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Fault tolerance is especially important for interconnection networks, since the growing size
of the networks increases its vulnerability to component failures. A classic measure for
the fault tolerance of a network in the case of vertex failures is its connectivity. Given
a network based on a graph G and a positive integer h, the Rh-connectivity of G is the
minimum cardinality of a set of vertices in G , if any, whose deletion disconnects G , and
every remaining component has minimum degree at least h. This paper investigates the
Rh-connectivity of the (n,k)-arrangement graph An,k for h = 1 and h = 2, and determines
that κ1(An,k) = (2k − 1)(n − k) − 1 and κ2(An,k) = (3k − 2)(n − k) − 2, respectively.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The study of interconnection networks has been an im-
portant research area for parallel and distributed computer
systems. Network reliability is one of the major factors
in designing the topology of an interconnection network.
A network can be modeled as a graph G = G(V , E). The
traditional connectivity κ(G) is an important parameter to
measure the fault tolerance of the network. However, there
is an obvious deficiency in the definition of κ(G), it is tac-
itly assumed that all vertices incident with a vertex can
potentially fail at the same time. To compensate for this
shortcoming, it is natural to generalize the classical con-
nectivity by introducing some conditions or restrictions on
the separating set S and/or the components of G − S .

Motivated by the shortcomings of the traditional con-
nectivity measure, Harary [11] introduced the concept of
conditional connectivity by requiring some property for
disconnected components of G − S . Esfahanian [10] studied
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the fault tolerance of graphs by using the notion of forbid-
den sets. Although a forbidden faulty set R can be chosen
as any subset of vertices of G , some choices will be more
useful than others. In what follows, we consider R as such
a set

R = {
N(x): ∀x ∈ V (G)

}
,

where N(x) denotes the set of neighbors of x, i.e., N(x) =
{y: xy ∈ E(G)}. In other words, the set N(x) of neighbors
of any vertex x is considered as a forbidden faulty set. This
implies that all processors which are directly connected to
any processor cannot fail at the same time, i.e., each vertex
in G has at least one healthy neighbor. Such a considera-
tion is specially true since the probability that all faulty
vertices are neighbors of one vertex is very small.

For a given R , a non-empty and proper subset S of
V (G) is called a restricted vertex cut of G , R-vertex cut for
short, if S contains no element in R and G − S is dis-
connected. The restricted connectivity with respect to R ,
R-connectivity for short, of G , denoted by κR(G), is defined
as

κR(G) = min
{|S|: S is an R-vertex cut of G

}
.

From the choice of forbidden faulty vertex sets R of G ,
it is clear that a vertex cut S of G is an R-vertex cut if
and only if G − S contains no isolated vertices. Motivated
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by this simple observation, Latifi et al. [15] generalized
the concept of κR(G) to more general case. Let G be a d-
regular graph, h an integer with 0 � h < d, and let

A h(x) = {
X ⊂ NG(x): |X | > d − h

}
for x ∈ V (G).

A subset of vertices of G is called a forbidden faulty set of
G if and only if it belongs to A h(x) for some x ∈ V (G).
In other words, each vertex in G has at least h healthy
neighbors. We use the symbol A h to denote the collec-
tion of such forbidden faulty sets. It is clear that a vertex
cut S of G is an Rh-vertex cut if and only if G − S contains
no vertices of degree less than h. The Rh-restricted connec-
tivity with respect to A h , Rh-connectivity for short, of G ,
denoted by κh

R(G), is defined as

κh
R(G) = min

{|S|: S is an Rh-vertex cut of G
}
.

Clearly, for h = 0 and 1, we have κ0
R(G) = κ(G) and

κ1
R(G) = κ ′(G) clearly.

This new measurement κh
R(G) in conjunction with κ(G)

can provide a more accurate measure for fault tolerance
of a large-scale parallel processing system G . This gives
rise to a fundamental question that for a given graph G
how can κh

R(G) be computed? However, no polynomial-
time algorithm for the computation of κh

R(G) on a general
graph is known, nor do we know any tight upper bound
for κh

R(G). Thus, one is interested in determining precise
values of κh

R(G) for some particular classes of graphs. For
the n-dimensional hypercube Q n , Esfahanian [10] proved
that κ1

R(Q n) = 2n − 2, Latifi et al. [15], Oh and Choi [17]
independently determined κh

R(Q n) = (n − h)2h for 1 � h �
� 1

2 n�. For the n-dimensional star graph Sn , Hu and Yang
[14] proved that κ1

R(Sn) = 2n − 4.
To simplify the computation of κh

R(G), Wan and Zhang
[18] proposed a kind of conditional connectivity by plac-
ing some requirements on the components of G − F only.
Given a network based on a graph G and a positive in-
teger h, the Rh-connectivity of G , denoted by κh(G), is
the minimum cardinality of a set of vertices in G , if any,
whose deletion disconnects G , and every remaining com-
ponent has minimum degree at least h. Wan and Zhang
[18] determined κ2(Sn) = 6(n −3) for n � 4. For the (n,k)-
star graphs Sn,k , Yang et al. [20] proved that κ1(Sn,k) =
n + k − 3, and κ2(Sn,k) = n + 2k − 5 for 2 � k � n − 2. For
the n-dimensional alternating group graph AGn , Cheng et
al. [4] gave a detailed characterization of fault tolerance of
the 2-tree generated networks which has AGn as a spe-
cial case, and obtained that κ1(AG4) = 4 and κ1(AGn) =
4n − 11 for n � 5. Zhang et al. [21] proved κ2(AG4) = 4
and κ2(AGn) = 6n − 18 for n � 5.

In this paper, we consider the (n,k)-arrangement graph
An,k , and determine that κ1(An,k) = (2k − 1)(n − k) − 1
and κ2(An,k) = (3k − 2)(n − k) − 2. In Section 2, we re-
call some definitions, notations and the structure of (n,k)-
arrangement graph An,k . The proofs of our results are in
Section 3.

2. Arrangement graphs

For notation and terminology not defined here we fol-
low [22]. Specifically, we use a graph G = G(V , E) to rep-
resent an interconnection network, where a vertex u ∈ V
represents a processor and an edge (u, v) ∈ E represents
a link between vertices u and v . If at least one end of
an edge is faulty, the edge is said to be faulty; other-
wise, the edge is said to be fault-free. Let S be a subset of
V (G). The subgraph of G induced by S , denoted by G[S], is
the graph with the vertex-set S and the edge-set {(u, v) |
(u, v) ∈ E(G), u, v ∈ S}. For a vertex u in G , N(u) denotes
the set of all neighbors of u, i.e., N(u) = {v | (u, v) ∈ E}.
Let H be a subgraph of G or a subset of V (G), and let
N(S) = ⋃

u∈S(u) \ S . We use Kn to denote the complete
graph of order n, and d(u, v) to denote the distance be-
tween u and v , the length of a shortest path between u
and v in G . The diameter of G is defined as the maximum
distance between any two vertices in G .

For any subset F ⊂ V , the notation G − F denotes a
graph obtained by removing all vertices in F from G and
deleting those edges with at least one end-vertex in F ,
simultaneously. If G − F is disconnected, F is called a sep-
arating set. A separating set F is called a k-separating set
if |F | = k. The maximal connected subgraphs of G − F are
called components. The connectivity κ(G) of G is defined as
the minimum k for which G has a k-separating set; other-
wise κ(G) is defined n − 1 if G = Kn . A graph G is called
to be k-connected if κ(G) � k. A k-separating set is called
to be minimum if k = κ(G).

Network reliability is one of the major factors in de-
signing the topology of an interconnection network. The
well-known hypercube is the first major class of intercon-
nection networks. As another topology of an interconnec-
tion network, Akers and Krishnamurthy [1] proposed the
star graph Sn , which has smaller degree, diameter, and
average distance than the comparable hypercube, while re-
serving symmetry properties and desirable fault-tolerant
characteristics. As a result, the star graph has been rec-
ognized as an alternative to the hypercube. However, the
star graph is less flexible in adjusting its sizes. With the
restriction on the number of vertices, there is a large gap
between n! and (n+1)! for expanding an Sn to Sn+1. To re-
lax the restriction of the numbers of vertices n! in Sn . The
arrangement graph was proposed by Day and Tripathi [7]
as a generalization of the star graph Sn . It is more flexible
in its size than Sn .

Definition 2.1. Given two positive integers n and k with
n > k, let 〈n〉 denote the set {1,2, . . . ,n}, and let Pn,k
be a set of arrangements of k elements in 〈n〉. The
(n,k)-arrangement graph, denoted by An,k , has vertex-set
V (An,k) = Pn,k and edge-set E(An,k) = {(p,q) | p and q dif-
fer in exactly one position}.

The graph shown in Fig. 1 is a (4,2)-arrangement graph
A4,2.

Clearly, An,k is a k(n − k)-regular graph with n!
(n−k)! ver-

tices. It was showed by Day and Tripathi [7] that An,k is
vertex-symmetric and edge-symmetric and has the diame-
ter of � 3k

2 �. Day and Tripathi [8] showed that the connec-
tivity is κ(An,k) = k(n − k).

Moreover, An,1 is isomorphic to the complete graph Kn ,
and An,n−1 is isomorphic to the n-dimensional star graph
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Fig. 1. The structure of A4,2. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)

Sn . Chiang and Chen [6] showed that An,n−2 is isomorphic
to the n-alternating group graph AGn .

For two distinct i and j in 〈n〉, let V j:i
n,k be the set of all

vertices in An,k with the jth position being i, that is,

V j:i
n,k = {p | p = p1 · · · p j · · · pk ∈ Pn,k and p j = i}.

For a fixed position j ∈ 〈n〉, {V j:i
n,k | 1 � i � n} forms a par-

tition of V (An,k). Let A j:i
n,k denote the subgraph of An,k

induced by V j:i
n,k . Then for each j ∈ 〈n〉, A j:i

n,k is isomorphic
to An−1,k−1. For example, a partition of A4,2 is shown in
Fig. 1, where red triangles are A2:i

4,2’s with i ∈ 〈4〉, which is
isomorphic to A3,1 = K3.

Thus, An,k can be recursively constructed from n copies

of An−1,k−1. It is easy to check that each A j:i
n,k is a sub-

graph of An,k , and we say that An,k is decomposed into

n subgraphs A j:i
n,k ’s according to the jth position. For sim-

plicity, by the symmetry of An,k we shall take j as the last
position k, and use Ai

n,k to denote Ak:i
n,k .

Let E(i, j) be the set of edges between Ai
n,k and A j

n,k ,
that is,

E(i, j) = {
(p,q) ∈ E(An,k)

∣∣ p ∈ V
(

Ai
n,k

)
and q ∈ (

A j
n,k

)}
.

Clearly, E(i, j) is a perfect matching (a set of edges in
which any two edges have no common end-vertex) be-
tween Ai

n,k and A j
n,k , and

∣∣E(i, j)
∣∣ = (n − 2)!

(n − k − 1)! . (2.1)

Let u ∈ V (Ai
n,k) for some i ∈ 〈n〉 and I be a subset of

〈n〉. We use N I (u) to denote the set of all neighbors of
u in some A j

n,k with j ∈ I . Particularly, we use Ni(u) and

Ni(u) as an abbreviation of N〈n〉−{i}(u) and N{i}(u), respec-
tively, and call vertices in Ni(u) the outer neighbors of u.
Obviously, every vertex u of Ai

n,k has n−k outer neighbors,
and two arbitrary outer neighbors of u are distributed in
distinct subgraphs. It follows from the definitions that
∣∣Ni(u)
∣∣ = (k − 1)(n − k) and

∣∣Ni(u)
∣∣ = n − k, (2.2)

and Ni(u)∩ Ni(v) = ∅ for any two distinct u and v in Ai
n,k .

We say that one vertex u is adjacent to some subgraph
A j

n,k if u has an outer neighbor in A j
n,k . Let

V i = {
u1u2 · · · ui−1xui+1 · · · uk

∣∣
x ∈ 〈n〉 \ {u1, u2, . . . , ui−1, ui+1, . . . , uk}

}
.

Then the graph induced by V i is a complete graph of or-
der n − k + 1 and a subgraph of Auk

n,k , which implies that
any two adjacent vertices have exactly (n − k − 1) com-
mon neighbors. Thus, by the edge-transitivity of An,k , for
any edge e,∣∣N(e)

∣∣ = 2k(n − k) − (n − k − 1) − 2

= (2k − 1)(n − k) − 1. (2.3)

Other fault tolerant properties of the arrangement
graph have received considerable attention in the litera-
ture. First, Day and Tripathi [9] showed the existence of
pancyclicity. Hsieh et al. [12] investigated the existence
of hamiltonian cycle in An,k with faulty vertices, Lo and
Chen [16] studied hamiltonian connectedness of An,k with
faulty edges. Hsu et al. [13] further obtained an optimal
result that the graph An,k (n � k + 2) is (k(n − k) − 2)-
hamiltonian and (k(n − k) − 3)-hamiltonian connected in
G − F for any F ⊂ V (G) ∪ E(G) with |F | � f . Teng et al.
[19] showed that An,k is panpositionable hamiltonian and
panconnected if k > 1 and n � k + 2. In addition, Bai et
al. [2] proposed a distributed algorithm with optimal time
complexity and without message redundancy for one-to-
all broadcasting in one-port communication model on the
fault-free arrangement graphs, and also developed a fault
tolerant broadcasting algorithm with less than k(n − k)

faulty edges. Chen et al. [3] presented efficient one/all-
to-all broadcasting algorithms on the arrangement graphs
by constructing n − k spanning trees, where the height of
each tree is 2n − 1.

3. Conditional connectivity of the arrangement graph

We first consider the conditional connectivity of (4,2)-
arrangement graph A4,2. For any edge e of A4,2, N(e) is an
R1-vertex cut with |N(e)| = (2k − 1)(n −k)− 1 = 5, but the
R1-connectivity of A4,2 is 4. So N(e) is not the minimum
R1-vertex cut coinciding with the R1-connectivity of A4,2.
In the following, we consider the R1-connectivity of An,k
for k � 3, n � k + 1.

Lemma 3.1. Let F ⊂ V (An,k) be a faulty set of arrangement
graph An,k. Let I be a subset of 〈n〉 such that fi � (k − 1)(n −k)

for any i ∈ I and let

AI
n,k =

⋃
i∈I

Ai
n,k, F I =

⋃
i∈I

F i .

Then

(1) If |F | � (2k − 1)(n − k) − 1 with k � 3, then |I| � 2, and
An,k − (AI

n,k ∪ F ) is connected.
(2) If |F | � (3k − 2)(n − k) − 2 with k � 4, then |I| � 3, and

An,k − (AI ∪ F ) is connected.
n,k
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Proof. (1) It is easy to see that |I| � 2 because of 3((k −
1)(n − k)) > (2k − 1)(n − k) − 2 � |F |.

Suppose that f j � (k − 1)(n − k) − 1 for any j ∈ 〈n〉 − I .

Then A j
n,k − F j is connected since A j

n,k is (k − 1)(n − k)-

connected. To show that An,k − (AI
n,k ∪ F ) is connected, it

suffices to show that Ax
n,k and A y

n,k are connected in An,k −
F for any two distinct x, y ∈ 〈n〉− I . For k � 3 and n � k+1,
we have that

∣∣E(x, y)
∣∣ = (n − 2)!

(n − k − 1)!
= (n − 2)(n − 3) · · · (n − k)

×

⎧⎪⎨
⎪⎩

> 2((k − 1)(n − k) − 1)

if k � 4 or k = 3 and n � 6;
= 2(2n − 7)

if k = 3 and n ∈ {4,5}.
(3.1)

When either k � 4 or k = 3 and n � 6, there is a fault-
free edge e in E(x, y) since fx + f y � 2((k−1)(n−k)−1) <

|E(x, y)|, so Ax
n,k − Fx and A y

n,k − F y are connected by the
fault-free edge e in E(x, y).

When k = 3 and n ∈ {4,5}, if there is a fault-free edge e
in E(x, y), then Ax

n,k − Fx and A y
n,k − F y are connected by

the fault-free edge e in E(x, y), we are done; otherwise,
we assume, without loss of generality, that all the edges
in E(x, y) are faulty. Then by (3.1), fx = f y = 2n − 7 for
n ∈ {4,5}. In this case, |F | � 7n − 24, |〈n〉 − I| � 3. For any
three distinct x, y, z ∈ 〈n〉 − I ,

|F | − ( fx + f y) � (7n − 24) − 2(2n − 7)

= 3n − 10

=
{

5 < |E(x, z)| = |E(z, y)| if n = 5;
2 = |E(x, z)| = |E(z, y)| if n = 4.

(3.2)

If n = 5 then, by (3.2), there are a fault-free edge e1 in
E(x, z) and a fault-free edge e2 in E(z, y). Then Ax

5,3 and

A y
5,3 can be connected in A5,3 − F by Az

5,3 and the fault-
free edges e1 and e2.

If n = 4, then fx = f y = 1, and every vertex in Ai
4,3

has only one outer neighbor for each i ∈ {1,2,3,4}. Thus,
by (3.2), there are a fault-free edge e1 in E(x, z) and a
fault-free edge e2 in E(z, y). Then Ax

4,3 and A y
4,3 can be

connected in A4,3 − F by Az
4,3 and the fault-free edges e1

and e2.
(2) It is easy to see that |I| � 3 because of 4((k − 1)(n −

k)) > (3k − 1)(n − k) − 3 � |F |.
By the hypothesis, for any j ∈ 〈n〉 \ I , f j � (k − 1)(n −

k) − 1, that is, A j
n,k − F j is connected since A j

n,k is (k −
1)(n − k)-connected. To show that An,k − (AI

n,k ∪ F ) is con-

nected, we only need to show that Ax
n,k and A y

n,k are con-
nected in An,k − F for any two distinct x, y ∈ 〈n〉 − I . Con-
sider any two distinct Ax

n,k and A y
n,k , where x, y ∈ 〈n〉 \ I .

Note that, for k � 4, and n � k + 2,

∣∣E(x, y)
∣∣ = (n − 2)!

(n − k − 1)!
= (n − 2)(n − 3) · · · (n − k)
� (n − 2)(n − 3)(n − 4)

> 2
(
(k − 1)(n − k) − 1

)
> fx + f y,

there is a fault-free edge in E(x, y) that connects Ax
n,k and

A y
n,k in An,k − F . By the arbitrariness of x and y, An,k −

(AI
n,k ∪ F ) is connected. �

Lemma 3.2. κ1(An,k) � (2k − 1)(n − k) − 1 for k � 3, n �
k + 1.

Proof. When k = 3, let e = (u, v) be a j-dimensional edge
of An,k . By the edge symmetry of An,k , we decompose
An,k along some dimension i1 �= j such that e is totally

contained in Ai1
n,k . We further decompose Ai1

n,k along an-
other dimension such that e is contained in some sub-
graph Ai1,i2

n,k , which is isomorphic to Kn−k+1 = Kn−2. Ob-

viously, Ai1,i2
n,k \ {u, v} ⊆ N(e). As there are (n−2)!

(n−k−1)! match-

ing edges between two subgraphs Ax
n,k and A y

n,k for any

x �= y ∈ 〈n〉 \ {i1}, An,k − Ai1
n,k is still connected. Obvi-

ously, Ai1
n,k − Ai1,i2

n,k is still connected, and every vertex of

Ai1
n,k − Ai1,i2

n,k has n − k outer neighbors in An,k − Ai1
n,k by

(2.2), so An,k − Ai1,i2
n,k is still connected. From the discussion

above, |N(e)| = (2k − 1)(n − k) − 1 by (2.3), and An,k − e
has exactly two connected components, every vertex of
An,k − N(e) has degree at least one.

When k � 4, we decompose An,k continuously k − 1
times such that e is totally contained in some subgraph

A
i1,i2,...,ik−1
n,k which is isomorphic to Kn−k+1. |N(e)| = (2k −

1)(n − k) − 1, and An,k − e has exactly two connected
components, every vertex of An,k − N(e) has degree at
least 1. �
Theorem 3.3. κ1(An,k) = (2k − 1)(n − k) − 1 for k � 3, n �
k + 1.

Proof. By Lemma 3.2, it suffices to show that κ1(An,k) �
(2k − 1)(n − k) − 1 by contradiction. We assume that F
is an R1-vertex cut of An,k with |F | � (2k − 1)(n − k) −
2, and denote Fi = Ai

n,k ∩ F , f i = |Fi | for 1 � i � n. Then∑n
i=1 f i = |F | � (2k − 1)(n − k) − 2.
If |I| = 0, An,k − F is connected, which contradicts that

F is an R1-vertex cut. To complete the proof of this theo-
rem, we consider two cases as follows

Case 1. |I| = 1.
Since F is an R1-vertex cut, An,k − F is disconnected.

Then the subgraph An,k − (Ai
n,k ∪ F ) is connected by

Lemma 3.1(1). Let H be a connected component which
has no vertices in A j

n,k , j ∈ 〈n〉 \ {i}, H is totally contained

in Ai
n,k − Fi by Lemma 3.1(1). Obviously, |H| � 2 because

every vertex of An,k − F has at least one fault-free neigh-
bor.

Pick an edge e = uv in H . Denote T = An,k[u, v].
N Ai

n,k
(T ) − (H − T ) ⊆ Fi . (3.3)

By (3.3), we have
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|Fi| �
∣∣N Ai

n,k
(T ) − (H − T )

∣∣
�

∣∣N Ai
n,k

(T )
∣∣ − ∣∣(H − T )

∣∣
�

∣∣N Ai
n,k

(T )
∣∣ − |H| + |T |

� 2(k − 1)(n − k) − (n − k − 1) − 2 − |H| + 2

� (2k − 3)(n − k) − |H| + 1.

Since Ni(H) ⊆ F − Fi , |F − Fi | � |H|(n − k). Thus we have

(2k − 1)(n − k) − 2

� |F | = |Fi| + |F − Fi|
� (2k − 3)(n − k) − |H| + 1 + |H|(n − k)

�
(
2k − 3 + |H|)(n − k) − |H| + 1.

That is (|H| − 2)(n − k) � |H| − 3, a contradiction.
Case 2. |I| = 2, and let I = {i, j}.
By Lemma 3.1(1), An,k − (Ai

n,k ∪ A j
n,k ∪ F ) is connected.

Under our hypothesis,

∣∣F \ (Fi ∪ F j)
∣∣ � (2k − 1)(n − k) − 2 − 2

(
(k − 1)(n − k)

)
= n − k − 2. (3.4)

Since every vertex in Ai
n,k − Fi has exactly (n − k)

outer neighbors and any two distinct vertices in Ai
n,k − Fi

have no common outer neighbors, Ai
n,k − Fi has at most

one vertex, say ui , isolated from An,k − (Ai
n,k ∪ A j

n,k ∪ F ).

Similarly, A j
n,k − F j has at most one vertex, say u j , iso-

lated from An,k − (Ai
n,k ∪ A j

n,k ∪ F ). If no of ui or u j

exists, An,k − F is connected, a contradiction; otherwise,
since every vertex of An,k − F has at least one fault-free
neighbor, ui and u j must occur at the same time, and
(ui, u j) ∈ E(An,k). Since the subgraph An,k[ui, u j] has ex-
actly |N(ui) ∩ N(u j)| = n − k − 1 outer neighbors in An,k −
AI

n,k , while |N(ui) ∩ N(u j)| > n − k − 2 � |F \ (Fi ∪ F j)|,
the subgraph An.k[ui, u j] has at least one fault-free outer

neighbor in An,k − (Ai
n,k ∪ A j

n,k ∪ F ), so An,k − F is still con-
nected, a contradiction.

So, the proof is complete. �
Since An,n−1 is isomorphic to a star graph Sn and

An,n−2 is isomorphic to the alternating group graph AGn ,
we have the following corollaries by Theorem 3.3, imme-
diately.

Corollary 3.4. (See S.C. Hu and C.B. Yang [14], and Cheng and
Lipman [5].) κ1(Sn) = 2n − 4 for n � 4.

Corollary 3.5. (See E. Cheng et al. [4], and Z. Zhang et al. [21].)
κ1(AGn) = 4n − 11 for n � 5.

As the star graph Sn is a special case of An,k with n =
k+1, and Wan, Zhang [18] have obtained κ2(Sn) = 6(n−3)

with n � 5, we only need to consider κ2(An,k) with k � 4,
n � k + 2.
Lemma 3.6. κ2(An,k) � (3k − 2)(n − k) − 2 for k � 4, n �
k + 2.

Proof. Let K3 be a triangle of An,k . K3 must be in some
complete subgraph Kn−k+1, and the three edges of K3 are
some j-dimensional edges. When k = 3, we decompose
An,k along some dimension i1 �= j such that K3 is con-

tained totally in Ai1
n,k . We further decompose Ai1

n,k along
another dimension i2 �= j such that K3 is contained in
some subgraph Ai1,i2

n,k , which is isomorphic to Kn−k+1 =
Kn−2. Obviously, Ai1,i2

n,k − K3 ⊆ N(K3). As there are (n−2)!
(n−k−1)!

matching edges between two subgraphs Ax
n,k and A y

n,k for

any x �= y ∈ 〈n〉 \ {i1}, An,k − Ai1
n,k is still connected, and ev-

ery vertex has (k − 1)(n − k) � 2 neighbors in An,k − Ai1
n,k .

Obviously, Ai1
n,k − Ai1,i2

n,k is still connected, and every ver-

tex of Ai1
n,k − Ai1,i2

n,k has n − k � 2 outer neighbors in

An,k − Ai1
n,k , so An,k − Ai1,i2

n,k is still connected. From the dis-
cussion above, |N(K3)| = (3k − 2)(n −k)− 2, and An,k − K3
has exactly two connected components, every vertex of
An,k − N(K3) has degree at least two.

When k � 4, similarly, we decompose An,k continu-
ously k − 1 times such that K3 is totally contained in

some subgraph A
i1,i2,...,ik−1
n,k which is isomorphic to Kn−k+1.

|N(K3)| = (3k − 2)(n − k) − 2, and An,k − K3 has exactly
two connected components, every vertex of An,k − N(K3)

has at least two fault-free neighbors. �
Theorem 3.7. κ2(An,k) = (3k − 2)(n − k) − 2 for k � 4, n �
k + 2.

Proof. By Lemma 3.6, it is only need to show that
κ2(An,k) � (3k − 2)(n − k) − 2. We assume, by contra-
diction, that F is an R2-vertex cut of An,k with |F | �
(3k − 2)(n − k) − 3, and denote Fi = Ai

n,k ∩ F , and f i = |Fi |
for 1 � i � n. Obviously,

∑n
i=1 f i = |F | � (3k −2)(n−k)−3.

If |I| = 0, An,k − F is connected, which contradicts that
F is a restricted vertex cut. To complete the proof of this
theorem, we consider three cases as follows.

Case 1. |I| = 1, and let I = {i}.
Since An,k − F is disconnected and An,k − (Ai

n,k ∪ F )

is connected by Lemma 3.1(2), Ai
n,k − Fi is disconnected.

Let H be a connected component which has no vertices
in A j

n,k , j ∈ 〈n〉 \ {i}, H is totally contained in Ai
n,k − Fi by

Lemma 3.1(2). Obviously, N(H) ⊆ F . Since every vertex of
H has at least two neighbors, |H| � 3. Let h = |H| and we
choose a subset T ⊆ H such that |T | = 3. Obviously,

N Ai
n,k

(T ) − (H − T ) ⊆ Fi . (3.5)

When n � k + 2, one edge of the induced graph by T
is contained in a complete Kn−k+1, that is, every vertex in
Kn−k+1 − T is a common neighbor of vertices in T , and the
induced subgraph by T has at most three edges. It follows
that

∣∣N Ai
n,k

(T )
∣∣ � 3(k − 1)(n − k) − 6 − 2(n − k − 2).
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By (3.5), we have

f i �
∣∣N Ai

n,k
(T ) \ (H − T )

∣∣
�

∣∣N Ai
n,k

(T )
∣∣ − (h − 3)

� 3(k − 1)(n − k) − 6 − 2(n − k − 2) − (h − 3)

= (3k − 5)(n − k) − h + 1,

that is,

f i � (3k − 5)(n − k) − h + 1. (3.6)

By Lemma 3.1(2), |F | − f i � h(n − k), and so

f i � (3k − 2)(n − k) − 1 − h(n − k). (3.7)

Then, combining (3.6) with (3.7) yields

(h − 3)(n − k) � h − 6,

a contradiction.
Case 2. |I| = 2, and let I = {i, j}.
Since An,k − F is disconnected and An,k − (AI

n,k ∪ F ) is
connected by Lemma 3.1(2). We divide the proof into three
subcases.

Subcase 2.1. Ai
n,k − Fi and A j

n,k − F j both are connected.
Since, for any k � 4,

(n − 1)!
(n − k − 1)! � (n − 1)(n − 2) · · · (n − k)

> (3k − 2)(n − k) − 3 � |F |,
we have that, for any i ∈ I ,

∣∣V
(

Ai
n,k − Fi

)∣∣ = (n − 1)!
(n − k − 1)! − |Fi| > |F − Fi|.

Thus, there exists at least one fault-free edge connecting
Ai

n,k − Fi to An,k − (AI
n,k ∪ F ), An,k − F is connected, a con-

tradiction.
Subcase 2.2. Exactly one of Ai

n,k − Fi and A j
n,k − F j is

connected.
By an argument similar to case 1, we arrive at a contra-

diction.
Subcase 2.3. Both of Ai

n,k − Fi and A j
n,k − F j are discon-

nected.
Let H be a component of An,k − F which is contained

in AI
n,k − F I . Obviously, H has no fault-free neighbor in

An,k − (AI
n,k ∪ F ). Each vertex of (Ai

n,k − Fi)∩ H has at least

one fault-free neighbor in Ai
n,k − Fi since it has at most one

fault-free neighbor in A j
n,k − F j . Thus, |Fi | � (2k − 3)(n −

k) − 1 by Theorem 3.3. A j
n,k − F j has the similar property,

and so |F j | � (2k − 3)(n − k) − 1.

(3k − 2)(n − k) − 3 � |F | � |Fi| + |F j|
� 2

(
(2k − 3)(n − k) − 1

)
,

which induces (k−4)(n−k) � −1 with k � 4 and n � k+2,
a contradiction.

Case 3. |I| = 3, and let I = {i, j, l}.
Under our hypothesis,
∣∣F \ (Fi ∪ F j ∪ Fl)
∣∣

� (3k − 2)(n − k) − 3 − 3
(
(k − 1)(n − k)

)
= n − k − 3. (3.8)

By Lemma 3.1(2), An,k − Ai
n,k ∪ A j

n,k ∪ Ah
n,k ∪ F is connected.

Since every vertex in Ai
n,k − Fi has exactly (n − k) outer

neighbors and any two outer neighbors are in distinct
subgraphs, every vertex of Ai

n,k ∪ A j
n,k ∪ Ah

n,k has at least

n−k−2 neighbors outside Ai
n,k ∪ A j

n,k ∪ Ah
n,k . Thus, any ver-

tex of Ai
n,k − Fi is connected to An,k − Ai

n,k ∪ A j
n,k ∪ Ah

n,k ∪ F .

The similar result applies to A j
n,k − F j and Ah

n,k − Fh . Thus,
An,k − F is connected, a contradiction. �

When n = k + 2, the arrangement graph An,k is isomor-
phic to the alternating group graph AGn [21]. Thus, we
obtain the following result.

Corollary 3.8. (See Z. Zhang et al. [21].) κ2(AGn) = 6n −18 for
n � 6.
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