Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

The Menger number of the Cartesian product of graphs ${ }^{*}$

Meijie Ma ${ }^{\mathrm{a}, *}$, Jun-Ming Xu ${ }^{\mathrm{b}}$, Qiang Zhu ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Science and Technology of China, Hefei 230026, China
${ }^{\text {c }}$ Department of Mathematics, XiDian University, Xi'an 710071, China

ARTICLE INFO

Article history:

Received 31 August 2010
Accepted 24 November 2010

Keywords:

Interconnection network
Menger number
Cartesian product
Path

Abstract

In a real-time system, the Menger number $\zeta_{l}(G)$ is an important measure of the communication efficiency and fault tolerance of the system G. In this paper, we obtain a lower bound for the Cartesian product graph. We show that $\zeta_{l_{1}+l_{2}}\left(G_{1} \times G_{2}\right) \geq \zeta_{l_{1}}\left(G_{1}\right)+\zeta_{l_{2}}\left(G_{2}\right)$ for $l_{1} \geq 2$ and $l_{2} \geq 2$. As an application of the result, we determine the exact values $\zeta_{1}(G)$ of the grid network $G=G\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ for $m_{i} \geq 2(1 \leq i \leq n)$ and $l \geq \sum_{i=1}^{n} m_{i}$. This example shows that the lower bound of $\zeta_{l_{1}+l_{2}}\left(G_{1} \times G_{2}\right)$ obtained is tight.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that underlying topology of an interconnection network can be represented by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network. Throughout this paper, a graph $G=(V, E)$ always means a connected and simple graph (without loops and multiple edges), where $V=V(G)$ and $E=E(G)$ are the vertex set and the edge set of G, respectively. For graph terminology and notation not defined here, we follow [1].

Let x and y be two distinct vertices in a graph $G=(V, E)$. A path between x and y is denoted by the term $x y$-path. The distance $d_{G}(x, y)$ between x and y is the number of edges in a shortest $x y$-path, and the diameter of G is $d(G)=\max \left\{d_{G}(x, y)\right.$: $x, y \in V(G)\}$. For a vertex $x \in V(G)$, the set of neighbors of x is denoted by $N_{G}(x)$ in G and the degree of x is $d_{G}(x)=\left|N_{G}(x)\right|$. The minimum degree of G is $\delta(G)=\min \left\{d_{G}(v): v \in V(G)\right\}$.

When we use a graph to model a parallel computing or processing system, we can use internally disjoint paths to transmit messages simultaneously from a vertex x to another vertex y. However, in a real-time system, the message delay must be limited within a given period since any message obtained beyond the bound may be worthless. A natural question is how many internally disjoint paths exist in the network to ensure message delay within the effective bounds. In the language of graph theory, this problem can be stated as follows.

Let x and y be two distinct vertices in a graph G. The $x y$-Menger number with respect to l, denoted by $\zeta_{l}(x, y)$, is the maximum number of internally disjoint $x y$-paths whose lengths are at most l in G. The Menger number of G with respect to l is defined as $\zeta_{l}(G)=\min \left\{\zeta_{l}(x, y): x, y \in V(G)\right\}$. If $l<d(G)$, then $\zeta_{l}(G)=0$. To avoid the relatively trivial case in which $l<d(G)$ or G is a complete graph, we assume that $l \geq d(G) \geq 2$ in this paper. Clearly, $\zeta_{l}(G) \leq \delta(G)$. For a graph G with $d(G) \geq 2$ and $|V(G)|=n$, it is clear that $\zeta_{l}(G)$ is well defined for an integer l with $d(G) \leq l \leq n-1$ and $\zeta_{d(G)}(G) \leq \zeta_{d(G)+1}(G) \leq \cdots \leq \zeta_{n-1}(G)$. There are many papers that have studied Menger-type parameters, such as [2-8].

We consider the Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2}. For graphs G_{1} and G_{2}, the Cartesian product $G_{1} \times G_{2}$ is the graph with vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)=\left\{x y \mid x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$ and edge set $E\left(G_{1} \times G_{2}\right)=\left\{\left(x_{1} x_{2}, y_{1} y_{2}\right) \mid\right.$ $x_{1}=y_{1}$ and $\left(x_{2}, y_{2}\right) \in E\left(G_{2}\right)$ or $x_{2}=y_{2}$ and $\left.\left(x_{1}, y_{1}\right) \in E\left(G_{1}\right)\right\}$. It is well known that the Cartesian product is an important

[^0]research topic in graph theory (see, e.g., [9-13]). It is also well known that, for designing large-scale interconnection networks, the Cartesian product is an important method to obtain large graphs from smaller ones, with a number of parameters that can be easily calculated from the corresponding parameters for those small initial graphs. The Cartesian product preserves many nice properties such as regularity, existence of Hamilton cycles and Euler circuits, and transitivity of the initial graphs (see, e.g., [1]). In fact, many well-known networks can be constructed by the Cartesian products of some simple graphs. For example, a torus is the Cartesian product of two cycles, a mesh is the Cartesian product of two paths, and a grid is the Cartesian product of several paths. What we are interested in is the Menger number of the Cartesian product of graphs.

2. Main results

For a vertex $x \in V\left(G_{1}\right)$ and a subgraph $H \subseteq G_{2}$, we use $x H$ to denote the subgraph of $G_{1} \times G_{2}$ induced by $\{x\} \times V(H)$. Similarly, for a vertex $y \in V\left(G_{2}\right)$, and a subgraph $H \subseteq G_{2}$, Hy denotes the subgraph of $G_{1} \times G_{2}$ induced by $V(H) \times\{y\}$. The symbol $l(P)$ denotes the length of a path P, which is the number of edges in P.

Now, we state our main result of this paper.
Theorem 1. For any two connected graphs G_{1} and G_{2}, if $l_{i} \geq 2$ for $i=1$, 2, then $\zeta_{l_{1}+l_{2}}\left(G_{1} \times G_{2}\right) \geq \zeta_{l_{1}}\left(G_{1}\right)+\zeta_{l_{2}}\left(G_{2}\right)$.
Proof. Assume that $x=x_{1} x_{2}$ and $y=y_{1} y_{2}$ are two distinct vertices in $G_{1} \times G_{2}$, where $x_{1}, y_{1} \in V\left(G_{1}\right)$ and $x_{2}, y_{2} \in V\left(G_{2}\right)$.
If $x_{1} \neq y_{1}$, there must exist $\zeta_{l_{1}}\left(G_{1}\right)$ internally disjoint $x_{1} y_{1}$-paths $P_{1}, P_{2}, \ldots, P_{\zeta_{1}\left(G_{1}\right)}$ in G_{1} such that $l\left(P_{i}\right) \leq l_{1}$ for any $i \in\left\{1,2, \ldots, \zeta_{l_{1}}\left(G_{1}\right)\right\}$. Without loss of generality, we may assume that $l\left(P_{1}\right) \leq l\left(P_{2}\right) \leq \cdots \leq l\left(P_{\zeta_{1}\left(G_{1}\right)}\right)$. Then $l\left(P_{i}\right) \geq 2$ for any $i \in\left\{2, \ldots, \zeta_{l_{1}}\left(G_{1}\right)\right\}$. Let v_{i} be the first internal vertex in $P_{i}\left(2 \leq i \leq \zeta_{l_{1}}\left(G_{1}\right)\right)$. It is clear that $v_{i} \in N_{G_{1}}\left(x_{1}\right)$. Then v_{i} splits the path P_{i} into two subpaths a_{i} and P_{i}^{\prime}, where a_{i} is the first edge (x_{1}, v_{i}) in P_{i} and P_{i}^{\prime} is the subpath of P_{i} from v_{i} to y_{1}. Hence the path P_{i} can be expressed as

$$
P_{i}=x_{1} \xrightarrow{a_{i}} v_{i} \xrightarrow{P_{i}^{\prime}} y_{1}, \quad i=2,3, \ldots, \zeta_{1}\left(G_{1}\right) .
$$

Similarly, if $x_{2} \neq y_{2}$, there must exist $\zeta_{l_{2}}\left(G_{2}\right)$ internally disjoint $x_{2} y_{2}$-paths $W_{1}, W_{2}, \ldots, W_{\zeta_{2}\left(G_{2}\right)}$ in G_{2} such that $l\left(P_{j}\right) \leq l_{2}$ for any $j \in\left\{1,2, \ldots, \zeta_{l_{2}}\left(G_{2}\right)\right\}$. Without loss of generality, we may assume that $l\left(W_{1}\right) \leq l\left(W_{2}\right) \leq \cdots \leq l\left(W_{\zeta_{1}\left(G_{2}\right)}\right)$. Then $l\left(W_{j}\right) \geq 2$ for any $j \in\left\{2, \ldots, \zeta_{l_{2}}\left(G_{2}\right)\right\}$. Let u_{j} be the first internal vertex in $P_{j}\left(2 \leq j \leq \zeta_{l_{2}}\left(G_{2}\right)\right)$. Then the path W_{j} can be expressed as $W_{j}=x_{2} \xrightarrow{b_{j}} u_{j} \xrightarrow{W_{j}^{\prime}} y_{2}, j=2,3, \ldots, \zeta_{l_{2}}\left(G_{2}\right)$, where b_{j} is the first edge $\left(x_{2}, u_{j}\right)$ in W_{j} and W_{j}^{\prime} is the subpath of W_{j} from u_{j} to y_{2}. It is clear that $u_{j} \in N_{G_{2}}\left(x_{2}\right)$.

Using the above notations, we can construct $\zeta_{l_{1}}\left(G_{1}\right)+\zeta_{l_{2}}\left(G_{2}\right)$ internally disjoint $x y$-paths $R_{1}, R_{2}, \ldots R_{\zeta l_{1}\left(G_{1}\right)+\zeta_{l_{2}}\left(G_{2}\right)}$ with $l\left(R_{i}\right) \leq l_{1}+l_{2}$ for each i. Consider the following three cases.
Case 1. $x_{1} \neq y_{1}, x_{2} \neq y_{2}$.
Let $R_{1}=x_{1} x_{2} \xrightarrow{P_{1} x_{2}} y_{1} x_{2} \xrightarrow{y_{1} W_{1}} y_{1} y_{2}$; then $l\left(R_{1}\right)=l\left(P_{1}\right)+l\left(W_{1}\right) \leq l_{1}+l_{2}$.
For $i=2,3, \ldots, \zeta_{l_{1}}\left(G_{1}\right)$, let $R_{i}=x_{1} x_{2} \xrightarrow{a_{i} x_{2}} v_{i} x_{2} \xrightarrow{v_{i} W_{1}} v_{i} y_{2} \xrightarrow{P_{i}^{\prime} y_{2}} y_{1} y_{2}$; then $l\left(R_{i}\right)=1+l\left(W_{1}\right)+l\left(P_{i}^{\prime}\right) \leq l_{1}+l_{2}$.
Let $R_{\zeta l_{1}\left(G_{1}\right)+1}=x_{1} x_{2} \xrightarrow{x_{1} W_{1}} x_{1} y_{2} \xrightarrow{P_{1} y_{2}} y_{1} y_{2}$; then $l\left(R_{1}\right)=l\left(W_{1}\right)+l\left(P_{1}\right) \leq l_{1}+l_{2}$.
For $j=2,3, \ldots, \zeta_{l_{2}}\left(G_{2}\right)$, let $R_{\zeta l_{1}\left(G_{1}\right)+j}=x_{1} x_{2} \xrightarrow{x_{1} b_{j}} x_{1} u_{j} \xrightarrow{P_{1} u_{j}} y_{1} u_{j} \xrightarrow{y_{1} W_{j}^{\prime}} y_{1} y_{2}$; then $l\left(R_{\zeta_{1}\left(G_{1}\right)+j}\right)=1+l\left(P_{1}\right)+l\left(W_{j}^{\prime}\right) \leq l_{1}+l_{2}$.
Case 2. $x_{1}=y_{1}, x_{2} \neq y_{2}$.
Since $\left|N_{G_{1}}\left(x_{1}\right)\right|=d_{G_{1}}\left(x_{1}\right) \geq \delta\left(G_{1}\right) \geq \zeta_{l_{1}}\left(G_{1}\right), N_{G_{1}}\left(x_{1}\right) \backslash\left\{v_{2}, v_{3}, \ldots, v_{\zeta_{1}\left(G_{1}\right)}\right\} \neq \emptyset$. Let $v_{1} \in N_{G_{1}}\left(x_{1}\right) \backslash\left\{v_{2}, v_{3}, \ldots, v_{\zeta l_{1}\left(G_{1}\right)}\right\}$ and $a_{1}=\left(x_{1}, v_{1}\right)$.

For $i=1,2, \ldots, \zeta_{1}\left(G_{1}\right)$, let $R_{i}=x_{1} x_{2} \xrightarrow{a_{i} x_{2}} v_{i} x_{2} \xrightarrow{v_{i} W_{1}} v_{i} y_{2} \xrightarrow{a_{i} y_{2}} y_{1} y_{2}$; then $l\left(R_{i}\right)=1+l\left(W_{1}\right)+1 \leq l_{1}+l_{2}$.
For $j=1,2, \ldots, \zeta_{l_{2}}\left(G_{2}\right)$, let $R_{\zeta l_{1}\left(G_{1}\right)+j}=x_{1} x_{2} \xrightarrow{x_{1} W_{j}} x_{1} y_{2}=y_{1} y_{2}$; then $l\left(R_{\zeta l_{1}\left(G_{1}\right)+j}\right)=l\left(W_{j}\right)<l_{1}+l_{2}$.
Case 3. $x_{1} \neq y_{1}, x_{2}=y_{2}$.
For $i=1,2, \ldots, \zeta_{l_{1}}\left(G_{1}\right)$, let $R_{i}=x_{1} x_{2} \xrightarrow{P_{i} x_{2}} y_{1} x_{2}=y_{1} y_{2}$; then $l\left(R_{i}\right)=l\left(P_{i}\right)<l_{1}+l_{2}$.
Since $\left|N_{G_{2}}\left(x_{2}\right)\right|=d_{G_{2}}\left(x_{2}\right) \geq \delta\left(G_{2}\right) \geq \zeta_{l_{2}}\left(G_{2}\right), N_{G_{2}}\left(x_{2}\right) \backslash\left\{u_{2}, u_{3}, \ldots, u_{\zeta l_{2}\left(G_{2}\right)}\right\} \neq \emptyset$. Let $u_{1} \in N_{G_{2}}\left(x_{2}\right) \backslash\left\{u_{2}, u_{3}, \ldots, u_{\zeta l_{1}\left(G_{1}\right)}\right\}$ and $b_{1}=\left(x_{2}, u_{1}\right)$.

For $j=1,2, \ldots, \zeta_{l_{2}}\left(G_{2}\right)$, let $R_{\zeta l_{1}\left(G_{1}\right)+j}=x_{1} x_{2} \xrightarrow{x_{1} b_{j}} x_{1} u_{j} \xrightarrow{P_{1} u_{j}} y_{1} u_{j} \xrightarrow{y_{1} b_{j}} y_{1} x_{2}=y_{1} y_{2}$; then $l\left(R_{\zeta_{1}\left(G_{1}\right)+j}\right)=1+l\left(W_{j}\right)+1 \leq$ $l_{1}+l_{2}$.

It is easy to check that the $x y$-paths $R_{1}, R_{2}, \ldots, R_{\zeta l_{1}\left(G_{1}\right)+\zeta_{2}\left(G_{2}\right)}$ constructed above are internally disjoint in $G_{1} \times G_{2}$ whichever case occurs.

Since $l\left(R_{i}\right) \leq l_{1}+l_{2}$ for $1 \leq i \leq \zeta_{l_{1}}\left(G_{1}\right)+\zeta_{l_{2}}\left(G_{2}\right)$, the theorem follows.

The connectivity of a graph G, denoted by $\kappa(G)$, is the minimum number of vertices whose removal leaves the remaining graph disconnected or trivial. It follows from Menger's theorem that $\kappa(G) \geq k$ if any two distinct vertices of G are connected by at least k internal vertex-disjoint paths. Generally, we have $\zeta_{l}(G) \leq \kappa(G)$. If P is a path of length m, then $\zeta_{l}(P)=1=\kappa(P)$ for any $l \geq m$.

The grid network is defined as $G\left(m_{1}, m_{2}, \ldots, m_{n}\right)=P_{m_{1}} \times P_{m_{2}} \times \cdots \times P_{m_{n}}$, where $P_{m_{i}}$ is a path of length m_{i} for each $i=1,2, \ldots, n$. As an application of Theorem 1, we obtain the Menger number of the grid network. The following lemma is useful in the proof of our conclusion.

Lemma 2 (Theorems 2.3.3 and 2.3.4 in [1]). Let $G_{1}, G_{2}, \ldots, G_{n}$ be n simple graphs. Then $d\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=d\left(G_{1}\right)+$ $d\left(G_{2}\right)+\cdots+d\left(G_{n}\right)$. If $\kappa\left(G_{i}\right)=\delta\left(G_{i}\right)>0$ for each $i=1,2, \ldots, n$, then $\kappa\left(G_{1} \times G_{2} \times \cdots \times G_{n}\right)=\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right)+\cdots+\kappa\left(G_{n}\right)$.

Corollary 3. Let $G=G\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ be a grid network. If $l \geq \sum_{i=1}^{n} m_{i}$ and $m_{i} \geq 2$ for each $i=1,2, \ldots$, n, then $\zeta_{l}(G)=\zeta_{m_{1}}\left(P_{m_{1}}\right)+\zeta_{m_{2}}\left(P_{m_{2}}\right)+\cdots+\zeta_{m_{n}}\left(P_{m_{n}}\right)=n$.
Proof. Since $d\left(P_{m_{i}}\right)=m_{i}$, by Lemma 2, we have $d(G)=\sum_{i=1}^{n} m_{i}$. For $l \geq d(G)$, we have $\zeta_{l}(G) \geq \zeta_{d(G)}(G)$. By Theorem 1 , using the associative law, we have $\zeta_{d(G)}(G) \geq \zeta_{m_{1}}\left(P_{m_{1}}\right)+\zeta_{m_{2}}\left(P_{m_{2}}\right)+\cdots+\zeta_{m_{n}}\left(P_{m_{n}}\right)=n$. By Lemma 2, we have $\kappa(G)=n$. By $\zeta_{l}(G) \leq \kappa(G)=n$ and $\zeta_{l}(G) \geq \zeta_{d(G)}(G)=n$, we have $\zeta_{l}(G)=n=\zeta_{m_{1}}\left(P_{m_{1}}\right)+\zeta_{m_{2}}\left(P_{m_{2}}\right)+\cdots+\zeta_{m_{n}}\left(P_{m_{n}}\right)$.

The corollary is proved.

References

[1] J.-M. Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[2] W.B. Ameur, Constrained length connectivity and survivable networks, Networks 36 (2000) 17-33.
[3] F.T. Boesch, Synthesis of reliable networks-a survey, IEEE Transactions on Reliability 35 (1986) 240-246.
[4] F.T. Boesch, F. Harary, J.A. Kabell, Graphs as models of communication network vulnerability: connectivity and persistence, Networks 11 (1981) $57-63$.
[5] S.M. Boyles, G. Exoo, A counterexample to a conjecture on paths of bounded length, 6 (1982) 205-209.
[6] A. Itai, Y. Perl, Y. Shiloach, The complexity of finding maximum disjoint paths with length constraints, Networks 12 (1982) $277-286$.
[7] Y. Lu, J.-M. Xu, X.-M. Hou, Bounded edge-connectivity and edge-persistence of Cartesian product of graphs, Discrete Applied Mathematics 157 (2009) 3249-3257.
[8] D. Ronen, Y. Perl, Heuristics for finding a maximum number of disjoint bounded paths, Networks 14 (1984) 531-544.
[9] R. Čada, E. Flandrin, H. Li, Hamiltonicity and pancyclicity of cartesian products of graphs, Discrete Mathematics 309 (2009) $6337-6343$.
[10] X. Hou, Y. Lu, On the $\{k\}$-domination number of Cartesian products of graphs, Discrete Mathematics 309 (2009) 3413-3419.
[11] W. Imrich, S. Klavžar, Product Graphs, John Wiley and Sons, New York, 2000.
[12] S. Špacapan, Connectivity of Cartesian products of graphs, Applied Mathematics Letters 21 (2007) 682-685.
[13] J.-M. Xu, C. Yang, Connectivity of Cartesian product graphs, Discrete Mathematics 306 (2006) 159-165.

[^0]: * This work is partially supported by NSFC (No. 10971198) and Zhejiang Innovation Project (No. T200905).
 * Corresponding author.

 E-mail addresses: mameij@zjnu.cn, mameij@sdu.edu.cn (M. Ma).

