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Let f v denote the number of faulty vertices in an n-dimensional hypercube. This note
shows that a fault-free cycle of length of at least 2n − 2 f v can be embedded in an
n-dimensional hypercube with f v = 2n − 3 and n � 5. This result not only enhances the
previously best known result, and also answers a question in [J.-S. Fu, Fault-tolerant cycle
embedding in the hypercube, Parallel Computing 29 (2003) 821–832].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

To find a cycle of given length in a graph is a cycle em-
bedding problem. In this paper we consider the problem
of embedding a cycle in a hypercube network with faulty
vertices. This problem has received many researchers’ at-
tention in the recent years, see for example, [1–27]. Let
f v and fe be the number of faulty vertices and edges, re-
spectively. Fu [9] showed that a fault-free cycle of length
at least 2n − 2 f v can be embedded in Q n if n � 3 and
f v � 2n − 4. Hsieh [11] improved by proving that a fault-
free cycle of length at least 2n − 2 f v can be embedded in
Q n if n � 3, fe + f v � 2n − 4 and fe � n − 2.

In [9], Fu gave an example to show that a fault-free cy-
cle of length at least 24 −2×5 = 6 cannot be embedded in
Q 4 with five faulty vertices. At the same time, he pointed:
it is not easy to prove that a fault-free cycle of length of at
least 2n − 2 f v cannot be embedded in Q n with f v faulty
vertices if n � 5 and f v � 2n − 3. In this note, we answer
this question by proving the following theorem.
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Theorem. In Q n, if n � 5 and f v = 2n −3, then there is a fault-
free even cycle of length at least 2n − 2 f v .

2. Proof of theorem

For graph-theoretical terminology and notation not de-
fined here, we follow [28]. Let G = (V , E) be a connected
simple graph, where V = V (G) is the vertex-set and
E = E(G) is the edge-set of G . A uv-path is a sequence of
adjacent vertices, written as 〈v0, v1, v2, . . . , vm〉, in which
u = v0, v = vm and all the vertices v0, v1, v2, . . . , vm
are different from each other. The length of a path
P is the number of edges in P . Let dG(u, v) be the
length of a shortest uv-path in graph G . For a path
P = 〈v0, v1, . . . , vi, vi+1, . . . , vm〉, we can express P as
P = P (v0, vi) + vi vi+1 + P (vi+1, vm).

An n-dimensional hypercube Q n is a graph with 2n ver-
tices, in which each vertex is denoted by an n-bit binary
string u = unun−1 · · · u2u1. Two vertices are adjacent if and
only if their strings differ in exactly one bit position. It has
been proved that Q n is a vertex and edge transitive bipar-
tite graph.

By the definition, for any k ∈ {1,2, . . . ,n}, Q n can be
expressed as Q n = Lk � Rk , where Lk and Rk are two sub-
graphs of Q n induced by the vertices with the k bit posi-
tion is 0 and 1, respectively, which are isomorphic to Q n−1.
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We call edges between Lk and Rk to be k-dimensional,
which form a perfect matching of Q n . Clearly, for any
edge e of Q n , there is some k ∈ {1,2, . . . ,n} such that e
is k-dimensional. Use uL and uR to denote two vertices in
Lk and Rk , respectively, linked by the k-dimensional edge
uLuR in Q n .

Let F v denote a set of faulty vertices in Q n , and f v =
|F v |. For any k ∈ {1,2, . . . ,n}, we always express Q n as
Q n = Lk � Rk , and F L = F v ∩ Lk and F R = F v ∩ Rk . Let
f L = |F L | and f R = |F R |.

Lemma 2.1. (See Fu [9].) In Q n, if n � 3 and f v � 2n − 4, then
Q n contains a fault-free even cycle of length at least 2n − 2 f v .

Lemma 2.2. (See Hsieh [11].) In Q n, if n � 3 and f v � n − 2,
then for any two fault-free vertices x and y with odd distance,
then there is a fault-free xy-path of length at least 2n −2 f v −1.

Lemma 2.3. In Q 3 , if f v � 2, then for any fault-free edge xy
there is a fault-free even cycle of length at least 8−2 f v contain-
ing xy provided that both x and y have at least two fault-free
neighbors.

Proof. It is not difficult to check the result holds. �
Lemma 2.4. In Q 4 , if f v = 3, then for any fault-free edge xy
there is a fault-free even cycle of length at least 10 containing
xy provided that both x and y have at least two fault-free neigh-
bors.

Proof. Let xy be a fault-free edge in Q 4. Then there exists
a k ∈ {1,2,3,4} such that Q 4 = Lk � Rk , x ∈ L and y ∈ R .
Without loss of generality, we can assume f L � f R . Con-
sider two cases.

Case 1. f L = 3.

In this case, f R = 0. Since both x and y have at least
two fault-free neighbors in Q 4, there is a fault-free neigh-
bor uL of x in L such that uR is fault-free in R . Then
yuR ∈ E(R). By Lemma 2.3, in R there is a fault-free yuR -
path P yuR of length 7. Thus, xy + P yuR + uR uL + uL x is a
fault-free cycle of length 10 in Q 4.

Case 2. f L = 2.

In this case f R = 1. If x has at least two fault-free
neighbors in L, then we can find a fault-free neighbor
uL such that uR in R is fault-free, and uL has at least
two fault-free neighbors in L. By Lemma 2.3, in L there
is a fault-free xuL -path PuL x of length 3, and in R there is
a fault-free yuR -path P yuR of length 5. Thus, xy + P yuR +
uR uL + PuL x is a fault-free cycle of length 10 in Q 4.

If x has exact one fault-free neighbor in L (see Fig. 1).
Then three vertices (that is, x1, x2, x3 in Fig. 1) with dis-
tance two to x in L are fault-free, at least one, say uL , of
them has a fault-free neighbor uR in R . There is a fault-
free xuL -path of length 4 in L, denoted by PxuL . Similarly,
there is a fault-free uR y-path of length 4 in R , denoted

Fig. 1. Two black vertices are faulty neighbors of x in Q 3.

by PuR y . Thus PxuL + uLuR + PuR y + yx is a fault-free cycle
of length 10 in Q 4. �
Lemma 2.5. In Q n, if f v � n + 2, then there exists a k ∈
{1,2, . . . ,n} such that, in Q n = Lk � Rk, both Lk and Rk contain
at least two faulty vertices.

Proof. We only need to prove that the assertion holds for
f v = n + 2. Suppose to the contrary that f L � 1 or f R �
1 for any k ∈ {1,2, . . . ,n}. Then there are at least (n + 1)

faulty vertices whose k-th bit positions are identical for
every k ∈ {1,2, . . . ,n}.

Denote by F n
v the set of faulty vertices whose n-th

bit positions are identical, and denote by F n−k
v the set of

vertices in F n−k+1
v whose (n − k)-bit positions are iden-

tical for each k = 1,2, . . . ,n − 1. Then |F n
v | � n + 1 and

|F n−k
v | � n + 1 − k for each k = 1,2, . . . ,n − 1. Thus, we

have |F 1
v | � 2, which is impossible since all bit positions of

any vertex in F 1
v are identical. �

Lemma 2.6. In Q 5 , if f v = 7, then there is a fault-free even cycle
of length at least 18.

Proof. Since f v = 7, by Lemma 2.5, there exists a k ∈
{1,2,3,4,5} such that, in Q n = Lk � Rk , f L � 2 and f R � 2.

Without loss of generality, assume f L � f R . To construct
a fault-free even cycle of length at least 18 in Q 5, we con-
sider two cases.

Case 3. f L = 4.

In this case, f R = 3. By Lemma 2.1, in Lk , there is a
fault-free even cycle CL of at least 8. Since f R = 3, there
are two adjacent edges, say uv and vs in CL such that
{uR , v R , sR} ∩ F R = ∅. Clearly, v R has two fault-free neigh-
bors uR and sR , and at least one of uR and sR has two
fault-free neighbors in Rk , say uR . By Lemma 2.4, there is
a fault-free uR v R -path PuR v R of length at least 9 in Rk .
Thus, CL − uv + uuR + v v R + PuR v R is a fault-free even cy-
cle of length at least 18 in Q 5.

Case 4. f L = 5.

In this case, f R = 2. For any vertex x ∈ F L , let Fx =
F L − {x}. By Lemma 2.1, there is a cycle Cx of length at
least 8 in Lk − Fx .

If there exists some x ∈ F L such that x is not in Cx , then
choose an edge uv ∈ Cx such that both uR and v R are not
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Fig. 2. Five black vertices are faulty vertices in Q 5.

in F R . By Lemma 2.2, in Rk , there is a fault-free uR v R -
path PuR v R of length at least 11. Then Cx − uv + uuR +
v v R + PuR v R is a fault-free even cycle of length at least 20
in Q 5.

Now assume that x is in Cx for any x ∈ F L . Let Px

be a ux vx-section of length three in Cx containing x
as an internal vertex. If both ux

R and vx
R are fault-free

then, by Lemma 2.2, in Rk there exists a fault-free ux
R vx

R -
path Pux

R vx
R

of length at least 11. Thus, Cx − Px + uxux
R +

vx vx
R + Pux

R vx
R

is a fault-free even cycle of length at least
18 in Q 5.

We now show that there must be such an x ∈ F L and a
path Px that satisfy the above requirements. Note that P x

has the form 〈ux, wx, x, vx〉 or 〈wx, x, vx, sx〉 for any x ∈ F L .
If there is no such a path Px , then there exists at least one
of either {ux, vx}, or {wx, sx} whose neighbor in Rk is a
faulty vertex for any x ∈ F L . Without loss of generality, as-
sume that ux and wx are such two vertices. Then there
are at most two, say y and z, in F L different from x such
that both C y and Cz contain the edge ux wx and both y
and z are adjacent to wx (see Fig. 2). Since wx has neigh-
bors ux, x, y, z in Lk , for any p ∈ F L − {x, y, z}, C p does not
contain the edge ux wx , and so there exists a path P p that
satisfy our requirements.

The lemma follows. �
Proof of Theorem. We proceeds by induction on n � 5. For
n = 5, the assertion holds by Lemma 2.6. Assume the in-
duction hypothesis for n − 1 with n � 6.

By Lemma 2.5, there exists a k ∈ {1,2,3,4,5} such that,
in Q n = Lk � Rk , f L � 2 and f R � 2.

Without loss of generality, we can assume f L � f R .
Then f L � 2n − 5 and f R � n − 2. By the induction hy-
pothesis, there is fault-free even cycle CL of length at least
2n−1 − 2|F L |. Since f R + f L = 2n − 3 and n � 6,

2n−1 − 2 f L � 2 f R + 3,

which implies that there are two non-adjacent edges
uv and rs in CL such that {uR , v R , rR , sR} ∩ F R = ∅. In
{uR v R , rR sR}, there exists at least on edge, say uR v R ,
such that both uR and v R have at least two fault-free
neighbors in Rk . By Lemma 2.2, Rk contains a fault-free
uR v R -path PuR v R of length at least 2n−1 − 2 f R − 1. Thus,
CL − uv + uuR + v v R + PuR v R is a fault-free even cycle of
length at least 2n − 2 f v .

The theorem follows. �
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