
Connectivity and super-connectivity of

Cartesian product graphs∗

Jun-Ming Xu Chao Yang

Department of Mathematics

University of Science and Technology of China

Hefei, 230026, China

Abstract

This paper determines that the connectivity of the Cartesian

product G1�G2 of two graphs G1 and G2 is equal to min{κ1v2, κ2v1,

δ1 + δ2}, where vi, κi, δi is the order, the connectivity and the mini-

mum degree of Gi, respectively, for i = 1, 2, and gives some necessary

and sufficient conditions for G1�G2 to be maximally connected and

super-connected.

1 Introduction

All graphs in this paper are finite and simple. For graph theoretical ter-
minology and notation not defined here, we refer the reader to [5]. Let
G1 and G2 be two graphs, vi, δi, κi and Vi denote the number of vertices,
the minimum degree, the connectivity and the vertex-set of Gi, respec-
tively, for i = 1, 2. The Cartesian product graph G1�G2 has the vertex-set
V = V1 × V2 = {xy| x ∈ V1, y ∈ V2}, and two vertices x1x2 and y1y2 are
adjacent if and only if either x1 = y1, x2 and y2 are adjacent in G2, or
x2 = y2, x1 and y1 are adjacent in G1. A graph is said to be maximally
connected if κ = δ. A connected graph is said to be super-connected if
every minimum cut-set is the neighbor-set of some vertex. It is clear that
any super-connected graph is certainly maximally connected.

The recent study on connectivity of the Cartesian product can be found
in [1, 2, 3, 4], where the lower bounds of the connectivity of G1�G2 and
some sufficient conditions for it to be maximally or super-connected are
given. In the present paper, we determine that κ(G1�G2) = min{κ1v2, κ2v1,
δ1 + δ2} and give some necessary and sufficient conditions for G1�G2 to be
maximally connected and super-connected.
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2 Connectivity

Lemma 1 Let p, q, a, b be integers with 1 6 a 6 p − 1 and 1 6 b 6 q − 1.
Then a(q − b) + b(p − a) > p + q − 2 and the equality holds if and only if
one of the following conditions holds

i) q = 2, b = 1,
ii) p = 2, a = 1,
iii) a = 1, b = 1,
vi) a = p − 1, b = q − 1.

Proof. If q > 2b, then

a(q − b) + b(p − a) = (q − 2b)a + p b
> (q − 2b) + p b
= p + q − 2 + (p − 2)(b − 1)
> p + q − 2.

If q < 2b, then

a(q − b) + b(p − a) = (q − 2b)a + p b
> (q − 2b)(p − 1) + p b
= p + q − 2 + (p − 2)(q − b − 1)
> p + q − 2.

And it is easy to check the conditions for the equality to hold. �

Lemma 2 Let G be a graph and A ⊆ V (G). Then |A∪N(A)| > δ(G)+ 1.

Proof. Arbitrarily take a vertex x in A. Its neighbors must be in A ∪
N(A) − {x}. Thus |A ∪ N(A)| = |{x}| + |A ∪ N(A) − {x}| > 1 + dG(x) >

1 + δ(G). �

Two vertices x1x2 and y1y2 in G1�G2 are said to be parallel with G1

(resp. G2) if x2 = y2 (resp. x1 = y1). Two vertices are said to be parallel
if they are parallel with either G1 or G2.

Theorem 1 For every two connected graphs G1 6= K1 and G2 6= K1,

κ(G1�G2) = min{κ1v2, κ2v1, δ1 + δ2}

Proof. Let G = G1�G2. Clearly, κ(G) 6 δ(G) = δ1 + δ2. If G2 is not a
complete graph, let S0 be a minimum cut-set of G2, then V1×S0 is a cut-set
of G, which implies κ(G) 6 κ2v1; if G2 is a complete graph, then κ2 = δ2,
therefore κ(G) 6 δ1+δ2 6 δ2(δ1+1) 6 κ2v1. By symmetry, we have κ(G) 6

κ1v2. So it remains to prove that κ(G1�G2) > min{κ1v2, κ2v1, δ1 + δ2}.
Let S be a minimum cut-set in G.
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Case 1: There exist no pair of parallel vertices in distinct components of
G−S. Take a component C of G−S, let A = {x ∈ V1|xy ∈ V (C) for some y}
⊆ V1 and B = {y ∈ V2|xy ∈ V (C) for some x} ⊆ V2. Obviously, |A| > 1.
Because vertices in other components of G − S must not be parallel with
any vertex in C, we have |A| 6 v1 − 1. Similarly, 1 6 |B| 6 v2 − 1. Thus,
(V1 − A) × B and A × (V2 − B) must be in S because vertices in them
are parallel with some vertex in C and not in C. Let a = |A|, b = |B|, by
Lemma 1, we have

κ(G) = |S| > |(V1 − A) × B| + |A × (V2 − B)|

= (v1 − a)b + a(v2 − b) (1)

> v1 + v2 − 2

> δ1 + δ2.

Case 2: There exist a pair of parallel vertices in distinct components of
G−S. Without loss of generality, suppose that u and w are parallel vertices
with G2 and are in components C1 and C2 of G − S, respectively. Let
V1 = {x1, x2, · · · , xv1

} and Si = S∩ ({xi}×V2). Without loss of generality,
assume u,w ∈ {x1}×V2. Note that if {xi}×V2 contains vertices of distinct
components of G−S, then |Si| > κ2. If for each xi ∈ V1, {xi}×V2 contains
vertices in both C1 and C2, then

κ(G) = |S| =

v1∑

i=1

|Si| > v1κ2. (2)

So we may suppose that there exist x ∈ V (G1) such that {x}�G2 does
not contain vertices of C1. Split the vertex-set of G1 into two subsets X1

and X2, X1 containing the vertices x such that xy /∈ C1 for all y ∈ V (G2)
and X2 all the other vertices of G1. Since G1 is connected there is an edge
e with one end-vertex in X1 and the other in X2. We may assume the two
end-vertices of e are xk and x1. Let H = {x1}�G2. Let D = C1∩V (H) and
D′ be the neighbors of D in {xk}�G2. It is clear that both D′ and NH(D)
must be in S. By Lemma 2, |D′| + |NH(D)| = |D| + |NH(D)| > δ2 + 1.
Besides xk, the vertex x1 has at least δ1 − 1 neighbors in G1. For each
xi ∈ NG1

(x1)−{xk}, Si 6= ∅, otherwise u and w will be connected through
{xi}�G2, a contraction. Therefore,

κ(G) = |S| > (|D′| + |NH(D)|) +
∑

xi∈NG1
(x1)−{xk}

|Si|

> (δ2 + 1) + (δ1 − 1) (3)

= δ1 + δ2.

In all cases, we prove κ(G) > min{κ1v2, κ2v1, δ1 + δ2}. The proof of the
theorem is complete. �
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From Theorem 1, we obtain the following corollary, a necessary and
sufficient condition for the Cartesian product graph to be maximally con-
nected, immediately.

Corollary 1 Let G1 and G2 be two connected graphs, then G1�G2 is max-
imally connected if and only if min{κ1v2, κ2v1} > δ1 + δ2.

3 Super-connectivity

We say a connected graph G to have the property P if there is a subset
A ⊂ V (G) with |A| > 2 and |A ∪N(A)| = δ(G) + 1 such that G−N(A) is
disconnected. It follows from the definition that A is a complete subgraph
of G and that any vertex from A is adjacent to every vertex from N(A).
So |A| > 2 can be replaced by |A| = 2 in the definition without changing
the meaning.

Lemma 3 Any maximally connected graph has no property P.

Proof. Suppose to the contrary that there is a maximally connected graph
G with the property P. Then there is a subset A ⊂ V (G) with |A| > 2
and |A ∪ N(A)| = δ(G) + 1 such that G − N(A) is disconnected. Thus,
1 + δ(G) = |A ∪ N(A)| > 2 + κ(G) = 2 + δ(G), a contradiction. �

Figure 1: A non-maximally connected graph without the property P

The graph shown in Figure 1 shows that the reverse of Lemma 3 is not
always true. The importance of the property P in the study of super-
connectivity of Cartesian graphs is indicated in the following lemma.

Lemma 4 Let G1 and G2 be two connected graphs, G1 has the property
P and δ2 = 1. Then G1�G2 is not super-connected.
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Proof. Suppose to the contrary that G1�G2 is super-connected. Then
G1�G2 is maximally connected, i.e., κ(G1�G2) = δ1+δ2. Since G1 has the
property P, there is a subset A ⊂ V1 with |A| > 2 and |A∪N(A)| = δ1 +1
such that G1−N(A) is disconnected. Let x be a vertex of degree one in G2

and y be the only neighbor of x. Then S = (N(A)×{x})∪(A×{y}) is a cut-
set of G = G1�G2 and |S| = |N(A) ∪ A| = δ1 + 1 = δ1 + δ2 = κ(G1�G2),
which implies that S is a minimum cut-set. If A and N(A) both have
at least two vertices then the set S is not a neighborhood of any vertex.
|A| > 2 by definition. If |N(A)| = 1, then S is a neighborhood of a vertex if
and only if N(N(A)) = A, that is, G1 is a complete graph. Since complete
graphs do not have property P, |N(A)| > 2. So there is no isolated vertex
in G1�G2 − S, a contradiction. This completes the proof. �

Another class of graphs, which will be called the locally complete graphs,
also gives rise to non-super-connected Cartesian product graphs. A con-
nected non-complete graph with δ > 2 is said to be locally complete if it
has a block isomorphic to Kδ+1. By the definition, a connected locally
complete graph has connectivity κ = 1 and has the property P. For a
connected graph, the relations among the property P, locally complete
and maximally connected are shown on Figure 2.

connected

the property P

locally
complete maximally

connected

Figure 2: Relations among the property P, locally complete and maximally
connected

Lemma 5 Let G1 and G2 be two connected locally complete graphs, then
G1�G2 is not super-connected.

Proof. Suppose to the contrary that G1�G2 is super-connected. Then
G1�G2 is maximally connected, i.e., κ(G1�G2) = δ1+δ2. By the hypothe-
sis, let {x0, x1, · · · , xδ1

} and {y0, y1, · · · , yδ2
} be the vertex-set of a complete

block of G1 and G2, respectively. And assume that x0 is a cut-vertex of
G1 and that y0 is a cut-vertex of G2. Then S = {x1y0, x2y0, · · · , xδ1

y0} ∪

5



{x0y1, x0y2, · · · , x0yδ2
} is a cut-set of G1�G2 and |S| = δ1 + δ2. But there

are no isolated vertices in G1�G2 − S, a contradiction. �

Lemma 6 Let G be a connected graph with κ = 1 and δ > 2, D ⊂ V (G)
with |D ∪N(D)| = δ + 1 and |D| > 2. Then any element of D and at least
one element of V (G) − D − N(D) are not cut-vertices of G.

Proof. We first note that N(x) = D ∪ N(D) − {x} for each vertex x ∈ D
since |D ∪ N(D) − {x}| = |D ∪ N(D)| − 1 = δ. This fact means that each
vertex in D is adjacent to all vertices in N(D). As |D| > 2, the neighbors
of x are still connected in G − x for any x ∈ D, which implies any vertex
in D is not a cut-vertex of G.

It is clear that N(D) 6= ∅ and V (G) − D − N(D) 6= ∅ since κ = 1 and
δ > 2. If y ∈ V (G) − D − N(D) is a cut-vertex of G, then at least one of
connected components of G−y contains no vertices in D∪N(D) since any
two vertices of D ∪N(D) is connected in G− y. Choose such a cut-vertex
y ∈ V (G) − D − N(D) such that the number of vertices of the smallest
component C of G − y which contains no vertices in D ∪ N(D) is as small
as possible. Let y′ be a neighbor of y in C. If y′ is a cut-vertex, then G−y′

has a component C ′ ⊂ C as y′ /∈ C ′, which contradicts to our choice of y.
So y′ is not a cut-vertex. �

Lemma 7 Let G1 and G2 be two connected graphs, κ2 = 1, δ2 > 2. Let
S ⊂ V1 × V2, S has no vertices parallel with G2 and |S| < v1. Then
G1�G2 − S is connected.

Proof. Let V1 = {x1, x2, · · · , xn} and Si = S ∩ ({xi} × V2), by the hy-
pothesis, |Si| 6 1. Without loss of generality, assume that |Si| = 1 for
1 6 i 6 t = |S|. We need the following simple fact:

Fact 1 If xj and xh are adjacent, then for each vertex v in {xj}�G2 −Sj

there exist a vertex w in {xh}�G2 − Sh such that v and w are connected
in G[xj , xh]�G2 − Sj − Sh.

Proof of Fact 1. Because κ2 = 1 and δ2 > 2, v2 > 5, {xi}�G2−Si is either
connected with at least 4 vertices, or disconnected with each component
having at least two vertices. If the neighbor v′ of v in {xh}�G2 does not
belong to Sh, P = vv′ is the desired path and w = v′. If v′ ∈ Sh, because
v is always in a component of at least two vertices in {xj}�G2 − Sj , let
w′ be a neighbor of v in the component, and w be the neighbor of w′ in
{xh}�G2. So P = vw′w is a vw-path. �

Come back to the proof of the lemma. Because t = |S| < v1, there
exist xk(k > t) such that Sk = ∅, namely {xk}�G2 − Sk is connected. For
each vertex u in {xi}�G2 − Si for i 6= k, there is a path from xi to xk,
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following that path, u can be connected to some vertex in {xk}�G2 − Sk

in G1�G2 − S by Fact 1. �

It is ready to present our second major result.

Theorem 2 Let G1 6= K1 and G2 6= K1 be two connected graphs, then
G1�G2 is super-connected if and only if one of the following conditions is
satisfied:

i) G1�G2 is isomorphic to K2�K2 or K2�K3,
ii) min{v1κ2, v2κ1} > δ1 + δ2 but none of following three situation:

δ1 = 1, G2 has the property P; δ2 = 1, G1 has the property P; both G1

and G2 are locally complete.

Proof. Let G = G1�G2. We prove the necessity first. Assume G is super-
connected, then it is maximally connected, by Corollary 1, κ1v2 > δ1 + δ2

and κ2v1 > δ1 + δ2. If κ1v2 = δ1 + δ2, then G1 must be a complete graph.
Otherwise, let S1 be a minimum cut-set of G1, then S1 × V2 is a minimum
cut-set of G without isolated vertices, a contradiction. So G1 is a complete
graph, we have δ1 + δ2 = κ1v2 = δ1v2 > δ1(δ2 + 1). From this inequality,
we have δ1 = 1 and v2 = δ2 + 1, which means G1 = K2 and G2 is also a
complete graph. If G2 = Kn with n > 4, let R be a set of two adjacent
vertices of {x1}�G2, where x1 ∈ V1. Then NG(R) is a minimum cut-set
without leaving isolated vertices, a contradiction. So G2 must be K2 or K3.
Thus the condition i) is satisfied. If κ2va = δ1 + δ2, the same argument
gives that G1 and G2 satisfy the condition i).

Now assume min{v1κ2, v2κ1} > δ1 + δ2. If δ1 = 1 and G2 has the
property P, or δ2 = 1 and G1 has the property P, then G1�G2 is not
super-connected by Lemma 4. If both G1 and G2 are locally complete then
G1�G2 is not super-connected by Lemma 5. Thus, the condition ii) is
satisfied.

Next, we will show either of the two conditions is sufficient for G to be
super-connected. Clearly, the condition i) is sufficient since both K2�K2

and K2�K3 are super-connected. If the condition ii) holds, then G is
maximally connected by Corollary 1. Let S be a minimum cut-set, then
|S| = δ1 + δ2. We only need to prove that G−S contains isolated vertices.
Following the notations and the argument of Theorem 1, we consider two
cases.

Case 1: There exist no pair of parallel vertices in distinct components
of G−S. In this case, all the equalities in the inequality (1) in the proof of
Theorem 1 hold since |S| = δ1 +δ2. So |S| = |(V1−A)×B|+ |A×(V2−B)|.
And both G1 and G2 are complete graphs by v1 + v2 − 2 = δ1 + δ2. But
neither of them is K2, otherwise if, for example, G1 = K2, then v2κ1 =
v2 · 1 = 1 + δ2 = δ1 + δ2, which contradicts the hypothesis. So v1 6= 2 and
v2 6= 2. Therefore, by (v1 − a)b + a(v2 − b) = v1 + v2 − 2 and Lemma 1,
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either a = b = 1 or a = v1 − 1 and b = v2 − 1, in both situations, there is
an isolated vertex in G − S.

Case 2: There exist some pair of parallel vertices in distinct components
of G−S. Assume that u and w in {x1}×V2 are parallel with G2 and belong
to components C1 and C2, respectively. If for each xi ∈ V1, {xi} × V2

contains vertices of both C1 and C2, then |S| > v1κ2 > δ1 + δ2 by the
inequality (2), a contradiction.

Thus, there is some x 6= x1 such that {x} × V2 contains no vertices of
C1. Since |S| = δ1 + δ2, all the equalities in the inequality (3) hold. So

|S| = (|D′| + |NH(D)|) +
∑

xi∈NG1
(x1)−{xk}

|Si|.

Furthermore, dG1
(x1) = δ1 and |D′| + |NH(D)| = δ2 + 1.

If δ1 = 1, by the hypothesis, G2 does not have the property P, so
H = {x1}�G2 does not have the property P. Note that |D|+ |NH(D)| =
|D′|+ |NH(D)| = |S| = δ2 +1, therefore |D| = 1, so D is an isolated vertex
in G − S.

Now assume δ1 > 2. We proceed by considering three subcases. The
outline of each subcase is as follows. We first prove |D| = 1, then prove
that (G1 − x1)�G2 − S is connected. If so, let D = {u}, and one of its
neighbors belongs to D′ and hence to S. So each vertex of {x1}�G2−S−D
has at least one neighbor in (G1 − x1)�G2 − S and this makes G − S − D
connected. Therefore D = {u} must be the other component of G − S,
which will complete the proof.

It remains for us to show that |D| = 1 and (G1 − x1)�G2 − S is con-
nected. We mention some more facts which are obvious but used often in
the rest of the proof.

Fact 2 Let G1 and G2 be two connected graphs with min{v1κ2, v2κ1} >
δ1 + δ2. If κ1 = 1, then v2 > δ1 + δ2 and G2 is not a complete graph. If
κ2 = 1, then v1 > δ1 + δ2.

Subcase A: δ2 = 1. So |D| = |NH(D)| = 1. Let K ⊆ V1 such that if
xi ∈ K, then {xi}�G2 contains vertices of distinct components of G − S.
Obvious, x1 ∈ K and K ⊆ {x1} ∪ NG1

(x1). Because δ2 = 1, V1 − {x1} −
NG1

(x1) 6= ∅ by Fact 2. Note that each vertex in K is not adjacent with
those in V1 − {x1} − NG1

(x1). Thus NG1
(K) = {x1} ∪ NG1

(x1) − K is a
cut-set of G1 and |K ∪ NG1

(K)| = |{x1} ∪ NG1
(x1)| = δ1 + 1. Because G1

does not have the property P, |K| = 1, namely K = {x1}. So for each
xi 6= x1, the vertices of {xi}�G2 − S are in the same component of G− S.
If κ1 > 2, then G1−x1 is connected, hence (G1−x1)�G2−S is connected.
If κ1 = 1, then v2 > δ1 + δ2 by Fact 2, so there exists y ∈ V2 such that
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G1�{y} contains no vertices in S, which implies that (G1 − x1)�G2 − S
connected. In either case, (G1 − x1)�G2 − S is connected.

Subcase B: κ2 > 2. First, we deduce |D| = 1. Suppose to the contrary
that |D| > 2. Then |NH(D)| < δ2 and so there is no isolated vertex in
H − S1. Because κ2 > 2, but for any xi ∈ NG1

(x1) − {xk}, |Si| = 1, we
have {xi}�G2 − S is connected. Thus all distinct components of H − S
will be connected through {xi}�G2 − S, a contradiction. So |D| = 1,
|St1 | = |D′| = |D| = 1, and {xk}�G2 − S is also connected. Therefore, for
any xi ∈ V1 except x1, {xi}�G2 − S is connected. As in Subcase A, if
κ1 > 2, then G1 − x1 is connected. If κ1 = 1, there exists y ∈ V2 such that
G1�{y} contains no vertices in S. So (G1 − x1)�G2 − S is connected.

Subcase C: κ2 = 1 and δ2 > 2. As before, first prove |D| = 1.
Suppose to the contrary that |D| > 2. Let D0 = {y ∈ V2|x1y ∈ D}. By
applying G2 to Lemma 6, any vertex of D0 is not a cut-vertex of G2 and
V2−D0−NG2

(D0) contains at least one non-cut-vertex. Consider each xi ∈
NG1

(x1)−{xk}. Because |Si| = 1, the element of Si must be a cut-vertex of
{xi}�G2, otherwise H − S would be connected through {xi}�G2 − Si. So
S consists of N(D), D′ and δ1−1 cut-vertices (of {xi}�G2). Let u = x1y1,
then G1�{y1} contains exactly one vertex of S, that is xky1. If G1 − xk is
connected, because κ2 = 1, let xj be a vertex besides x1 and its neighbors
in V1(xj exists by Fact 2). If G1 − xk is not connected but x1 lies in a
component that there exist a vertex besides itself and its neighbors, let xj

denote that vertex. In either case, there is an (x1, xj)-path in G1 − xk

and {xj}�G2 contains no vertices of S. Furthermore there exist a non-
cut-vertex z in V2 − D0 − N(D0), thus G1�{z} contains no vertices of S.
Then u = x1y1 is connected with x1z through (G1 − xk)�{y1}, {xj}�G2

and G1�{z}, as illustrated in Figure 3, a contradiction.

x1

xj

xk

y1 z

D′

NH(D)

Si

Figure 3: x1y1
(G1−xk)�{y1}

−→ xjy1
{xj}�G2

−→ xjz
G1�{z}
−→ x1z
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Now there is one condition we have not yet considered: G1 − xk is not
connected and x1 lies in a component that consist of only itself and its
neighbors, which means that G1 is locally complete. Then by hypothesis G2

must not be locally complete, which imply |N(D)| > 2. Let x2 ∈ NG1
(x1)−

{xk}, xj ∈ NG1
(xk) − {x1} − NG1

(x1), y1 ∈ D0, z ∈ V2 − D0 − NG2
(D0).

And choose y2 ∈ NG2
(D0) such that x2y2 /∈ S2 (y2 exists because |S2| = 1

and |N(D)| > 2). Then x1y1 and x1z is connected in G−S as follows (see
Figure 4), a contradiction.

x1

x2

xk

xj

y1 y2 z

D′

NH(D)

Si

Figure 4: x1y1 → x2y1 → x2y2 → xky2 → xjy2
{xj}�G2

−→ xjz → xkz → x1z

So |D| = 1, next we will show (G1 − x1)�G2 − S is connected. If
G1 − x1 is connected, just apply G1 − x1 and G2 to Lemma 7. If G1 − x1

is disconnected, κ1 = 1 and δ1 > 2, then the number of neighbors of x1 in
each component F is strictly less than δ1, thus each component contains
vertices besides those neighbors of x1. By applying F and G2 to Lemma 7,
we know that F�G2 − S is connected. And as κ1 = 1, v2 > δ1 + δ2, there
exists a y ∈ V2 such that G1�{y} contains no vertices of S, and connects
each F�G2 − S.

Thus in all cases, G − S isolates a vertex, this completes the proof. �

The following result proved in [1] will be a direct consequence of Theo-
rem 2.

Corollary 2 [1] Assume G1�G2 ≇ K2�Kn for n > 4. If Gi is regular
and maximally connected for i = 1, 2, then G1�G2 is super-connected.

Proof. Because both G1 and G2 are maximally connected, v1κ2 = v1δ2 >

(δ1 +1)δ2 > δ1 + δ2. By the same reason, v2κ1 > δ1 + δ2. If v1κ2 = δ1 + δ2,
because G2 is maximally connected, δ1 + δ2 = v1κ2 = v1δ2 > (δ1 + 1)δ2 =
δ1δ2+δ2. So δ2 = 1 and v1 = δ1+1, which means that G2 = K2 (because G2
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is regular) and G1 is a complete graph, hence G1�G2 must be isomorphic
to K2�Kn. By the hypothesis, n = 2, 3. Thus the condition i) of Theorem
2 is satisfied. If v2κ1 = δ1 + δ2, the same argument shows the condition i)
of Theorem 2 is also satisfied. Now assume that min{v1κ2, v2κ1} > δ1 +δ2.
By Lemma 3, a maximally connected graph is neither locally complete nor
have the the property P (see Figure 2). Thus the condition ii) of Theorem
2 is always satisfied. This completes the proof. �
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