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Abstract

Consider a communication network G in which a limited number
of edge(arc) and/or vertex faults F' might occur. A routing p, i.e. a
fixed path between each pair of vertices, for the network must be cho-
sen without knowing which components might become faulty. The
diameter of the surviving route graph R(G, p)/F', where R(G,p)/F
is a digraph with the same vertices as G — F' and a vertex x being
adjacent to another vertex y if and only if p(z,y) avoids F, could be
an important measurement for the routing p. In this paper, the au-
thors consider the Cartesian product digraphs whose factors satisfy
some given conditions and show that the diameter of the surviving
route graph is bounded by three for any minimal routing p when
the number of faults is less than some integer. This result is also
useful for the Cartesian product graphs and generalizes some known
results.
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1 Introduction

We consider the problem of fault-tolerant routing in a communica-
tion network. The communication network is often modeled by a graph
or digraph G = (V, E), where vertices correspond to switching offices or
processors, and edges or arcs correspond to communication links.

A routing p assigns a fixed (directed) path p(z,y) from z to y for each
ordered pair of vertices (z,y) in a network. The (directed) paths specified
by p are called routes. It is assumed that the routing table is computed
only once for a given communication network configuration, and thus all
messages must be sent by using these routes. When a vertex or an edge
(arc) fails, the route that goes through it becomes unusable. However, com-
munication is still possible through a sequence of surviving routes. Then
given a graph or digraph G, a routing p, and a faulty component set F,
we consider the surviving route graph R(G, p)/F with the same vertices as
G — F, and a vertex x being adjacent to another vertex y if and only if
p(z,y) avoids F, studied first by Dolev et al. [2].

In a communication network with a fixed routing, the time required to
send a message along a route is often dominated by the message processing
time at the two terminal vertices of the route. Under this assumption, the
diameter of the surviving route graph is a good criterion of the network
vulnerability. Namely, a good routing is one that minimizes this diameter.
This new parameter can provide more accurate measure for fault tolerance
of a large-scale parallel processing system and, thus, has received much
attention of many researchers (see, for example, [2, 3, 6, 7, 8]). Among
them, Dolev et al. [2] studied the well known Boolean cube and showed
that the diameter of the surviving route graph is bounded by three for any
minimal routing if the number of faults is less than the connectivity of the
Boolean cube. Xu [7] generalized the result to Cartesian product digraph
of directed cycles. Wada et al. [6] gained a similar result for n-dimensional
generalized d-hypercubes, i.e. the Cartesian product graph of n identical
complete graphs with d vertices.

It is well known that the Cartesian product method is an important
method for designing large-scale communication networks. In this paper,
we use some techniques from [2] and [6], and generalize the above results
to Cartesian product digraphs whose factors satisfy some given conditions.
Although we mainly discuss digraphs here, our result is useful for graphs,
i.e. undirected graphs, since every graph can be thought of as a particular
digraph, symmetric digraph, in which there is a pair of symmetric arcs
corresponding to each edge.

Our results are given in Section 3. Some necessary terminology and
notation are given in Section 2.



2  Terminology and Notation

In this paper, we only consider (strongly) connected, simple (without
loops and parallel edges or arcs) (di)graph. We refer the reader to [1] or
[8] for basic graph-theoretical terminology and notation not defined here.

Let G be a (di)graph with vertex set V(G) and edge( or arc) set E(G).
A digraph G is said to be strongly connected if for each pair of vertices
z,y € V(G), there are both directed (z,y)-path and (y,x)-path in G. If G
is a digraph, two arcs (z,y), (y,z) € E(G) are called a pair of symmetric
arcs. A graph can be thought of as a particular digraph, symmetric digraph,
in which there is a pair of symmetric arcs corresponding to each edge. The
symbol K, denotes a complete graph of order n. Let D(G;z,y) denote
the distance from a vertex x to another vertex y in G. The diameter of G,
denoted by D(G), is the maximum of D(G;x,y) over all pairs z,y € V(G).
For two vertices x and y of G, the it interval between x and y, denoted
by Sc(z,y), is the subgraph induced by all arcs in shortest directed paths
from z to y.

A routing p is called to be minimal if all (directed) paths specified by
p are shortest.

For a given integer k, we say a digraph G has the property Py if G
satisfies the following two conditions.

(1) For every pair (z,y) of two distinct vertices in G, there are k
internally-disjoint directed (x,y)-paths such that one of them is a shortest
directed (z,y)-path and each of others can be a concatenation of at most
three shortest directed paths.

(2) For every vertex z in G, there are k directed cycles that contain
x and are vertex-disjoint except for x such that each of them can be a
concatenation of at most three shortest directed paths.

Let us illustrate the property Pj above introduced with the following
example.

Example 1. It is easy to check that a directed cycle, an undirected tree
and every strongly connected digraph have the property P;, and a complete
graph Ky has the property Pg.

Let F C V(G)U E(G) be a set of faults, and let
||F|| = max{|F'| : F' C F and F’ contains no pair of symmetric arcs}.

Note that from the definition of ||F|| we can see that each pair of symmet-
ric arcs in F is calculated only once. Thus if G is a graph, viewed as a
symmetric digraph, then |F'| = [|F|.

An object such as route, path and subgraph avoids F' if no element
of F is contained in the object. For a routing p and a fault-set F' such
that G — F' is (strongly) connected, the surviving route graph, denoted by



R(G, p)/F, is a digraph with the same vertex set as G — F, and a vertex z
being adjacent to another vertex y if and only if p(z,y) avoids F.

An ordered pair of vertices x and y is said to be safe with respect to F if
every shortest (directed) path from x to y avoids F. A sequence of vertices
T1,Z2,...,T) is safe with respect to F' if each consecutive ordered pair of
vertices in the sequence is safe with respect to F'.

The Cartesian product (di)graph G of n (di)graphs G1,Ga,...,Gy,
denoted by G = G10G-0...0G,, is the (di)graph with the vertex-set
V(G) = V(Gy) x V(G2) x ... x V(G,), and an (arc) edge from a ver-
tex * = x1xg ... 2, to another vertex y = y1ya ... yn(xi v € V(Gy),i =
1,2,...,n) if and only if they differ in exactly one coordinate, and for this
coordinate, say j*", there is an (arc) edge from the vertex x; to the vertex
y; in G;. G1,Go,...,G, are called factors of G100G».00...0G,,. For more
desirable properties of the Cartesian product (di)graphs, the reader can be
referred to [8], [4] and [5].

The generalized hypercube (or Hamming graph) Q(d1,da, ..., d,) is de-
fined as K4, OKy,0...0K,,, where d; > 2 is an integer for each i =

—_— —_—
1,2,...,n. In particular, Q(2,2,...,2) and Q(d,d,...,d) are the Boolean
cube and the n-dimensional d-hypercube, respectively.

Let Py, = (1,2,...,d;) be a directed path, then every vertex of Py, OP,,
O...0P;, can be expressed as a string x;xy ...z, of length n, where z; €
{1,2,...,d;} foreachi=1,2,....n. Uz =229 ... 20, y = 11¥2 . . . Y, and
(z,y) € E(P;,0P;,0...0P,, ), then there is a coordinate, say i*", such
that x; = y; for all j # ¢ but y; = z;+1. For convenience of our statement,
we express the arc (z,y) as the string z1...2;—1(x; + 0.5)x;41 ... 2,. We
write a string x = 1™ for x = 11... 1.

By dropping the i*" coordinate, any n-dimensional object can be pro-
jected along the i'" coordinate onto an (n — 1)-dimensional object. Let
R; be the operator for projecting along the i** coordinate. Note that an
arc of Py, 0OP,,00...0PF;, may be projected to a vertex. For example,
R4($1$2$3(l‘4 + 05)) = X1T2x3 = R4($1l‘21‘3$4).

We define the weight of a string @ = x123 ... %,, denoted by |z, as the
sum of its coordinates, i.e. |z| = 1 + a2 + ... + x,. We write z < y if
x; <y; foreachi=1,2,...,n,and z < y if z <y and z; < y; for some i.

3 Our Results

Theorem 1. D(R(G,0G.0...0G,,p)/F) < 3 for any minimal routing
pand [|[F|| < Y i k; if G; is a strongly connected digraph of order at
least two and has a unique minimal routing and the property Py, for each
i=1,2,...,n.



Let G = G,0G.0...0G,,. We first prove two lemmas.

Lemma 2. Suppose G; is a strongly connected digraph of order at least
two and has a unique minimal routing for each ¢ = 1,2,...,n. Let z =
T1To... Ty, and Yy = yY1Ys...Yn be two vertices of GG, then we have the
following assertions.

(a) Sc(z,y) = PY(x1,y1)OP? (29, y2)0...OP"(x,,,y,) and Sc(x,y) is iso-
morphic to Py,0P,;,0...0P,, , where P'(z;,1;) denotes the shortest di-
rected (z;,y;)-path in G; and d; = D(Gy; 24, y;) + 1 for each i = 1,2,...,n.
(b) After relabeling the vertices in Sc¢(z,y) with the labels of counterparts
in Py, 0P;,0...0P;, such that x = 1" and y = didy...dy, if u,v €
V(Sc(x,y)) with 2 < u < v < y, then Se(z,u) U Sc(u,v) U Se(v,y) C
Se(z,y).

Proof. Note that for each i = 1,2, ..., n, all shortest directed paths in G;
are unique, since G; has the unique minimal routing. Let by ... b;_1 P*(u;,v;)
bi+1 e bn = {bl}D e D{blfl}DPZ(U“ /UZ)D{b74+1}D ‘e D{bn}, where bj S
V(Gj) for each j € {1,...,1 — 1,i +1,...,n}. Let Q = (z122...2,,

UIUL « . Upy - . VIV ... Up, Y1Y2 ... Yn) De a shortest directed (z,y)-path
in G.

We claim that the directed path P! determined by the i" coordinates
Ti, Ui, ..., V5, 1y; of vertices of @ in the original order is a shortest directed

(x4, yi)-path of G;.

In fact, obviously D(G;z,y) > >, D(Gi; 4, y;) since D(G;x,y) is
equal to the length of @, which is equal to the sum of that of P?, and
Pt is a directed (r;,y;)-path in G; for each i = 1,2,...,n. On the other
hand, let Q" = PY(xy,91)2s... 0 17, Uy P?(20,90) ... Tp 12 U ... U
Y1Y2 - - - Yn—1P"(Tn, yn). Then it is easy to see that Q' is a directed (z,y)-
path of length >~ | D(G;; 24, ;) in G. It follows that D(G;z,y) < > i, D(
Gi;zi,y:i). So D(Gyz,y) = Y& D(Gy;wi,y;). Then PY is of length
D(Gy;xy,y;) for each i = 1,2,... n. Thus the claim is true.

By the above claim and the uniqueness of shortest directed paths in Gj,
P' = Pi(z;,y;) foreachi = 1,2,...,nand Qis of length >_" | D(G;; z;,y;).
To complete the proof of the assertion (a), it suffices to show that E(Sc(z,y))
= E(PY(z1,51)0P%(22,y2)0. . .OP™(2n, yn))- If (z,w) = (2129 . .. 2, w1w2

cowy) € B(PY (21, y1)0OP? (29, y2)0...0OP"(z,,yn)), then there is a coor-

dinate, say j*, such that z; = w; € V(P%(x;,y;)) for each i # j but
(zj,w;) € E(PI(zj,y;)). By the uniqueness of shortest directed paths
in Gi, P(zi,2) U P'(2i,y;) = P'(x;,y;) for each i # j and P?(zj,zj) U
PI(zj,w;) U P (wy, ;) = P (x5, 25) U (25, w;) U P (wj, y5) = P (x5, ;).

Let P(z,y) = PY(21,21)22...0p 12, U2 P? (12, 22) ... 00 12, U ...
Uzi12o ... 21 P (Tn, 2n) U 21 . 2521(25,W5) 2541 - - - Zn
UPY (w1, y1)ws . .. wy— 1w, Uy P2(wa, y2) - . . Wy 1wy,
U...Uy1ya ... Yn—1P™(wn, yn)-



Obviously, P(z,y) is a directed (z,y)-path of length Y " | D(G;;x;,y;) in
G. So P(z,y) is a shortest directed (x,y)-path in G. Then, by the def-
inition of Sc(z,y), (z,w) € E(Sc(x,y)), since (z,w) € E(P(z,y)). Thus
E(PY(x1,y1)0P?*(z2,y2)0...0P"(xp,yn)) € E(Sc(z,y)). Conversely, if
(z,w) = (2122... 2n, WiW2 ... wy) € E(Sc(x,y)), without loss of general-
ity, assume (z,w) € E(Q). Then there is a coordinate, say j**, such that
z = w; € V(PY) = V(P(x;,y;)) for each i # j but (z;,w;) € E(PJ) =
E(Pi(zj,y;)). Then (z,w) € E(PY(z1,y1)0P%*(z2,y2)0...OP" (X, Yn))-
So E(Sc(z,y)) € E(PY(x1,y1)0P%(22,y2)0...0P™ (2, ys)). Therefore,
E(Sc(z,y)) = E(PY(z1,y1)0P%*(z2,y2)0...0P"(2,ys)). Thus the as-
sertion (a) holds.

By the assertion (a), we can relabel the vertices in Sec(x,y) with the
labels of counterparts in Py, OP;,00...0F,, such that x = 1™ and y =
didy ...d,. Under this labeling, if u = wjus...up,v = vVive...v, €
V(Sc(z,y)) with z < u < v <y, let

P= PYzy,u)rs. .. 2n 12, Uui P?(29,u2) ... 2p_ 12, U. ..
Ut Uz - . - Up—1 P (T, ) U P (ug, v )ug .oty 1y,
Uvr P2 (ug,v2) Uy 1 U .. U102« . U1 P (U, vy
UPY(v1,y1)v2 .. U1 Uy P2(v2,92) - . . V10 U ..
Uy1y2 - - - Yn—1P"(Vn, Yn).

It is easy to see, from the proof of Lemma 2 (a), that P is a short-
est directed (z,y)-path and passes through v and v in G. Let P(x,u),
P(u,v) and P(v,y) be (x,u)-, (u,v)- and (v, y)-sections of P, respectively.
Then P(x,u), P(u,v) and P(v,y) are shortest directed (x,u)-,(u,v)- and
(v,y)-paths in G, respectively. Assume Q(u,v) is another shortest di-
rected (u,v)-path in G. Then the directed path obtained by concate-
nating P(z,u), Q(u,v) and P(v,y) is also a shortest directed (z,y)-path
in G. Thus Q(u,v) C Se(x,y), and so Sc(u,v) C Se(x,y). Similarly,
Sc(z,u) C Se(z,y) and Sc(v,y) C Se(x,y). So the assertion (b) holds. m

Lemma 3. If ||F|| <nand ¢ = 1", y = dids...d, ¢ F, then there are
vertices u and v in Py, 0P;,0... 0P, , where n > 2 and d; > 1 for each
i=1,2,...,n,such that * < u < v <y is safe with respect to F.

Proof. Obviously ||F|| = |F|, since P;,0P;,0...0P,, contains no pair
of symmetric arcs. We proceed by induction on n > 2. If n = 2, without
loss of generality, assume F' = {f}. It is easy to see that there are at
least two internally-disjoint shortest directed (x, y)-paths of length at least
2 and at least one of them, say P(x,y), avoids f. If f is a vertex, then we
can find a vertex, say u, on P(x,y) with |u| = |f|. It is easy to see that
T <u <y <y is safe with respect to f. Suppose now f is an arc. Assume
f = (z,w), then z < w. If z = z, then we can choose a vertex, say u, on
P(z,y) with Ju| = |w|. Thus z < u < y < y is safe with respect to F.



Similarly, if z # x, we can find two vertices, say u and v, on P(z,y) with
|u] = |z| and |v] = |w|. Then z < u < v < y is safe with respect to F.
Thus, the induction base holds. Assume the induction hypothesis for n — 1
with n > 2. We proceed to the induction step by considering two cases,
respectively.

Case 1. There is a positive integer ¢ and an element f € F such that
Ri(f)isin {1"71 dy ... d;_1d;y1 .. .d,}. Without loss of generality, assume
i=1. Let I/ = Ri(F)—{1""1,dads...d,}. Then Ry(P;,0P;,0...0P,,)
= P,,0P;,0...0P;,, 1" dads...d, ¢ F' and ||F'|| < n — 1. By the
induction hypothesis there are two vertices u, v in Py, 0Py, 0. ..0OF;,, such
that the sequence 1! < u < v < daods...d, is safe with respect to F’. If
v < dads . ..dy, then it is easy to check that 1" < 1lu < d1v < dyds...d,
is safe with respect to F'. And if v = dads . . .d,, then it is also easy to see
that 1™ < 1lu < dyu < dids .. .d, is safe with respect to F.

Case 2. Foreachi=1,2,...,n, R;(F) contains neither 1"~ ' nord; ...d;_1
disr ... dn.

We claim that there is an ¢ € {1,2,...,n} and an f € F such that
fi > Land [Ri(f)] = min{|f'| - [/ € Ri(F)}.

Suppose to the contrary that, for each i € {1,2,...,n} and every f =
fifeoo fn € F,if [Ri(f)] = min{[f'| : f" € Ri(F)}, then f; = 1. Let
m; = min{|f’| : f € Ri(F)}. Choose g = ¢g192...9, € F with |g| =
min{|f| : f € F}. Without loss of generality, assume g; > 1, since g # 1™.
Then |R;(g)| > my (otherwise, g is as required). Let h = hiha...h, € F
with |R1(h)| = myq, then

bl =hi+ (ha+ ...+ hn) =h1 4 [Ra(h)| = 1 +m
< g1+ [Ri(9) = lg| = min{|f| : f e F},

which contradicts the choice of g. So the claim is true.

Without loss of generality, assume that there is an f = f1fy... f, € F
such that f; > 1 and |Ri(f)| = min{|f’| : f' € Ri(F)}. Let F" =
Ri(F — {f}). Then ||F"|| < n—1 and so, by the induction hypothesis,
there exists at least one sequence safe with respect to F” of the form
1" < a < b<dyds...d, Among all such sequences there must be one
1" ! <u < v < dads...d, with |u| maximal. We claim that 1" < lu <
lv < dids . ..d, is safe with respect to F. It is clearly safe with respect to
F—{f}. So we must show only that it is safe for f. Since f; > 1, it suffices
to show that f & Sc(lv,d1ds ... dy,). Butif f € Se(lv,dyds .. . dy,), we must
have v < dads . ..dy, since Ry(f) # dads . ..d, and |R1(f)| > |v|. It follows
from the choice of f that |R1(f")| > |Ri(f)| > |v| for all ' € F — {f}.
But then 1" ! < v < dods...d, < dods...d, is safe with respect to F”,
contrary to the choice of u. [ ]

Proof of Theorem 1. To prove Theorem 1, it is sufficient to show that



for each pair of vertices x and y in G — F' there are at most two vertices u
and v such that the sequence z,u, v,y is safe with respect to F. For this
purpose, let x = z125...2, and y = y1y2 ...y, be arbitrary two vertices
in G — F, where x;,y; € V(G;) for each i = 1,2,...,n. We now complete
the proof of Theorem 1 by induction on n. For each i = 1,2,...,n, we can
assume k; > 1, since G; is strongly connected. The argument for n = 1
is straightforward, since G satisfies the property Py, and has the unique
minimal routing. Assume the induction hypothesis for n — 1 with n > 2.
We proceed to the induction step by considering two cases, respectively.

Case 1. There is an ¢ € {1,2,...,n} such that x; = y;. Note that as
an operation of graphs, the Cartesian products satisfy commutative law
if we identify isomorphic graphs. Without loss of generality, we may as-
sume x1; = y;. Define sets of faults Fy and F' as Fp = {f € F : f €
{l‘l}DGQDG:),D e DGn} and F/ = F — F().

If || Fo|| < D215 ki, we can apply the induction hypothesis to {21 }0G>0
G30...0G,, and so the result follows.

We now assume ||[Fp|| > > , k;. Then ||[F'|| < k1. By the property
Pr,, for the vertex z; of Gi, there are k; directed cycles, denoted by
Cy j(x1), where j = 1,2,...,kq, which contain x; but are vertex-disjoint
except for zq, satisfying that for each 7 = 1,2,...,k; there are vertices
u;j(# x1) and v;(# x1) on Cy (1) such that (1, u;)-, (u;,v;)- and (v, 1)-
sections of Cy j(x1) are shortest directed (z1,u;)-, (uj,v;)- and (vj,zq)-
paths in G, respectively. Let u(u;) = ujzoxs... 2y, v(vj) = VjY2Y3 ... Un
and S;=Sc(x, u(u;))USc(u(u;), v(v;))USe(v(v)), y), where j = 1,2,... k.
By Lemma 2 (a), for each j =1,2,..., kq,

Sj = Pl(xl,uj)D{xg}D{xg,}D N D{xn}
UPl(uj, Uj)DP2(x2a Z/z)DPS(ﬂS&ys)D cee Dpn(xmyn) (1)
UP(vj, 21)O{y2}0{ys}0. .. Ofya }-

Then, by (1), it is easy to see that the ki subgraphs S; of G are vertex-
disjoint except for z and y, since Cy j(z1) = P'(z1,u;) U P (uj,v;) U
Pl(vj,x1), where j = 1,2,...,k;, are vertex-disjoint except for z1. So
there is a j € {1,2,..., k1 } such that S; avoids F”, since ||F’|| < k1. Then
S; avoids F. Thus the sequence z, u(u;), v(v;),y is safe with respect to F.

Case 2. The vertices x and y are different on each coordinate. Define sets
of faults Fg and F" as Fs = {f € F': f € Se(x,y)} U{(z,w) € FNE(G) :
(w,z) € Se(x,y)} and F"”" = F — Fg.

If ||Fs|| > n, then ||F"|| < Y1, k; —n. For each i = 1,2,...,n, by the
property Py, and the uniqueness of shortest directed paths in G, there are
k; internally-disjoint directed (x;,y;)-paths in G;, denoted by P; ;(zi,v:),
where j = 1,2,..., k;, satisfying that one of them, say P, x, (zi, y;), is the



shortest directed (z;,y;)-path and for each j = 1,2, ..., k; —1 there are ver-
tices u; j(# ;) and v; ;(# ;) on P; ;(x;,y;) such that (z;,u; ;)-, (wij,vij)-
and (v; j,y;)-sections of P; ;(z;,y;) are shortest directed (x;, u; ;)-, (wi j,vij)-
and (v; ;,y;)-paths in G;, respectively. For each ¢ = 1,2,...,n and each
G=1,2 ..k — 1, let

u(u”) =X1- - Tj—1U5 jT441 - - - Ty U(Uz‘,j) =Y1---Yi-1Yi jYit1 - - - Yn,

and S; ; = Sc(x,u(u;,;)) U Sc(u(us 5),v(vi ;) USe(v(viz),y).

We claim that the Y"1 ; k; — n subgraphs S; ; of G are vertex-disjoint
except for x and y.

In fact, by Lemma 2 (a),

Si,j = {l‘l}D ‘e D{$i_1}DP2($i, uivj)D{xiH}D e D{.’ﬂn}
Upl(.’bl, yl)D e Dplil(l'i,l, yifl)DPz(Ui’j, Uiyj)D (2)
Pl+1($i+17 yi+1)|:| e DP"(LU,H yn)
Uy }0. . D{yi—1 JOP (v g, yi ) EH{wi O - - Ofyn }-

ih e {1,2,...,n} and i # h, let j € {1,2,....k; — 1} and | €
{1,2,...,kn, — 1}. By the uniqueness of shortest directed paths in G;,

P (i, uij) U P (u j,vi5) U P (v 5, y:) = Pij(i,95)

and

{zi} U P (i, y:) U{yi} = Pk, (@i, 92)
are vertex-disjoint except for z; and y; in G;. Then, by (2), S;; and Sp,
are vertex-disjoint except for  and y in G. Similarly, S; ; and S;;, where
jle{l,2,...,k; — 1} and j # [, are vertex-disjoint except for 2 and y in
G. So the claim is true.

Then, by the claim above, there is a pair (¢, j) such that S; ; avoids F”,
since ||[F"|| < Y1, k; —n. By Lemma 2 (a) and (2), it is easy to see that
Sc(x,y) and S;; are vertex-disjoint except for x and y in G. Then S; ;
avoids F'. Thus the sequence z,u(u; ;),v(v; ),y is safe with respect to F.

If ||Fs|| < n. By Lemma 2 (a), Sc(z,y) is isomorphic to Py, OP;,0...0
P, , where d; = D(Gy;x,y;) +1 > 1 foreach i = 1,2,...,n, since z and y
are different on each coordinate. Then the theorem holds by Lemma 3 and
Lemma 2 (b).

The proof of the theorem is complete. [ ]

By Theorem 1 and Example 1, we have the following corollaries.
——

Corollary 4 [2]. D(R(Q(2,2,...,2),p)/F) < 3 for any minimal routing

pand |F| < n.

Corollary 5 [7]. D(R(Cq,0Cg,0...0Cy,,p)/F) < 3 for any minimal

routing and |F| < n,where Cy, is the directed cycle of order d; > 2 for each
1=1,2,...,n.



Corollary 6. D(R(Q(d1,ds,...,d,),p)/F) < 3 for any minimal routing
pand |F| <>."  d; —n, where d; > 2 for each i =1,2,...,n.

—_—
Corollary 7 [6]. D(R(Q(d,d,...,d),p)/F) < 3 for any minimal routing
p and |F| < n(d — 1), where d > 2.

Corollary 8. D(R(G:0G.0...0G,,p)/F) < 3 for any minimal routing

p and |F| < n if G; is a connected graph of order at least two and has a
unique minimal routing for each i = 1,2,...,n.
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