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a b s t r a c t

The n-dimensional locally twisted cube LTQn is a new variant of the hypercube, which pos-
sesses some properties superior to the hypercube. This paper investigates the fault-tolerant
edge-pancyclicity of LTQn, and shows that if LTQn (n P 3) contains at most n � 3 faulty ver-
tices and/or edges then, for any fault-free edge e and any integer ‘ with 6 6 ‘ 6 2n � fv,
there is a fault-free cycle of length ‘ containing the edge e, where fv is the number of faulty
vertices. The result is optimal in some senses. The proof is based on the recursive structure
of LTQn.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

As topological structures, interconnection networks play an important role in parallel processing and computing systems,
particularly in multicomputer systems, which provide an effective mechanism of exchanging data between processors. The
n-dimensional hypercube Qn, suggested first by Sullivan and Bashkow [32], is one of the most popular, versatile and efficient
interconnection networks, which possesses many excellent features such as logarithmic number of links per node, logarith-
mic diameter, high symmetry, recursive structure, linear bisection width (see [12]) and, thus, becomes the first choice for the
topological structure of parallel processing and computing systems (see [22,3]) . The machines based on the hypercube have
been implemented commercially such as the Cosmic Cube from Caltech [31], the IPSC/2 from Intel [28] and Connection
Machines [14]. Parallel algorithms, and simple but efficient routing and broadcasting algorithms based on the hypercube
have been developed [22,29].

It is well known that the diameter of the hypercube Qn is n. Hillis [14] showed that the hypercube Qn does not have the
smallest possible diameter relative to its number of vertices 2n. To achieve smaller diameter with the same number of
vertices and links as the hypercube, a great number of variants of the hypercube were proposed, such as the Möbius cube
[6], the crossed cube [7], the twisted cube [13], the augmented cube [5], the locally twisted cube [40], the bubble-sort graph
[2], the star graph [23], and so on (see [37]). All these variants of the hypercube have only about half of the diameter of the
hypercube.

It is well known that an interconnection network can be modeled by a connected graph G = (V,E), where V = V(G) is the
vertex-set and E = E(G) is the edge-set of G, in which vertices represent processors and edges represent communication links
between processors.
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There are a lot of mutually conflicting requirements in designing an interconnection network. It is almost impossible to
design an interconnection network which is optimum from all aspects. One has to design a suitable network depending on
the requirements and its properties. One of the central issues in designing and evaluating an interconnection network is to
study how well other existing networks can be embedded into this network. This problem can be modeled by the following
graph embedding problem: given a host graph H, which represents the network into which other networks are to be embed-
ded, and a guest graph G, which represents the network to be embedded, the problem is to find a mapping from V(G) to V(H)
such that each edge of G can be mapped to a path in H. Two common measures of effectiveness of an embedding are the
dilation, which measures the slowdown in the new architecture, and the load factor, which gauges the processor utilization.
The most ideal embedding is an isomorphic embedding, that is, the guest graph is isomorphic to a subgraph of the host
graph, since such an embedding has both dilation and load one.

As two common guest graphs, linear arrays (i.e. paths) and rings (i.e. cycles) are fundamental networks for parallel and
distributed computation. They are suitable for developing simple algorithms with low communication cost. Many efficient
algorithms were originally designed based on linear arrays and rings for solving a variety of algebraic problems, graph prob-
lems and some parallel applications, such as those in image and signal processing (see, for example, [1,22]). Thus, it is impor-
tant to have an effective path and/or cycle embedding in a network, specially in a network with edge (link) and vertex
(processor) failures since a massive parallel system has a relatively high probability of failure. The path and/or cycle embed-
ding properties of many interconnection networks, such as the hypercube and its variants, have been deeply investigated in
the literature, for example, Fu [9], Tsai et al. [34], Hsieh et al. [16], Kueng et al. [21] and Wang et. al. [35] for hypercubes, Fan
et al. [8] and Hsieh et al. [15] for crossed cubes, Yang et al. [42] for twisted cubes, Hsieh et al. [17] for augmented cubes, and
so on. Xu and Ma [37] gave a survey of the recent results on these topics.

In this paper, we are interested in the path and/or cycle embedding properties of the n-dimensional locally twisted
cube LTQn. Yang et al. proposed this new network [41] and proved that LTQn contains cycles of all lengths from 4 to 2n

[40]. Ma, Xu [27] and Hu et al.. [20], independently, improved this result by proving that for any edge in LTQn there
are cycles of all lengths containing it. Ma and Xu [26] further improved this result by showing that for any two different
vertices x and y with distance d in LTQn, there exist xy-paths of all lengths from d to 2n � 1 except for d + 1. Even when
faulty elements occur, Chang et al. [4] and Park et al. [30], independently, showed that LTQn still contains fault-free cycles
of all lengths provided that faulty elements do not exceed n � 2. Very recently, Han et al. [10] have showed that LTQn with
at most n � 3 faulty elements contains paths of all lengths from 2n�1 � 1 to 2n � fv � 1 between any two distinct fault-free
vertices, where fv is the number of faulty vertices. Hsieh and Wu [19] have considered more faulty edges and showed that
LTQn contains a fault-free Hamiltonian cycle provided that faulty edges do not exceed 2n � 5 and each vertex is incident
with at least two fault-free edges. This condition is natural since, in practical applications, the probability is small for a
vertex x being isolated (all links incident with x are faulty) or pendant (only one link incident with x is fault-free and
the others are all faulty).

We, in this paper, improve the related result by proving that if LTQn contains at most n � 3 faulty elements then, for any
fault-free edge e and any integer ‘ with 6 6 ‘ 6 2n � fv, there is a fault-free cycle of length ‘ containing the edge e. We also
demonstrate that this result is optimal in some senses.

The remainder of this paper is organized as follows. In Section 2, we recall the structure of LTQn, and some definitions and
notations. In Section 3, we introduce some properties of LTQn to used in our proofs. In Section 4, we give the proof of our
result. Finally, we give some concluding remarks in Section 5.

2. Preliminaries

We follow Xu [36] for graph-theoretical terminology and notation. A graph G = (V,E) consists of a vertex-set V and an
edge-set E, where V = V(G) is a finite set and E = E(G) is a subset of {xyjxy is an unordered pair of V}. Two vertices x and y
are adjacent if xy is an edge of G, and are also the end-vertices of xy. For a vertex x, we call the vertices adjacent to it the neigh-
bors of x. The degree of a vertex x is the number of edges incident with it. A graph is called k-regular if each vertex has degree
k. For two distinct vertices x and y, an xy-path between x and y is a sequence of distinct vertices in which any two consecutive
vertices are adjacent. The length of a path is the number of edges on the path. An xy-path of length at least three is called a
cycle if x = y. A connected subgraph of G is called a spanning tree if it contains all vertices of G and no cycles, in which a dis-
tinguished vertex is called the root of the spanning tree.

The distance between two distinct vertices x and y in G is the length of a shortest xy-path in G, and the diameter of G is the
maximum distance between any two vertices. The connectivity of G is the minimum j for which there are j vertices whose
removal results in a disconnected graph.

We now recall the definition of the n-dimensional locally twisted cube, proposed by Yang, Evans and Megson [41], which
has 2n vertices, and each vertex is an n-string on {0,1}.

Definition 1 [41]. The n-dimensional locally twisted cube, denoted by LTQn (n P 2), is recursively defined as follow.

(1) LTQ2 is a graph isomorphic to Q2.
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(2) For n P 3, LTQn is built from two disjoint copies of LTQn�1 according to the following steps. Let LTQ0
n�1 and LTQ1

n�1

denote graphs obtained by prefixing labels of each vertex of one copy of LTQn�1 with 0 and with 1, respectively,
and connect a vertex x = 0x2,x3, . . . ,xn of LTQ 0

n�1 with another vertex y = 1(x2 + xn),x3, . . . ,xn of LTQ 1
n�1 by an edge xy,

where ‘+’ represents the modulo 2 addition.

The graphs shown in Fig. 1 are LTQ3 and LTQ4.
The locally twisted cube LTQn can be equivalently defined with the following non-recursive fashion.

Definition 2 [41]. For n P 2, the n-dimensional locally twisted cube LTQn is a graph with all n-strings on {0,1} as the vertex-
set. Two vertices x = x1x2, . . . ,xn�1xn and y = y1,y2, . . . ,yn�1yn of LTQn are adjacent if and only if either

(a) xi ¼ �yi and xi+1 = yi+1 + xn for some 1 6 i 6 n � 2, and xj = yj for all the remaining bits, where ‘+’ represents the modulo 2
addition, or

(b) xi ¼ �yi for some i 2 {n � 1,n}, and xj = yj for all the remaining bits.

According to the above definitions, it is not difficult to see that LTQn is n-regular. Furthermore, Yang, Evans and Megson
[40,41] proved that the connectivity of LTQn is n, the diameter n � 1 if n = 3 or 4, and 1

2 ðnþ 3Þ
� �

if n P 5, and that LTQn con-
tains cycles of all lengths from 4 to 2n. Very recently, Hsieh and Tu [18] have showed that LTQn contains n edge-disjoint span-
ning trees. Lin et al. [24] further proved that any two spanning trees with the same root x and for any other vertex y – x, the
two different paths from x to y, one path in each tree, are internally vertex-disjoint. For more properties of LTQn, the reader
can refer to [4,10,11,18,19,24–27,30,38–41].

We now make some remarks on the n-dimensional locally twisted cube.
First, like to many variants of the hypercube such as the Möbius cube, the crossed cube, the twisted cube, the augmented

cube and otherwise, the locally twisted cube not only keeps many nice properties of the hypercube such as regularity, high
connectivity and high recursive constructability, but also has diameter of about half of that of the hypercube of the same size.

Secondly, the locally twisted cube also keeps a nice property of the hypercube, that is, the labels of any two adjacent ver-
tices differ in at most two successive bits. However, a common feature of the above-mentioned variants is that the labels of
some neighboring vertices may differ in a large number of bits. As a result, a portion of good properties of hypercube are lost
in these variants. For example, the design of efficient parallel algorithms on these variants turns out to be a difficult task [41].

Thirdly, the locally twisted cube LTQn contains cycles of all lengths from 4 to 2n [40], but the hypercube Qn contains only
even cycles since it is a bipartite graph. Thus, LTQn is superior to Qn in cycle embedding property.

Fourthly, the construction of the locally twisted cube LTQn is quite different from that of the twisted cube TQn. The former
is defined for any positive integer n, while the latter only for odd integer.

Lastly, it should be noted that, like to many variants of the hypercube, the locally twisted cube LTQn is not vertex-tran-
sitive for n P 4 proved by Liu et al. [25].

3. Properties

In this section, we introduce some properties of LTQn to be used in our proofs in Section 4.
Let G = (V,E) be a graph. A non-empty subset of E(G) is called a matching of G if no two of its elements have a common end-

vertices in G. A matching M is perfect if every vertex of G is an end-vertex of some edge in M.
From Definition 1, LTQn can be expressed as the union of two disjoint copies of LTQn�1 by adding a perfect matching be-

tween them according to the specified rule. For short, we often write LTQn = L � R, where L ffi LTQ0
n�1 and R ffi LTQ 1

n�1. Let EC be
the perfect matching, a set of edges connecting L with R. Obviously, jECj = 2n�1.

Fig. 1. The locally twisted cubes LTQ3 and LTQ4.
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Yang, Evans and Megson [41] found an isomorphic expression of LTQn. For example, two graphs shown in Fig. 2(a) and (b)
are other expressions of LTQ3 and LTQ4, respectively.

In general, they proved the following result.

Lemma 1 [41]. Let L0 be the graph obtained from Qn�1 by suffixing the labels of all vertices with 0, R0 be the graph obtained from a
graph isomorphic to Qn�1 by suffixing the labels of all vertices with 1. Then LTQn is isomorphic to the graph obtained from L0 and R0

by adding a perfect matching M between them, denoted by LTQn = Qn�1 � Qn�1, where M is the set of edges by linking two vertices
with difference only suffixes.

Let LTQn = L � R defined in Lemma 1. For convenience, for a vertex u in LTQn, if u is in L, we write uL for u, and use uR to
denote its neighbor in R. Let uL and vL be two adjacent vertices in L. We say vL is a strong neighbor of uL in L if their neighbors
uR and vR are adjacent in R, and a weak neighbor of uL in L if their neighbors uR and vR are not adjacent in R. Similarly, we can
define a strong neighbor or a weak neighbor of two adjacent vertices uR and vR in R.

Lemma 2. Let LTQn = L � R. If n P 4 then, for any vertex uL in L, there are n � 2 strong neighbors and one weak neighbor in L.
Moreover, if wL is the weak neighbor of uL, then the distance between uR and wR is two in R. The same conclusion holds for any
vertex uR in R.

Proof. Let uL = 0x2,x3,x4, . . . ,xn�1xn be a vertex in L. Then its neighbor in R is uR = 1(x2 + xn),x3,x4, . . . ,xn�1xn. Let
s2

L ; s
3
L ; . . . ; sn�1

L ;wL be n � 1 neighbors of uL in L, where

s2
L ¼ 0�x2ðx3 þ xnÞx4 . . . xn�1xn;

s3
L ¼ 0x2�x3ðx4 þ xnÞx5 . . . xn�1xn;

. . . ;

sn�2
L ¼ 0x2 . . . xn�3�xn�2ðxn�1 þ xnÞxn;

sn�1
L ¼ 0x2x3x4 . . . xn�2�xn�1xn;

wL ¼ 0x2x3x4 . . . xn�1�xn:

8>>>>>>>><
>>>>>>>>:

Let s2
R; s

3
R; . . . ; sn�1

R ; wR be neighbors of s2
L ; s

3
L ; . . . ; sn�1

L ; wL in R, respectively, where

s2
R ¼ 1ð�x2 þ xnÞðx3 þ xnÞx4 . . . xn�1xn;

s3
R ¼ 1ðx2 þ xnÞ�x3ðx4 þ xnÞ . . . xn�1xn;

. . . ;

sn�2
R ¼ 1ðx2 þ xnÞx3 . . . xn�3�xn�2ðxn�1 þ xnÞxn;

sn�1
R ¼ 1ðx2 þ xnÞx3x4 . . . xn�2�xn�1xn;

wR ¼ 1ðx2 þ �xnÞx3x4 . . . xn�1�xn:

8>>>>>>>><
>>>>>>>>:

Since �x2 þ xn ¼ x2 þ xn, by definition of LTQn, uRsi
R 2 EðRÞ for i = 2,3, . . . ,n � 1, but uR and wR are not adjacent in R. So

s2
L ; s

3
L ; . . . ; sn�1

L are strong neighbors of uL and wL is a weak neighbor of uL in L. In order to complete the proof of the lemma,
we need to find a vertex oR such that uRoRoR,wR 2 E(R). We can find this vertex wR as follow.

oR ¼ 1ðx2 þ xnÞðx3 þ �xnÞx4 . . . xn�1�xn when xn ¼ 1;

oR ¼ 1ðx2 þ �xnÞðx3 þ xnÞx4 . . . xn�1xn when xn ¼ 0:

�

It is easy to see that uRoR, oRwR 2 E(R), and so the distance between uR and wR is two in R. h

Fig. 2. Another painting of LTQ3 and LTQ4.
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Lemma 3 ([27,20]). Let e be any edge in LTQn and ‘ be any integer with 4 6 ‘ 6 2n. Then there is a cycle of length ‘ containing the
edge e in LTQn for n P 2.

Lemma 4 [26]. Let x and y be any two different vertices in LTQn and the distance between them be d. Then for any integer ‘ with
d 6 ‘ 6 2n � 1 except for d + 1, there exists an xy-path of length ‘ in LTQn for n P 3.

Let F be a set of faulty elements in a graph G. An edge or a vertex in G is said to be fault-free if it is not in F, and a subgraph
H of G to be fault-free if H contains no elements in F. Throughout this paper, we use fv and fe to denote the numbers of vertices
and edges in F, respectively.

Lemma 5 [10]. If fv + fe 6 n � 3 and n P 3, then for any integer ‘ with 2n�1 � 1 6 ‘ 6 2n � fv � 1, there is a fault-free path of
length ‘ between any two distinct vertices in LTQn.

Lemma 6 [33]. Every fault-free edge (resp, vertex) of Qn lies on a fault-free cycle of every even length from 4 to 2n � 2fv if
fv + fe 6 n � 2 and n P 3.

4. Fault-tolerant edge-pancyclicity

To state and prove our main result, we need some nations and terminologies. Let G be a connected graph, x and y be two
distinct vertices in G. We use a sequence of distinct vertices P = (x0,x1, . . . ,xi�1,xi,xi+1, . . . ,xk), where x0 = x and xk = y, to denote
an xy-path. In addition, a path can be expressed as the union of several subpaths. For example, we can write P = P(x0,xi) + P(-
xi,xi+1) + P(xi+1,xk), where P(x0,xi) = (x0,x1, . . . ,xi�1,xi), P(xi,xi+1) = (xi,xi+1) and P(xi+1,xk) = (xi+1, . . . ,xk). Since the subpath P(xi,xi+1)
is a single edge xixi+1, we write xixi+1 instead of P(xi,xi+1), that is, P = P(x0,xi) + xixi+1 + P(xi+1,xk).

A graph G of order n is k-pancyclic if it contains cycles of all lengths from k to n, and edge-k-pancyclic if each of its edges
lies on a cycle of every length from k to n. Clearly, an edge-k-pancyclic graph is certainly k-pancyclic. A graph G is f-fault-tol-
erant edge-k-pancyclic if G � F is still edge-k-pancyclic for any F � E(G) [ V(G) with jFj 6 f.

In this section, we investigates the fault-tolerant edge-pancyclicity of LTQn and show that LTQn is (n � 3)-fault-tolerant
edge-6-pancyclic. We state this result as the following theorem.

Theorem 1. If fv + fe 6 n � 3 and n P 3 then, for any fault-free edge e in LTQn and any integer ‘ with 6 6 ‘ 6 2n � fv, there is a
fault-free cycle of length ‘ containing the edge e in LTQn.

Proof. We use the expression LTQn = L � R, where L ffi LTQ 0
n�1 and R ffi LTQ 1

n�1. Let F be a set of faulty elements in LTQn with
jFj = fv + fe, FL = F \ L, FR = F \ R, FC = F \ EC, Fv = F \ V(LTQn), Fv

L ¼ FL \ VðLÞ and Fv
R ¼ FR \ VðRÞ. Without loss of generality, we

may assume jFRj 6 jFLj.
Let e be an arbitrary fault-free edge in LTQn and ‘ be any integer with 6 6 ‘ 6 2n � fv. We need to prove that there exists a

fault-free cycle of length ‘ containing the edge e in LTQn if jFj 6 n � 3 and n P 3.
We proceed by induction on n P 3. For n = 3, there are no faulty vertices or edges in LTQ3, and so the theorem holds by

Lemma 3. Assume that the theorem holds for LTQn�1. We consider LTQn for n P 4.
Case 1. jFLj 6 n � 4.
Subcase 1.1. The fault-free edge e is in L or R.
Since jFRj 6 n � 4, without loss of generality, assume that the edge e is in L and let e = uLvL.
If 6 6 ‘ 6 2n�1 � Fv

L

�� �� then, by the induction hypothesis, there is a fault-free cycle of length ‘ containing the edge e in L, so
in LTQn. Thus, we only need to consider such an ‘ that satisfies 2n�1 � Fv

L

�� ��þ 1 6 ‘ 6 2n � fv .
If n = 4, since 0 6 Fv

L

�� �� 6 jFLj 6 n� 4 ¼ 0, then 24�1 + 1 = 9 6 ‘ 6 24 � fv. Let ‘ = ‘0 + 1. Then 8 6 ‘0 6 24 � fv � 1. By Lemma
5, there is a fault-free uLvL-path P of length ‘0 in LTQ4, and so P + uLvL is a fault-free cycle of length ‘ containing the edge e.

Now, assume n P 5 and write ‘ = ‘1 + 1 + ‘2, where 2n�2 � Fv
L

�� �� 6 ‘1 6 2n�1 � Fv
L

�� �� and 2n�2
6 ‘2 6 2n�1 � Fv

R

�� ��� 1. Since
2n�2 � Fv

L

�� ��P 2n�2 � jFLjP 2n�2 � nþ 4 > 6 for n P 5, by the induction hypothesis, there is a fault-free cycle of length ‘1

containing the edge e in L. Note that a cycle of length ‘1 contains a matching M with jMj ¼ ‘1
2

� �
. Consider the following

inequality.

‘1

2

� 	
� jFC j � jFRj � jfegjP

2n�2 � Fv
L

�� ��
2

$ %
� jFC j � jFRj � 1 P 2n�3 � jFj � 1 P 2n�3 � nþ 2:

Let f(x) = 2x�3 � x + 2. Since f0(x) = 2x�3ln 2 � 1 P 0 for x P 5, f(x) is an increasing function, which implies that
‘1
2

� �
� jFC j � jFRjP f ð5Þ ¼ 25�3 � 5þ 2 ¼ 1. In other words, there is such an edge, say xLyL, in M that xLyL – e and two edges

xLxR and yLyR are fault-free (see Fig. 3). Since jFRj 6 n � 4, by Lemma 5, there is a fault-free xRyR-path P of length ‘2 in R. So
C � xLyL + yLyR + P + xRxL is a fault-free cycle of length ‘(=‘1 + 1 + ‘2) containing e (see Fig. 3).

Subcase 1.2. The fault-free edge e is in EC.
Let e = uLuR and uL = 0x2,x3, . . . ,xn. Then uR = 1(x2 + xn),x3, . . . ,xn.

2272 X. Xu et al. / Information Sciences 181 (2011) 2268–2277
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Assume ‘ = 6. We use the second expression LTQn = Qn�1 � Qn�1 by Lemma 1. Since uR and uL have the same suffix xn, uR

and uL are in the same Qn�1. Since jFj 6 n � 3 = (n � 1) � 2, by Lemma 6, there is a fault-free cycle of length 6 containing the
edge e in Qn�1, and so in LTQn.

We now consider ‘ = 7. We can construct n � 2 cycles of length 7 that are disjoint each other except a common edge
e = uLuR by considering two cases depending on xn = 0 or xn = 1.

Subcase 1.2.1. xn = 0.

The required n � 2 cycles C3, . . . ,Cn�1,Cn of length 7 are constructed as follows. For each i = 3,4, . . . ,n � 1, let
Ci ¼ uL; si

L;w
i
L;w

i
R; o

i
R; s

i
R;uR


 �
, where

Ci ¼

uL ¼ 0x2x3 . . . xn�10;
si

L ¼ 0x2x3 . . . xi�1�xixiþ1 . . . xn�10;
wi

L ¼ 0x2x3 . . . xi�1�xixiþ1 . . . xn�11;
wi

R ¼ 1ðx2 þ 1Þx3 . . . xi�1�xixiþ1 . . . xn�11;
oi

R ¼ 1ðx2 þ 1Þx3 . . . xi�1�xixiþ1 . . . xn�10;
si

R ¼ 1x2x3 . . . xi�1�xixiþ1 . . . xn�1;0
uR ¼ 1x2x3 . . . xn�10

8>>>>>>>>>>><
>>>>>>>>>>>:

where si
L is a strong neighbor of uL in L, wi

L is the weak neighbor of si
L in L, wi

R and si
R are neighbors of wi

L and si
L in R, respec-

tively, while oi
R is such a vertex (the existence is guaranteed by Lemma 2) that wi

Roi
R; oi

Rsi
R 2 EðRÞ (see Fig. 4(a)).

And let Cn = (uL,oL,sL,wL,wR,sR,uR), where

Cn ¼

uL ¼ 0x2 . . . xn�10;
oL ¼ 0ðx2 þ 1Þx3 . . . xn�10;
wL ¼ 0ðx2 þ 1Þx3 . . . xn�11;
sL ¼ 0ðx2 þ 1Þx3 . . . xn�2�xn�11;
sR ¼ 1x2 . . . xn�2�xn�11;
wR ¼ 1x2 . . . xn�11;
uR ¼ 1x2 . . . xn�10;

8>>>>>>>>>>><
>>>>>>>>>>>:

where wR is the weak neighbor of uR in R, while sR is a strong neighbor of wR in R, sL and wL are neighbors of sR and wR in L,
respectively, oL is such a vertex that uLoL, oLwL 2 E(L) (see Fig. 4(b)).

Since n P 4, such constructed cycles of length 7 are well defined. For example, in LTQ4, let e = uLuR, where uL = 0000 and
uR = 1000. Two cycles C3 and C4 of length 7 containing the edge e are as follows.

C3 ¼ f0000;0010;0011;1111;1110;1010;1000g;
C4 ¼ f0000;0100;0101;0111;1011;1001;1000g:

It is easy to see that the cycles C3, . . . ,Cn�1, Cn are as required, at least one of them is fault-free since jFj = n � 3 < n � 2.
Subcase 1.2.2. xn = 1.

The required n � 2 cycles C3, . . . ,Cn�1,Cn are constructed by considering two cases depending on n = 4 or n P 5.

If n = 4 then jFj = 1 and jECj = 8, where

EC ¼
ð0000;1000Þ; ð0010;1010Þ; ð0100;1100Þ; ð0110;1110Þ;
ð0111;1011Þ; ð0101;1001Þ; ð0001;1101Þ; ð0011;1111Þ:

� �
:

For each edge of EC, we find two cycles of length 7, which contain this edge and disjoint except this edge as follows.

Fig. 3. The illustration of Subcase 1.1.
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Edge Two cycles in common only the edge

(0000,1000) (0000,0001,1101,1111,1110,1100,1000), (0000, 0010,0110,0100,0101,1001,1000)
(0010,1010) (0010,0011,0101,0100,0000,1000,1010), (0010,0110,1110,1111,1101,1011,1010)
(0100,1100) (0100,0110,0111,0101,1001,1000,1100), (0100,0000,0001,1101,1111,1110,1100)
(0110,1110) (0110,0111,0001,0000,1000,1010,1110), (0110,0010,0011,0101,100,1111,1110)
(0111,1011) (0111,0110,0010,0000,1000,1001,1011), (0111,0001,1101,1111,1110,1010,1011)
(0101,1001) (0101,0111,0110,0100,0000,1000,1001), (0101,0011,1111,1110,1010,1011,1001)
(0001,1101) (0001,0000,0100,0101,0111,1011,1101), (0001,0011,1111,1001,1000,1100,1101)
(0011,1111) (0011,0001,0000,0100,0101,1001,1111), (0011,0010,1010,1000,1100,1110,1111)

Now, we assume n P 5.
We construct n � 2 cycles C3,C4, . . . ,Cn�2,Cn�1 ,Cn of length 7 as follows. For each i = 3,4, . . . ,n � 2, let

Ci ¼ uL; si
L;w

i
L;w

i
R; o

i
R; s

i
R; uR


 �
, where

Ci ¼

uL ¼ 0x2x3 . . . xn�11;
si

L ¼ 0x2x3 . . . xi�1�xiðxiþ1 þ 1Þxiþ2 . . . xn�11;
wi

L ¼ 0x2x3 . . . xi�1�xiðxiþ1 þ 1Þxiþ2 . . . xn�10;
wi

R ¼ 1x2x3 . . . xi�1�xiðxiþ1 þ 1Þxiþ2 . . . xn�10;
oi

R ¼ 1ðx2 þ 1Þx3 . . . xi�1�xiðxiþ1 þ 1Þxiþ2 . . . xn�10;
si

R ¼ 1ðx2 þ 1Þx3 . . . xi�1�xiðxiþ1 þ 1Þxiþ2 . . . xn�11;
uR ¼ 1ðx2 þ 1Þx3 . . . xn�11;

8>>>>>>>>>>><
>>>>>>>>>>>:

Cn�1 ¼ uL; sn�1
L ;wn�1

L ;wn�1
R ; on�1

R ; sn�1
R ;uR


 �
, where

Cn�1 ¼

uL ¼ 0x2x3 . . . xn�11;
sn�1

L ¼ 0x2x3 . . . xn�2�xn�11;
wn�1

L ¼ 0x2x3 . . . xn�2�xn�10;
wn�1

R ¼ 1x2x3 . . . xn�2�xn�10;
on�1

R ¼ 1ðx2 þ 1Þx3 . . . xn�2�xn�10;
sn�1

R ¼ 1ðx2 þ 1Þx3 . . . xn�2�xn�11;
uR ¼ 1ðx2 þ 1Þx3 . . . xn�11

8>>>>>>>>>>><
>>>>>>>>>>>:

and Cn = (uL,oL,sL,wL,wR,sR,uR), where

Cn ¼

uL ¼ 0x2x3 . . . xn�2xn�11;
oL ¼ 0x2x3 . . . xn�2xn�10;
sL ¼ 0ðx2 þ 1Þx3 . . . xn�2xn�10;
wL ¼ 0ðx2 þ 1Þx3 . . . xn�2�xn�10;
wR ¼ 1ðx2 þ 1Þx3 . . . xn�2�xn�10;
sR ¼ 1ðx2 þ 1Þx3 . . . xn�2xn�10;
uR ¼ 1ðx2 þ 1Þx3 . . . xn�2xn�11:

8>>>>>>>>>>><
>>>>>>>>>>>:

Fig. 4. The illustrations of Subcase 1.2.1.
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Since n P 5, such constructed cycles of length 7 are well defined. It is easy to check that these (n � 2) cycles are disjoint ex-
cept a common edge uLuR. Since jFj = n � 3 < n � 2, among them there exists a fault-free uLuR-cycle of length ‘ = 7 containing
edge e.

Now assume 8 6 ‘ 6 2n � jFvj. If n = 4 then let ‘ = ‘0 + 1, where 24�1 � 1 = 7 6 ‘0 6 24 � fv � 1. By Lemma 5, there is a fault-
free uLuR-path P of length ‘0 in LTQ4. Then P + uLuR is a fault-free cycle of length ‘ containing the edge e = uLuR.

Assume n P 5 below. Let sL be a fault-free strong neighbor of uL in L. Then uRsR in R.
If 8 6 ‘ 6 2n�1 � Fv

L

�� ��� 1, then let ‘ = ‘0 + 2, where 6 6 ‘0 6 2n�1 � Fv
L

�� ��� 3. By the induction hypothesis, there is a fault-
free cycle C0 of length ‘0 containing the edge uLsL in L. Then C = C0 � uLsL + sLsR + sRuR + uRuL is a fault-free cycle of length ‘

containing the edge e = uLuR.
If 2n�1 � Fv

L

�� �� 6 ‘ 6 2n � fv , then let ‘ = ‘1 + ‘2 + 1, where 2n�2 � Fv
L

�� �� 6 ‘1 6 2n�1 � Fv
L

�� �� and 2n�2 � 1 6 ‘2 6 2n�1 � Fv
R

�� ��� 1.
Since 2n�2 � Fv

L

�� �� > 6 for n P 5, by the induction hypothesis, let C1 be a cycle of length ‘1 containing the edge uLsL in L and, by
Lemma 5, let P be a fault-free sRuR-path of length ‘2 in R. Then C = C1 � uLsL + sLsR + P + uRuL is a fault-free cycle of length ‘

containing the edge e = uLuR in LTQn (see Fig. 5).
Case 2. jFLj = n � 3. In this case jFRj = jFCj = 0.
Let e = uv be a fault-free edge in LTQn. Let ‘ = ‘0 + 1. If 2n�1 � 1 6 ‘0 6 2n � fv � 1 then, by Lemma 5, there exists a fault-free

uv-path P of length ‘0 in LTQn. Thus, P + uv is a fault-free cycle of length ‘ containing the edge e in LTQn. Thus, we only need to
consider ‘ with 6 6 ‘ 6 2n�1.

If the fault-free edge e is in R then, since jFRj = 0 and by Lemma 3, there is a fault-free cycle of length ‘ containing the edge
e for any ‘ with 6 6 ‘ 6 2n�1. Thus, we only need to consider two cases according as the fault-free edge e is in L or EC.

Subcase 2.1. The fault-free edge e is in L.
Let e = uLvL and let uR and vR be neighbors of uL and vL in R, respectively.
Suppose that vL is a strong neighbor of uL in L. By Lemma 2, uRvR 2 E(R). Since jFCj = jFRj = 0, the cycle (uL,vL,vR,uR) of length

4 contains the edge e and is fault-free. For any ‘ with 6 6 ‘ 6 2n�1, let ‘ = ‘0 + 2. Then 4 6 ‘0 6 2n�1 � 2. By Lemma 3, there is a
fault-free cycle C of length ‘0 containing edge uRvR in R. So C � uRvR + vRvL + uRuL + uLvL is a fault-free cycle of length ‘

containing the edge e.
Now suppose that vL is the weak neighbor of uL in L. Let uL = 0x2,x3, . . . ,xn then, by Lemma 2, vL ¼ 0x2x3 . . . �xn and

d(uR,vR) = 2.
If ‘ = 6, by the definition of LTQn, we know uR = 1(x2 + xn)x3, . . . ,xn and vR ¼ 1ðx2 þ �xnÞx3; . . . ; xn�1�xn. We define two vertices

wR and mR in R according to xn = 0 or 1. If xn = 0 then let wR ¼ 1x2�x3; . . . ; xn�10 and mR = 1x2, (x3 + 1)x4, . . . ,xn�11. If xn = 1 then
let wR = 1x2(x3 + 1)x4, . . . ,xn�11 and mR ¼ 1x2�x3x4; . . . ; xn�10. Then P = (uR,wR,mR,vR) is a uRvR-path in R. Since jFRj = jFCj = 0,
uLvL + vLvR + P + uRuL is a fault-free cycle of length 6 containing the edge e.

If 7 6 ‘ 6 2n�1, let ‘ = ‘0 + 3, then 4 6 ‘0 6 2n�1 � 3. Since jFRj = jFCj = 0, by Lemma 4, there is a fault-free uRvR-path P of
length ‘0 in R, and so P + vRvL + uRuL + uLvL is a fault-free cycle of length ‘ containing the edge e (see Fig. 6(a)).

Subcase 2.2. The fault-free edge e is in EC. Let e = uR uL.
For any integer ‘ with 6 6 ‘ 6 2n�1, let ‘ = ‘0 + 2. Then 4 6 ‘0 6 2n�1 � 2. By Lemma 3, there is a fault-free cycle C of length ‘0

containing the edge uRvR in R. So C � uRvR + uRuL + uLvL + vLvR is a fault-free cycle of length ‘ containing the edge e = uRuL (see
Fig. 6 (b)).

The proof of the theorem is complete. h

5. Conclusions and remarks

As one of the most fundamental networks for parallel and distributed computation, a cycle is suitable for developing sim-
ple algorithms with low communication cost. Edge and/or vertex failures are inevitable when a large parallel computer sys-
tem is put in use. Therefore, the fault-tolerant capacity of a network is a critical issue in parallel computing. The fault-
tolerant pancyclicity of an interconnection network is a measure of its capability of implementing ring-structured parallel
algorithms in a communication-efficient fashion in the presence of faults.

Fig. 5. The illustration of Subcase 1.2 for ‘ = ‘1 + ‘2 + 1.
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The locally twisted cube LTQn, as a variation of the hypercube Qn, not only retains some favorable properties of Qn but also
possesses some embedding properties that Qn does not. For example, the diameter of LTQn is only about half of the diameter
of Qn. Yang, Megson and Evans [40] proved that LTQn contains cycles of all lengths from 4 to 2n. Ma and Xu [27], indepen-
dently, Hu et al.. [20] improved these results by proving that every edge in LTQn is contained in cycles of all lengths from 4 to
2n. In particular, Chang, Ma and Xu [4] further improved the above results by proving that LTQn contains fault-free cycles of
all lengths from 4 to 2n � fv provided fv + fe 6 n � 2. In this paper, we improve this result by proving that if fv + fe 6 n � 3 then
for any fault-free edge e in LTQn(n P 3) and any integer ‘ with 6 6 ‘ 6 2n � fv, there is a fault-free cycle of length ‘ containing
the edge e.

In view of the fact that the hypercube network Qn contains only even cycles, LTQn is superior to Qn in fault-tolerant pan-
cyclicity. This shows that, when the locally twisted cube is used to model the topological structure of a large-scale parallel
processing system, our result implies that the system has larger capability of implementing ring-structured parallel algo-
rithms in a communication-efficient fashion in the hybrid presence of edge and vertex failures than one of the hypercube
network.

Our result is optimal in the following sense.

(1) Consider the edge uv, where u = 00� � �00 and v = 00� � �01. Then both u and v are in L if we write LTQn = L � R, and v is the
weak neighbor of u. By Lemma 2, it is easy to see that the edge uv is contained in one and only cycle of length 4. If the
cycle appears one faulty element except vertices u, v and the edge uv, then there are no fault-free cycles of length 4
containing the edge uv in LTQn. For example, in LTQ4, u = 0000 and v = 0001, the only cycle of length 4 containing the
edge uv is C = (0000,0001,0011,0010) (see Fig. 1). If a faulty element is any vertex except u and v, or any edge except
uv in C, then there are no fault-free cycles of length 4 containing the edge uv in LTQ4.

(2) Consider the edge uLuR, where uL 2 L and uR 2 R if we write LTQn = L � R. By Lemma 2, there are only two distinct cycles
of length 5 containing the edge uLuR, which are obtained by the weak neighbor oL of uL in L and the weak neighbor oR of
uR in R, respectively. It is easy to see that the two cycles contain oL and oR. If one of oL and oR is faulty, then there are no
fault-free cycles of length 5 containing the edge uLuR in LTQn. For example, in LTQ4, taking uL = 0011 and uR = 1111, the
only two cycles C1 and C2 of length 5 containing the edge uv are as follows.

C1 ¼ ð0011;0010;0110;1110;1111;0011Þ and
C2 ¼ ð0011;0010;1010;1110;1111;0011Þ:

If the vertex x = {0010} is faulty, then there are no fault-free cycles of length 5 containing the edge uv in LTQ4.
(3) As for the condition fv + fe 6 n � 3, we can say that it can be not improved as n � 2 at least when n is small. In fact, if so,

in LTQ3, let {010} be a faulty vertex, then there are no fault-free cycles of length 6 containing edge (000,001). Our proof
for Theorem 1 uses induction on n P 3. The induction is based upon n = 3, which does not hold for fv + fe = n � 2 by the
above example. The induction steps strongly depend on Lemma 5 which holds only when fv + fe 6 n � 3. Thus, our
method can not improve n � 3 as n � 2. However, as our further work, we must make it clear whether or not n � 3
can be improved as n � 2 for more general integer n.
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