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a b s t r a c t

In a real-time system, the Menger number ζl(G) is an important measure of the communi-
cation efficiency and fault tolerance of the system G. In this paper, we obtain a lower bound
for the Cartesian product graph.We show that ζl1+l2 (G1×G2) ≥ ζl1 (G1)+ζl2 (G2) for l1 ≥ 2
and l2 ≥ 2. As an application of the result, we determine the exact values ζl(G) of the grid
network G = G(m1,m2, . . . ,mn) for mi ≥ 2 (1 ≤ i ≤ n) and l ≥

∑n
i=1 mi. This example

shows that the lower bound of ζl1+l2 (G1 × G2) obtained is tight.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that underlying topology of an interconnection network can be represented by a graph G = (V , E),
where V is the set of processors and E is the set of communication links in the network. Throughout this paper, a graph
G = (V , E) alwaysmeans a connected and simple graph (without loops andmultiple edges), where V = V (G) and E = E(G)
are the vertex set and the edge set of G, respectively. For graph terminology and notation not defined here, we follow [1].

Let x and y be two distinct vertices in a graph G = (V , E). A path between x and y is denoted by the term xy-path. The
distance dG(x, y) between x and y is the number of edges in a shortest xy-path, and the diameter ofG is d(G) = max{dG(x, y) :

x, y ∈ V (G)}. For a vertex x ∈ V (G), the set of neighbors of x is denoted by NG(x) in G and the degree of x is dG(x) = |NG(x)|.
The minimum degree of G is δ(G) = min{dG(v) : v ∈ V (G)}.

Whenwe use a graph tomodel a parallel computing or processing system,we can use internally disjoint paths to transmit
messages simultaneously from a vertex x to another vertex y. However, in a real-time system, the message delay must be
limited within a given period since any message obtained beyond the bound may be worthless. A natural question is how
many internally disjoint paths exist in the network to ensure message delay within the effective bounds. In the language of
graph theory, this problem can be stated as follows.

Let x and y be two distinct vertices in a graph G. The xy-Menger number with respect to l, denoted by ζl(x, y), is the
maximum number of internally disjoint xy-paths whose lengths are at most l in G. The Menger number of G with respect
to l is defined as ζl(G) = min{ζl(x, y) : x, y ∈ V (G)}. If l < d(G), then ζl(G) = 0. To avoid the relatively trivial case
in which l < d(G) or G is a complete graph, we assume that l ≥ d(G) ≥ 2 in this paper. Clearly, ζl(G) ≤ δ(G). For a
graph G with d(G) ≥ 2 and |V (G)| = n, it is clear that ζl(G) is well defined for an integer l with d(G) ≤ l ≤ n − 1 and
ζd(G)(G) ≤ ζd(G)+1(G) ≤ · · · ≤ ζn−1(G). There are many papers that have studied Menger-type parameters, such as [2–8].

We consider the Cartesian product G1 ×G2 of graphs G1 and G2. For graphs G1 and G2, the Cartesian product G1 ×G2 is the
graphwith vertex set V (G1 ×G2) = V (G1)×V (G2) = {xy | x ∈ V (G1), y ∈ V (G2)} and edge set E(G1 ×G2) = {(x1x2, y1y2) |

x1 = y1 and (x2, y2) ∈ E(G2) or x2 = y2 and (x1, y1) ∈ E(G1)}. It is well known that the Cartesian product is an important
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research topic in graph theory (see, e.g., [9–13]). It is also well known that, for designing large-scale interconnection
networks, the Cartesian product is an important method to obtain large graphs from smaller ones, with a number of
parameters that can be easily calculated from the corresponding parameters for those small initial graphs. The Cartesian
product preserves many nice properties such as regularity, existence of Hamilton cycles and Euler circuits, and transitivity
of the initial graphs (see, e.g., [1]). In fact, many well-known networks can be constructed by the Cartesian products of some
simple graphs. For example, a torus is the Cartesian product of two cycles, a mesh is the Cartesian product of two paths, and
a grid is the Cartesian product of several paths. What we are interested in is the Menger number of the Cartesian product of
graphs.

2. Main results

For a vertex x ∈ V (G1) and a subgraph H ⊆ G2, we use xH to denote the subgraph of G1 × G2 induced by {x} × V (H).
Similarly, for a vertex y ∈ V (G2), and a subgraph H ⊆ G2, Hy denotes the subgraph of G1 × G2 induced by V (H) × {y}. The
symbol l(P) denotes the length of a path P , which is the number of edges in P .

Now, we state our main result of this paper.

Theorem 1. For any two connected graphs G1 and G2, if li ≥ 2 for i = 1, 2, then ζl1+l2(G1 × G2) ≥ ζl1(G1) + ζl2(G2).

Proof. Assume that x = x1x2 and y = y1y2 are two distinct vertices in G1 × G2, where x1, y1 ∈ V (G1) and x2, y2 ∈ V (G2).
If x1 ≠ y1, there must exist ζl1(G1) internally disjoint x1y1-paths P1, P2, . . . , Pζl1 (G1) in G1 such that l(Pi) ≤ l1 for any

i ∈ {1, 2, . . . , ζl1(G1)}. Without loss of generality, we may assume that l(P1) ≤ l(P2) ≤ · · · ≤ l(Pζl1 (G1)). Then l(Pi) ≥ 2 for
any i ∈ {2, . . . , ζl1(G1)}. Let vi be the first internal vertex in Pi (2 ≤ i ≤ ζl1(G1)). It is clear that vi ∈ NG1(x1). Then vi splits
the path Pi into two subpaths ai and P ′

i , where ai is the first edge (x1, vi) in Pi and P ′

i is the subpath of Pi from vi to y1. Hence
the path Pi can be expressed as

Pi = x1
ai
−→ vi

P ′
i

−→ y1, i = 2, 3, . . . , ζl1(G1).

Similarly, if x2 ≠ y2, there must exist ζl2(G2) internally disjoint x2y2-pathsW1,W2, . . . ,Wζl2 (G2) in G2 such that l(Pj) ≤ l2
for any j ∈ {1, 2, . . . , ζl2(G2)}. Without loss of generality, we may assume that l(W1) ≤ l(W2) ≤ · · · ≤ l(Wζl2 (G2)). Then
l(Wj) ≥ 2 for any j ∈ {2, . . . , ζl2(G2)}. Let uj be the first internal vertex in Pj (2 ≤ j ≤ ζl2(G2)). Then the path Wj can be

expressed asWj = x2
bj
−→ uj

W ′
j

−→ y2, j = 2, 3, . . . , ζl2(G2), where bj is the first edge (x2, uj) inWj andW ′

j is the subpath ofWj

from uj to y2. It is clear that uj ∈ NG2(x2).
Using the above notations, we can construct ζl1(G1) + ζl2(G2) internally disjoint xy-paths R1, R2, . . . Rζl1 (G1)+ζl2 (G2) with

l(Ri) ≤ l1 + l2 for each i. Consider the following three cases.
Case 1. x1 ≠ y1, x2 ≠ y2.

Let R1 = x1x2
P1x2
−−→ y1x2

y1W1
−−→ y1y2; then l(R1) = l(P1) + l(W1) ≤ l1 + l2.

For i = 2, 3, . . . , ζl1(G1), let Ri = x1x2
aix2
−−→ vix2

viW1
−−→ viy2

P ′
i y2

−−→ y1y2; then l(Ri) = 1 + l(W1) + l(P ′

i ) ≤ l1 + l2.

Let Rζl1 (G1)+1 = x1x2
x1W1
−−→ x1y2

P1y2
−−→ y1y2; then l(R1) = l(W1) + l(P1) ≤ l1 + l2.

For j = 2, 3, . . . , ζl2(G2), letRζl1 (G1)+j = x1x2
x1bj
−−→ x1uj

P1uj
−−→ y1uj

y1W ′
j

−−→ y1y2; then l(Rζl1 (G1)+j) = 1+l(P1)+l(W ′

j ) ≤ l1+l2.

Case 2. x1 = y1, x2 ≠ y2.
Since |NG1(x1)| = dG1(x1) ≥ δ(G1) ≥ ζl1(G1), NG1(x1) \ {v2, v3, . . . , vζl1 (G1)} ≠ ∅. Let v1 ∈ NG1(x1) \ {v2, v3, . . . , vζl1 (G1)}

and a1 = (x1, v1).

For i = 1, 2, . . . , ζl1(G1), let Ri = x1x2
aix2
−−→ vix2

viW1
−−→ viy2

aiy2
−−→ y1y2; then l(Ri) = 1 + l(W1) + 1 ≤ l1 + l2.

For j = 1, 2, . . . , ζl2(G2), let Rζl1 (G1)+j = x1x2
x1Wj
−−→ x1y2 = y1y2; then l(Rζl1 (G1)+j) = l(Wj) < l1 + l2.

Case 3. x1 ≠ y1, x2 = y2.

For i = 1, 2, . . . , ζl1(G1), let Ri = x1x2
Pix2
−−→ y1x2 = y1y2; then l(Ri) = l(Pi) < l1 + l2.

Since |NG2(x2)| = dG2(x2) ≥ δ(G2) ≥ ζl2(G2), NG2(x2) \ {u2, u3, . . . , uζl2 (G2)} ≠ ∅. Let u1 ∈ NG2(x2) \ {u2, u3, . . . , uζl1 (G1)}

and b1 = (x2, u1).

For j = 1, 2, . . . , ζl2(G2), let Rζl1 (G1)+j = x1x2
x1bj
−−→ x1uj

P1uj
−−→ y1uj

y1bj
−−→ y1x2 = y1y2; then l(Rζl1 (G1)+j) = 1 + l(Wj) + 1 ≤

l1 + l2.
It is easy to check that the xy-paths R1, R2, . . . , Rζl1 (G1)+ζl2 (G2) constructed above are internally disjoint in G1 × G2

whichever case occurs.
Since l(Ri) ≤ l1 + l2 for 1 ≤ i ≤ ζl1(G1) + ζl2(G2), the theorem follows. �
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The connectivity of a graph G, denoted by κ(G), is the minimum number of vertices whose removal leaves the remaining
graph disconnected or trivial. It follows fromMenger’s theorem that κ(G) ≥ k if any two distinct vertices of G are connected
by at least k internal vertex-disjoint paths. Generally, we have ζl(G) ≤ κ(G). If P is a path of lengthm, then ζl(P) = 1 = κ(P)
for any l ≥ m.

The grid network is defined as G(m1,m2, . . . ,mn) = Pm1 × Pm2 × · · · × Pmn , where Pmi is a path of length mi for each
i = 1, 2, . . . , n. As an application of Theorem 1, we obtain the Menger number of the grid network. The following lemma is
useful in the proof of our conclusion.

Lemma 2 (Theorems 2.3.3 and 2.3.4 in [1]). Let G1,G2, . . . ,Gn be n simple graphs. Then d(G1 × G2 × · · · × Gn) = d(G1) +

d(G2)+· · ·+d(Gn). If κ(Gi) = δ(Gi) > 0 for each i = 1, 2, . . . , n, then κ(G1 ×G2 ×· · ·×Gn) = κ(G1)+κ(G2)+· · ·+κ(Gn).

Corollary 3. Let G = G(m1,m2, . . . ,mn) be a grid network. If l ≥
∑n

i=1 mi and mi ≥ 2 for each i = 1, 2, . . . , n, then
ζl(G) = ζm1(Pm1) + ζm2(Pm2) + · · · + ζmn(Pmn) = n.

Proof. Since d(Pmi) = mi, by Lemma 2, we have d(G) =
∑n

i=1 mi. For l ≥ d(G), we have ζl(G) ≥ ζd(G)(G). By Theorem 1,
using the associative law, we have ζd(G)(G) ≥ ζm1(Pm1) + ζm2(Pm2) + · · · + ζmn(Pmn) = n. By Lemma 2, we have κ(G) = n.
By ζl(G) ≤ κ(G) = n and ζl(G) ≥ ζd(G)(G) = n, we have ζl(G) = n = ζm1(Pm1) + ζm2(Pm2) + · · · + ζmn(Pmn).

The corollary is proved. �
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