Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

A note on cycle embedding in hypercubes with faulty vertices ${ }^{\text {th}}$

Zheng-Zhong Du, Jun-Ming Xu*
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

A R T I CLE I N F O

Article history:

Received 23 September 2010
Received in revised form 28 February 2011
Accepted 3 March 2011
Available online 17 March 2011
Communicated by A.A. Bertossi

Keywords:

Combinatorics
Cycle
Graph
Hypercube
Fault tolerance

Abstract

Let f_{v} denote the number of faulty vertices in an n-dimensional hypercube. This note shows that a fault-free cycle of length of at least $2^{n}-2 f_{v}$ can be embedded in an n-dimensional hypercube with $f_{v}=2 n-3$ and $n \geqslant 5$. This result not only enhances the previously best known result, and also answers a question in [J.-S. Fu, Fault-tolerant cycle embedding in the hypercube, Parallel Computing 29 (2003) 821-832].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

To find a cycle of given length in a graph is a cycle embedding problem. In this paper we consider the problem of embedding a cycle in a hypercube network with faulty vertices. This problem has received many researchers' attention in the recent years, see for example, [1-27]. Let f_{v} and f_{e} be the number of faulty vertices and edges, respectively. Fu [9] showed that a fault-free cycle of length at least $2^{n}-2 f_{v}$ can be embedded in Q_{n} if $n \geqslant 3$ and $f_{v} \leqslant 2 n-4$. Hsieh [11] improved by proving that a faultfree cycle of length at least $2^{n}-2 f_{v}$ can be embedded in Q_{n} if $n \geqslant 3, f_{e}+f_{v} \leqslant 2 n-4$ and $f_{e} \leqslant n-2$.

In [9], Fu gave an example to show that a fault-free cycle of length at least $2^{4}-2 \times 5=6$ cannot be embedded in Q_{4} with five faulty vertices. At the same time, he pointed: it is not easy to prove that a fault-free cycle of length of at least $2^{n}-2 f_{v}$ cannot be embedded in Q_{n} with f_{v} faulty vertices if $n \geqslant 5$ and $f_{v} \geqslant 2 n-3$. In this note, we answer this question by proving the following theorem.

[^0]Theorem. In Q_{n}, if $n \geqslant 5$ and $f_{v}=2 n-3$, then there is a faultfree even cycle of length at least $2^{n}-2 f_{v}$.

2. Proof of theorem

For graph-theoretical terminology and notation not defined here, we follow [28]. Let $G=(V, E)$ be a connected simple graph, where $V=V(G)$ is the vertex-set and $E=E(G)$ is the edge-set of G. A $u v$-path is a sequence of adjacent vertices, written as $\left\langle v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right\rangle$, in which $u=v_{0}, v=v_{m}$ and all the vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{m}$ are different from each other. The length of a path P is the number of edges in P. Let $d_{G}(u, v)$ be the length of a shortest $u v$-path in graph G. For a path $P=\left\langle v_{0}, v_{1}, \ldots, v_{i}, v_{i+1}, \ldots, v_{m}\right\rangle$, we can express P as $P=P\left(v_{0}, v_{i}\right)+v_{i} v_{i+1}+P\left(v_{i+1}, v_{m}\right)$.

An n-dimensional hypercube Q_{n} is a graph with 2^{n} vertices, in which each vertex is denoted by an n-bit binary string $u=u_{n} u_{n-1} \cdots u_{2} u_{1}$. Two vertices are adjacent if and only if their strings differ in exactly one bit position. It has been proved that Q_{n} is a vertex and edge transitive bipartite graph.

By the definition, for any $k \in\{1,2, \ldots, n\}, Q_{n}$ can be expressed as $Q_{n}=L_{k} \odot R_{k}$, where L_{k} and R_{k} are two subgraphs of Q_{n} induced by the vertices with the k bit position is 0 and 1 , respectively, which are isomorphic to Q_{n-1}.

We call edges between L_{k} and R_{k} to be k-dimensional, which form a perfect matching of Q_{n}. Clearly, for any edge e of Q_{n}, there is some $k \in\{1,2, \ldots, n\}$ such that e is k-dimensional. Use u_{L} and u_{R} to denote two vertices in L_{k} and R_{k}, respectively, linked by the k-dimensional edge $u_{L} u_{R}$ in Q_{n}.

Let F_{v} denote a set of faulty vertices in Q_{n}, and $f_{v}=$ $\left|F_{v}\right|$. For any $k \in\{1,2, \ldots, n\}$, we always express Q_{n} as $Q_{n}=L_{k} \odot R_{k}$, and $F_{L}=F_{v} \cap L_{k}$ and $F_{R}=F_{v} \cap R_{k}$. Let $f_{L}=\left|F_{L}\right|$ and $f_{R}=\left|F_{R}\right|$.

Lemma 2.1. (See Fu [9].) In Q_{n}, if $n \geqslant 3$ and $f_{v} \leqslant 2 n-4$, then Q_{n} contains a fault-free even cycle of length at least $2^{n}-2 f_{v}$.

Lemma 2.2. (See Hsieh [11].) In Q_{n}, if $n \geqslant 3$ and $f_{v} \leqslant n-2$, then for any two fault-free vertices x and y with odd distance, then there is a fault-free xy-path of length at least $2^{n}-2 f_{v}-1$.

Lemma 2.3. In Q_{3}, if $f_{v} \leqslant 2$, then for any fault-free edge xy there is a fault-free even cycle of length at least $8-2 f_{v}$ containing $x y$ provided that both x and y have at least two fault-free neighbors.

Proof. It is not difficult to check the result holds.

Lemma 2.4. In Q_{4}, if $f_{v}=3$, then for any fault-free edge xy there is a fault-free even cycle of length at least 10 containing $x y$ provided that both x and y have at least two fault-free neighbors.

Proof. Let $x y$ be a fault-free edge in Q_{4}. Then there exists a $k \in\{1,2,3,4\}$ such that $Q_{4}=L_{k} \odot R_{k}, x \in L$ and $y \in R$. Without loss of generality, we can assume $f_{L} \geqslant f_{R}$. Consider two cases.

Case 1. $f_{L}=3$.
In this case, $f_{R}=0$. Since both x and y have at least two fault-free neighbors in Q_{4}, there is a fault-free neighbor u_{L} of x in L such that u_{R} is fault-free in R. Then $y u_{R} \in E(R)$. By Lemma 2.3, in R there is a fault-free $y u_{R^{-}}$ path $P_{y u_{R}}$ of length 7. Thus, $x y+P_{y u_{R}}+u_{R} u_{L}+u_{L} x$ is a fault-free cycle of length 10 in Q_{4}.

Case 2. $f_{L}=2$.
In this case $f_{R}=1$. If x has at least two fault-free neighbors in L, then we can find a fault-free neighbor u_{L} such that u_{R} in R is fault-free, and u_{L} has at least two fault-free neighbors in L. By Lemma 2.3, in L there is a fault-free $x u_{L}$-path $P_{u_{L} x}$ of length 3 , and in R there is a fault-free $y u_{R}$-path $P_{y u_{R}}$ of length 5. Thus, $x y+P_{y u_{R}}+$ $u_{R} u_{L}+P_{u_{L} X}$ is a fault-free cycle of length 10 in Q_{4}.

If x has exact one fault-free neighbor in L (see Fig. 1). Then three vertices (that is, x_{1}, x_{2}, x_{3} in Fig. 1) with distance two to x in L are fault-free, at least one, say u_{L}, of them has a fault-free neighbor u_{R} in R. There is a faultfree $x u_{L}$-path of length 4 in L, denoted by $P_{x u_{L}}$. Similarly, there is a fault-free $u_{R} y$-path of length 4 in R, denoted

Fig. 1. Two black vertices are faulty neighbors of x in Q_{3}.
by $P_{u_{R} y}$. Thus $P_{x u_{L}}+u_{L} u_{R}+P_{u_{R} y}+y x$ is a fault-free cycle of length 10 in Q_{4}.

Lemma 2.5. In Q_{n}, if $f_{v} \geqslant n+2$, then there exists a $k \in$ $\{1,2, \ldots, n\}$ such that, in $Q_{n}=L_{k} \odot R_{k}$, both L_{k} and R_{k} contain at least two faulty vertices.

Proof. We only need to prove that the assertion holds for $f_{v}=n+2$. Suppose to the contrary that $f_{L} \leqslant 1$ or $f_{R} \leqslant$ 1 for any $k \in\{1,2, \ldots, n\}$. Then there are at least $(n+1)$ faulty vertices whose k-th bit positions are identical for every $k \in\{1,2, \ldots, n\}$.

Denote by F_{v}^{n} the set of faulty vertices whose n-th bit positions are identical, and denote by F_{v}^{n-k} the set of vertices in F_{v}^{n-k+1} whose $(n-k)$-bit positions are identical for each $k=1,2, \ldots, n-1$. Then $\left|F_{v}^{n}\right| \geqslant n+1$ and $\left|F_{v}^{n-k}\right| \geqslant n+1-k$ for each $k=1,2, \ldots, n-1$. Thus, we have $\left|F_{v}^{1}\right| \geqslant 2$, which is impossible since all bit positions of any vertex in F_{v}^{1} are identical.

Lemma 2.6. In Q_{5}, if $f_{v}=7$, then there is a fault-free even cycle of length at least 18 .

Proof. Since $f_{v}=7$, by Lemma 2.5 , there exists a $k \in$ $\{1,2,3,4,5\}$ such that, in $Q_{n}=L_{k} \odot R_{k}, f_{L} \geqslant 2$ and $f_{R} \geqslant 2$.

Without loss of generality, assume $f_{L} \geqslant f_{R}$. To construct a fault-free even cycle of length at least 18 in Q_{5}, we consider two cases.

Case 3. $f_{L}=4$.
In this case, $f_{R}=3$. By Lemma 2.1, in L_{k}, there is a fault-free even cycle C_{L} of at least 8 . Since $f_{R}=3$, there are two adjacent edges, say $u v$ and $v s$ in C_{L} such that $\left\{u_{R}, v_{R}, s_{R}\right\} \cap F_{R}=\emptyset$. Clearly, v_{R} has two fault-free neighbors u_{R} and s_{R}, and at least one of u_{R} and s_{R} has two fault-free neighbors in R_{k}, say u_{R}. By Lemma 2.4, there is a fault-free $u_{R} v_{R}$-path $P_{u_{R} v_{R}}$ of length at least 9 in R_{k}. Thus, $C_{L}-u v+u u_{R}+v v_{R}+P_{u_{R} v_{R}}$ is a fault-free even cycle of length at least 18 in Q_{5}.

Case 4. $f_{L}=5$.
In this case, $f_{R}=2$. For any vertex $x \in F_{L}$, let $F_{x}=$ $F_{L}-\{x\}$. By Lemma 2.1, there is a cycle C_{x} of length at least 8 in $L_{k}-F_{x}$.

If there exists some $x \in F_{L}$ such that x is not in C_{x}, then choose an edge $u v \in C_{x}$ such that both u_{R} and v_{R} are not

Fig. 2. Five black vertices are faulty vertices in Q_{5}.
in F_{R}. By Lemma 2.2, in R_{k}, there is a fault-free $u_{R} v_{R^{-}}$ path $P_{u_{R} v_{R}}$ of length at least 11. Then $C_{x}-u v+u u_{R}+$ $v v_{R}+P_{u_{R} v_{R}}$ is a fault-free even cycle of length at least 20 in Q_{5}.

Now assume that x is in C_{x} for any $x \in F_{L}$. Let P_{x} be a $u^{x} v^{x}$-section of length three in C_{x} containing x as an internal vertex. If both u_{R}^{x} and v_{R}^{x} are fault-free then, by Lemma 2.2, in R_{k} there exists a fault-free $u_{R}^{x} v_{R}^{x}{ }^{-}$ path $P_{u_{R}^{x} v_{R}^{x}}$ of length at least 11. Thus, $C_{x}-P_{x}+u^{x} u_{R}^{x}+$ $v^{x} v_{R}^{x}+P_{u_{R}^{x}} v_{R}^{x}$ is a fault-free even cycle of length at least 18 in Q_{5}.

We now show that there must be such an $x \in F_{L}$ and a path P_{x} that satisfy the above requirements. Note that P_{x} has the form $\left\langle u^{x}, w^{x}, x, v^{x}\right\rangle$ or $\left\langle w^{x}, x, v^{x}, s^{x}\right\rangle$ for any $x \in F_{L}$. If there is no such a path P_{x}, then there exists at least one of either $\left\{u^{x}, v^{x}\right\}$, or $\left\{w^{x}, s^{x}\right\}$ whose neighbor in R_{k} is a faulty vertex for any $x \in F_{L}$. Without loss of generality, assume that u^{x} and w^{x} are such two vertices. Then there are at most two, say y and z, in F_{L} different from x such that both C_{y} and C_{z} contain the edge $u^{x} w^{x}$ and both y and z are adjacent to w^{x} (see Fig. 2). Since w^{x} has neighbors u^{x}, x, y, z in L_{k}, for any $p \in F_{L}-\{x, y, z\}, C_{p}$ does not contain the edge $u^{x} w^{x}$, and so there exists a path P_{p} that satisfy our requirements.

The lemma follows.

Proof of Theorem. We proceeds by induction on $n \geqslant 5$. For $n=5$, the assertion holds by Lemma 2.6. Assume the induction hypothesis for $n-1$ with $n \geqslant 6$.

By Lemma 2.5, there exists a $k \in\{1,2,3,4,5\}$ such that, in $Q_{n}=L_{k} \odot R_{k}, f_{L} \geqslant 2$ and $f_{R} \geqslant 2$.

Without loss of generality, we can assume $f_{L} \geqslant f_{R}$. Then $f_{L} \leqslant 2 n-5$ and $f_{R} \leqslant n-2$. By the induction hypothesis, there is fault-free even cycle C_{L} of length at least $2^{n-1}-2\left|F_{L}\right|$. Since $f_{R}+f_{L}=2 n-3$ and $n \geqslant 6$,
$2^{n-1}-2 f_{L} \geqslant 2 f_{R}+3$,
which implies that there are two non-adjacent edges $u v$ and $r s$ in C_{L} such that $\left\{u_{R}, v_{R}, r_{R}, s_{R}\right\} \cap F_{R}=\emptyset$. In $\left\{u_{R} v_{R}, r_{R} s_{R}\right\}$, there exists at least on edge, say $u_{R} v_{R}$, such that both u_{R} and v_{R} have at least two fault-free neighbors in R_{k}. By Lemma 2.2, R_{k} contains a fault-free $u_{R} v_{R}$-path $P_{u_{R} v_{R}}$ of length at least $2^{n-1}-2 f_{R}-1$. Thus, $C_{L}-u v+u u_{R}+v v_{R}+P_{u_{R} v_{R}}$ is a fault-free even cycle of length at least $2^{n}-2 f_{v}$.

The theorem follows.

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their kind suggestions and useful comments on the original manuscript, which resulted in this final version.

References

[1] S.G. Akl, Parallel Computation: Models and Methods, Prentice Hall, 1997.
[2] M.Y. Chan, S.J. Lee, On the existence of Hamiltonian circuits in faulty hypercubes, SIAM Journal on Discrete Mathematics 4 (1991) 511527.
[3] X.-B. Chen, Cycles passing through prescribed edges in a hypercube with some faulty edges, Information Processing Letters 104 (6) (2007) 211-215.
[4] X.-B. Chen, Many-to-many disjoint paths in faulty hypercubes, Information Sciences 179 (18) (2009) 3110-3115.
[5] X.-B. Chen, On path bipancyclicity of hypercubes, Information Processing Letters 109 (12) (2009) 594-598.
[6] X.-B. Chen, Hamiltonian paths and cycles passing through a prescribed path in hypercubes, Information Processing Letters 110 (2) (2009) 77-82.
[7] X.-B. Chen, Cycles passing through a prescribed path in a hypercube with faulty edges, Information Processing Letters 110 (16) (2010) 625-629.
[8] X.-B. Chen, Edge-fault-tolerant diameter and bipanconnectivity of hypercubes, Information Processing Letters 110 (24) (2010) 1088-1092.
[9] J.S. Fu, Fault-tolerant cycle embedding in the hypercube, Parallel Computing 29 (2003) 821-832.
[10] F. Harary, J.P. Hayes, Edge fault tolerance in graphs, Networks 23 (1993) 135-142.
[11] S.-Y. Hsieh, Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges, Parallel Computing 32 (1) (2006) 84-91.
[12] S.-Y. Hsieh, N.-W. Chang, Hamiltonian path embedding and pancyclicity on the Mobius cube with faulty nodes and faulty edges, IEEE Transactions on Computers 55 (7) (2006) 854-863.
[13] S.-Y. Hsieh, G.-H. Chen, C.-W. Ho, Hamiltonianlaceability of star graphs, Networks 36 (4) (2000) 225-232.
[14] S.-Y. Hsieh, C.-W. Ho, G.-H. Chen, Fault-free Hamiltonian cycles in faulty arrangement graphs, IEEE Transactions on Parallel and Distributed Systems 10 (3) (1999) 223-237.
[15] S.-Y. Hsieh, C.-W. Lee, Conditional edge-fault hamiltonicity of matching composition networks, IEEE Transactions on Parallel and Distributed Systems 20 (4) (2009) 581-592.
[16] S.-Y. Hsieh, C.-W. Lee, Pancyclicity of restricted hypercube-like networks under the conditional fault model, SIAM Journal on Discrete Mathematics 23 (4) (2010) 2010-2019.
[17] S. Latifi, S. Zheng, N. Bagherzadeh, Optimal ring embedding in hypercubes with faulty links, in: Twenty-Second International Symposium on Fault-Tolerant Computing, FTCS-22, Digest of papers, 1992, pp. 178-184.
[18] F.T. Leighton, Introduction to Parallel Algorithms and Architecture: Arrays, Trees, Hypercubes, Morgan Kaufmann, San Mateo, 1992.
[19] T.K. Li, C.H. Tsai, J.J.M. Tan, L.H. Hsu, Bipanconnected and edge-faulttolerant bipancyclic of hypercubes, Information Processing Letters 87 (2003) 107-110.
[20] A. Sengupta, On ring in hypercubes with faulty nodes and links, Information Processing Letters 68 (1998) 207-214.
[21] C.H. Tsai, Linear array and ring embeddings in conditional faulty hypercubes, Theoretical Computer Science 314 (3) (2004) 431-443.
[22] C.H. Tsai, J.J.M. Tan, T. Liang, L.H. Hsu, Fault tolerant Hamiltonian laceability of hypercubes, Information Processing Letters 83 (2002) 301-306.
[23] Y.C. Tseng, Embedding a ring in a hypercube with both faulty links and faulty nodes, Information Processing Letters 59 (1996) 217-222.
[24] H.-L. Wang, J.-W. Wang, J.-M. Xu, Edge-fault-tolerant bipanconnectivity of hypercubes, Information Sciences 179 (4) (2009) 404-409.
[25] J.-M. Xu, Z.-Z. Du, M. Xu, Edge-fault-tolerant edge-bipancyclicity of
hypercubes, Information Processing Letters 96 (4) (2005) 146-150.
[26] J.-M. Xu, M.-J. Ma, A survey on cycle and path embedding in some networks, Frontiers of Mathematics in China 4 (2) (2009) 217-252.
[27] J.-M. Xu, Topological Structure and Analysis of Interconnection

Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.
[28] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

[^0]: The work was supported by NNSF of China (No. 11071233).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

