. So G2 must be K5 or K3.
Thus the condition i) is satisfied. If kov, = 1 + d2, the same argument
gives that G and G satisfy the condition 1).

Now assume min{vikg,vak1} > 61 + do. If 53 = 1 and Go has the
property &, or 0o = 1 and G has the property &, then G;00G; is not
super-connected by Lemma 4. If both G; and G5 are locally complete then
G10G4 is not super-connected by Lemma 5. Thus, the condition ii) is
satisfied.

Next, we will show either of the two conditions is sufficient for G to be
super-connected. Clearly, the condition i) is sufficient since both K3[0K,
and K>[OK3 are super-connected. If the condition ii) holds, then G is
maximally connected by Corollary 1. Let S be a minimum cut-set, then
|S| = 1 + d2. We only need to prove that G — S contains isolated vertices.
Following the notations and the argument of Theorem 1, we consider two
cases.

Case 1: There exist no pair of parallel vertices in distinct components
of G—S. In this case, all the equalities in the inequality (1) in the proof of
Theorem 1 hold since |S| = §1 4+ d2. So |S| = [(V1 —A) x B|+|Ax (Vo —B)|.
And both G and Gs are complete graphs by vy + vy — 2 = 81 + d2. But
neither of them is K5, otherwise if, for example, G; = Ks, then vor; =
vg - 1 =14 03 = 81 + d2, which contradicts the hypothesis. So v; # 2 and
vy # 2. Therefore, by (v1 — a)b + a(vy — b) = v1 + v2 — 2 and Lemma 1,



eithera =b=1ora=wv; —1 and b = vy — 1, in both situations, there is
an isolated vertex in G — S.

Case 2: There exist some pair of parallel vertices in distinct components
of G—S. Assume that u and w in {z;} x V5 are parallel with G5 and belong
to components C; and Cy, respectively. If for each x; € Vi, {a;} x W
contains vertices of both C; and Cy, then |S| > vikg > 01 + J2 by the
inequality (2), a contradiction.

Thus, there is some x # x7 such that {z} x V5 contains no vertices of
Cy. Since |S| = 01 + 02, all the equalities in the inequality (3) hold. So

S| = (ID'| + [Nu(D)]) + > |53l

z;€ENG, (z1)—{zr}

Furthermore, dg, (x1) = 61 and |D’| + |[Ng(D)| = d2 + 1.

If 61 = 1, by the hypothesis, Go does not have the property &, so
H = {21 }00G; does not have the property &2. Note that |D|+ |Ny(D)| =
|D'| 4+ |Ng(D)| = |S| = d2 + 1, therefore |D| = 1, so D is an isolated vertex
inG-S.

Now assume d; > 2. We proceed by considering three subcases. The
outline of each subcase is as follows. We first prove |D| = 1, then prove
that (G1 — x1)0G2 — S is connected. If so, let D = {u}, and one of its
neighbors belongs to D’ and hence to S. So each vertex of {z1}0G2—S—D
has at least one neighbor in (G7 — z1)0Gs — S and this makes G — S — D
connected. Therefore D = {u} must be the other component of G — S,
which will complete the proof.

It remains for us to show that |D| = 1 and (G1 — z1)0G3 — S is con-
nected. We mention some more facts which are obvious but used often in
the rest of the proof.

Fact 2 Let G and Gy be two connected graphs with min{viks, vor1} >
01+ 2. If k1 = 1, then vy > §1 + 62 and Go is not a complete graph. If
Ko = 1, then v1 > 81 + s.

Subcase A: §; = 1. So |D| = |Ng(D)| = 1. Let K C V; such that if
x; € K, then {z;}00G> contains vertices of distinct components of G — S.
Obvious, 1 € K and K C {z1} U Ng,(x1). Because 65 =1, V; — {z1} —
Neg,(z1) # 0 by Fact 2. Note that each vertex in K is not adjacent with
those in Vi — {1} — Ng, (z1). Thus Ng, (K) = {21} U Ng,(z1) — K is a
cut-set of G; and |K U Ng, (K)| = {1} U N¢, (z1)| = §1 + 1. Because G,
does not have the property &, |K| = 1, namely K = {x1}. So for each
x; # 21, the vertices of {z;}0G5 — S are in the same component of G — S.
If k1 > 2, then G; —z7 is connected, hence (G —x1)0G3 — S is connected.
If k1 = 1, then vy > d; + d2 by Fact 2, so there exists y € V5 such that



G10{y} contains no vertices in S, which implies that (Gy — x1)0Gy — S
connected. In either case, (G1 — x1)0G2 — S is connected.

Subcase B: k3 > 2. First, we deduce |D| = 1. Suppose to the contrary
that |D| > 2. Then |Ng(D)| < d2 and so there is no isolated vertex in
H — Sy. Because ko > 2, but for any z; € Ng,(z1) — {z}, |S:i| = 1, we
have {x;}00G2 — S is connected. Thus all distinct components of H — S
will be connected through {z;}00Gy — S, a contradiction. So |D| = 1,
|St, | =|D'| = |D| =1, and {x,}0G2 — S is also connected. Therefore, for
any z; € Vq except 1, {2;}0Gy — S is connected. As in Subcase A, if
K1 = 2, then G7 — x1 is connected. If k1 = 1, there exists y € V5 such that
G10{y} contains no vertices in S. So (G1 — x1)dG2 — S is connected.

Subcase C: ks = 1 and o > 2. As before, first prove |D| = 1.
Suppose to the contrary that |D| > 2. Let Dy = {y € Valz1y € D}. By
applying G, to Lemma 6, any vertex of Dy is not a cut-vertex of Gy and
Vo—Dy— Ng,(Dyp) contains at least one non-cut-vertex. Consider each z; €
N¢, (1) —{zk}. Because |S;| = 1, the element of S; must be a cut-vertex of
{z;}0G2, otherwise H — S would be connected through {z;}00Gs — S;. So
S consists of N(D), D' and d; —1 cut-vertices (of {z; }00G2). Let u = z1y1,
then G10{y;} contains exactly one vertex of S, that is xxy,. If G; — x, is
connected, because k3 = 1, let x; be a vertex besides x1 and its neighbors
in Vi(x; exists by Fact 2). If G; — xy is not connected but z; lies in a
component that there exist a vertex besides itself and its neighbors, let z;
denote that vertex. In either case, there is an (z1,z;)-path in G — zi
and {z;}0G2 contains no vertices of S. Furthermore there exist a non-
cut-vertex z in Vo — Dy — N(Dy), thus G;0{z} contains no vertices of S.
Then u = z1y; is connected with z1z through (G1 — x,)0{y1 }, {z;}0G>
and G10{z}, as illustrated in Figure 3, a contradiction.

1 o NH(D) o

« (20

xj o O
Y1

: (Gr—=zr)H{y1 } {z; 100G G10{z}
Flgure 3: T1Y1 — TjY1 - Tjz — I1Zz



Now there is one condition we have not yet considered: G; — xj is not
connected and x; lies in a component that consist of only itself and its
neighbors, which means that G is locally complete. Then by hypothesis G4
must not be locally complete, which imply |N(D)| > 2. Let x5 € Ng, (z1)—
{zx}, ®; € Ng, () — {z1} — N, (z1), 11 € Do, z € Vo — Dy — N, (Do).
And choose y2 € Ng, (Do) such that zoys ¢ S2 (y2 exists because |So| =1
and [N(D)| > 2). Then z1y; and x;z is connected in G — S as follows (see
Figure 4), a contradiction.

U dww

x] o

Yyr Y2 z

. {z;}0G2
Flgure 4. T1Yr — T2Y1 — T2Y2 — TkY2 — TjY2 gl Tjz — Tz — T12

So |D| = 1, next we will show (G; — x1)0G2 — S is connected. If
GG1 — 7 is connected, just apply G; — 7 and G5 to Lemma 7. If G; — 23
is disconnected, k1 = 1 and §; > 2, then the number of neighbors of z; in
each component F' is strictly less than d;, thus each component contains
vertices besides those neighbors of z1. By applying F' and G5 to Lemma 7,
we know that FOGs — S is connected. And as k1 = 1, vg > 1 + 2, there
exists a y € V, such that G10{y} contains no vertices of S, and connects
each FOG, — S.

Thus in all cases, G — S isolates a vertex, this completes the proof. [

The following result proved in [1] will be a direct consequence of Theo-
rem 2.

Corollary 2 [1] Assume G10Gy 2 KoUK, for n > 4. If G; is regular
and mazximally connected for i = 1,2, then G100G> is super-connected.

Proof. Because both GG; and G5 are maximally connected, v1ky = v102 >
(01 +1)62 = 01 + d2. By the same reason, voky = 01 + 2. If v160 = 01 + o,
because Go is maximally connected, 61 + 02 = v1ke = v102 = (01 + 1)de =
0102+02. So d = 1 and v; = 0141, which means that Ga = K3 (because G

10



is regular) and (1 is a complete graph, hence G10G2 must be isomorphic
to K3OK,. By the hypothesis, n = 2,3. Thus the condition i) of Theorem
2 is satisfied. If vok, = 1 + 02, the same argument shows the condition i)
of Theorem 2 is also satisfied. Now assume that min{vy kg, vak1} > 01 + da.
By Lemma 3, a maximally connected graph is neither locally complete nor
have the the property & (see Figure 2). Thus the condition ii) of Theorem
2 is always satisfied. This completes the proof. O
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