Trees with unique minimum p-dominating sets *

You Lu, Xinmin Hou † Jun-Ming Xu, Ning Li

Department of Mathematics
University of Science and Technology of China
Hefei, Anhui, 230026, China

Abstract

Let p be a positive integer and $G = (V, E)$ a simple graph. A p-dominating set of G is a subset S of V such that every vertex not in S is dominated by at least p vertices in S. The p-domination number $\gamma_p(G)$ is the minimum cardinality among the p-dominating sets of G. In this paper, for $p \geq 2$, we give three equivalent conditions for trees with unique minimum p-dominating sets and also give a constructive characterization of such trees.

Key words: domination, p-domination, tree

AMS Subject Classification (2000): 05C69

1 Introduction

For notation and graph theory terminology we follow [3, 10, 11]. Let $G = (V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The open neighborhood, the closed neighborhood and the degree of a vertex $v \in V(G)$ are denoted by $N_G(v) =$

*The work was supported by NNSF of China (No.10701068 and No.10671191).
†Corresponding author. Email: xmhou@ustc.edu.cn
\{u \in V(G)|uv \in E(G)\}, \ N_G[v] = N_G(v) \cup \{v\} \text{ and } deg_G(v) = |N_G(v)|, \text{ respectively. The maximum degree } \Delta(G) = \max\{deg_G(v) : v \in V(G)\}. \text{ For } S \subseteq V(G), \text{ the subgraph induced by } S \text{ is denoted by } G[S]. \text{ For a pair of vertices } u, v \in V(G), \text{ the distance } d_G(u, v) \text{ of } u \text{ and } v \text{ is the length of the shortest } uv\text{-paths in } G. \text{ The diameter of } G \text{ is } d(G) = \max\{d_G(u, v) : u, v \in V(G)\}.

Let } D \text{ be a subset of } V(G) \text{ and } p \text{ a positive integer. For any } x \in D, \text{ a vertex } y \text{ not in } D \text{ is called a } p\text{-private neighbor of } x \text{ with regard to } D \text{ if } y \text{ is a neighbor of } x \text{ and } |D \cap N_G(y)| = p. \text{ The } p\text{-private neighborhood of } x \text{ with regard to } D, \text{ denoted by } P{\text{N}_p}(x, D, G), \text{ is the set of all } p\text{-private neighbors of } x \text{ with regard to } D \text{ in } G. \text{ If the graph } G \text{ is clear from the context, we will simply use } P{\text{N}_p}(x, D) \text{ instead of } P{\text{N}_p}(x, D, G).

Let } T \text{ be a tree and } p \geq 2 \text{ a positive integer. A } p\text{-leaf of } T \text{ is a vertex with degree at most } p-1 \text{ in } T. \text{ Denote the set of } p\text{-leaves of } T \text{ by } L_p(T) \text{ and let } X_p(T) = V(T) - L_p(T). \text{ Then, for } x \in X_p(T), \text{ } deg_T(x) \geq p. \text{ Note that the } 2\text{-leaves are the usual leaves and } L_2(T) \text{ is the set of leaves of } T. \text{ Therefore, we also denote } L_2(T) \text{ by } L(T). \text{ If } T \text{ is a rooted tree } T, \text{ then, for every } v \in V(T), \text{ we let } C(v) \text{ and } D(v) \text{ denote the set of children and descendants, respectively, of } v, \text{ and define } D[v] = D(v) \cup \{v\}.

In [6], Fink and Jacobson introduced the concept of } p\text{-domination. Let } p \text{ be a positive integer. A subset } S \text{ of } V(G) \text{ is a } p\text{-dominating set of } G \text{ if, for every } v \in V(G) - S, |S \cap N_G(v)| \geq p. \text{ The } p\text{-domination number } \gamma_p(G) \text{ is the minimum cardinality among the } p\text{-dominating sets of } G. \text{ Any } p\text{-dominating set of } G \text{ with cardinality } \gamma_p(G) \text{ will be called a } \gamma_p\text{-set of } G. \text{ Note that the } \gamma_1\text{-set is the classic minimum dominating set. For any } S, T \subseteq V(G), \text{ } S \text{ } p\text{-dominates } T \text{ in } G \text{ if, for every } v \in T - S, |S \cap N_G(v)| \geq p.

Unique domination in graphs has been investigated in many papers (see, for example, [2, 4, 5, 7, 8, 9]). In [8], Gunther et al. characterized all trees with unique minimum dominating sets. In this paper, for } p \geq 2, \text{ we first give three equivalent conditions for trees with unique minimum } p\text{-dominating sets, and then we give a constructive characterization of such trees.
2 Equivalent conditions for trees with unique γ_p-sets

Lemma 1. ([1]) Every p-dominating set of a graph G contains any vertex of degree at most $p - 1$.

Theorem 2. Suppose that T is a tree and $p \geq 2$ is a positive integer. Let D be a subset of $V(T)$. Then the following conditions are equivalent:

(i) D is a unique γ_p-set of T;
(ii) D is a γ_p-set of T satisfying either $|D \cap N_T(x)| \leq p - 2$ or $|PN_p(x, D)| \geq 2$ for every $x \in D \cap X_p(T)$;
(iii) D is a p-dominating set of T satisfying either $|D \cap N_T(x)| \leq p - 2$ or $|PN_p(x, D)| \geq 2$ for every $x \in D \cap X_p(T)$.

Proof. We will prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). (ii) ⇒ (iii) is obvious.

(i) ⇒ (ii) : Suppose to the contrary that there exists some $x \in D \cap X_p(T)$ such that $|D \cap N_T(x)| \geq p - 1$ and $|PN_p(x, D)| \leq 1$.

If $|PN_p(x, D)| = 0$, then $|D \cap N_T(x)| = p - 1$ (Otherwise, $D \setminus \{x\}$ is a p-dominating set of T, which contradicts that D is a γ_p-set of T). Thus, there exists a neighbor, denoted by y, of x which is not in D since $deg_T(x) \geq p$. Let $D' = (D \setminus \{x\}) \cup \{y\}$, then D' is a γ_p-set of T different from D, a contradiction.

If $|PN_p(x, D)| = 1$, then we denote $PN_p(x, D)$ by $\{y\}$ and let $D' = (D \setminus \{x\}) \cup \{y\}$. Since $|D \cap N_T(x)| \geq p - 1$, $|D' \cap N_T(x)| = |(D \cap N_T(x)) \cup \{y\}| \geq p$. Hence D' is a γ_p-set of T different from D, a contradiction.

(iii) ⇒ (i) : Assume that there is a tree T which has a p-dominating set D satisfying the condition of (iii) but D is not a unique γ_p-set of T. Let T be such a counterexample of minimum order. Then, by Lemma 1, $D \cap X_p(T) \neq \emptyset$. Let S be an arbitrary γ_p-set of T. In the following, we only need prove that $S = D$, which contradicts the assumption that D is not a unique γ_p-set of T.

3
If \(d(T) = 2 \), then \(T \) is a star, and so \(|D \cap X_p(T)| \leq 1 \). By \(D \cap X_p(T) \neq \emptyset \), we can denote \(D \cap X_p(T) \) by \(\{a\} \). By Lemma 1 and \(PN_p(a, D) = \emptyset \), \(deg_T(a) = |D \cap N_T(a)| \leq p - 2 \), which contradicts with \(deg_T(a) \geq p \). If \(d(T) = 3 \), then \(T \) contains exact two vertices with degree at least 2. For every \(b \in D \cap X_p(T) \), we have \(deg_T(b) \geq p \) and \(|PN_p(b, D)| \leq 1 \). From \(D \) fulfils (iii), we can derive that \(|D \cap N_T(b)| \leq p - 2 \). So \(deg_T(b) = |D \cap N_T(b)| + 1 \leq p - 1 \), a contradiction. Hence \(d(T) \geq 4 \). Let \(P = wwx \cdots r \) be a longest path in \(T \). We root \(T \) at \(r \). By Lemma 1, \(D(v) \subseteq D \) and \(D(v) \subseteq S \).

Case 1. \(deg_T(v) \leq p - 1 \).

By Lemma 1, \(D[v] \subseteq D \). Let \(T' = T - u \), then \(D \cap V(T') = D - \{u\} \) is a \(p \)-dominating set of \(T' \). Note that \((D \cap V(T')) \cap N_T(z) = D \cap N_T(z) \) and \(PN_p(z, D \cap V(T'), T') = PN_p(z, D, T) \) for every \(z \in (D \cap V(T')) \cap X_p(T') \). Hence \(T' \) is a tree whose \(p \)-dominating set \(D \cap V(T') \) fulfils (iii) since \(T \) and \(D \) fulfil (iii). By our assumption that \(T \) is the counterexample of minimum order, \(D \cap V(T') \) is a unique \(\gamma_p \)-set of \(T' \). So \(\gamma_p(T') = |D \cap V(T')| = |D| - 1 \geq \gamma_p(T) - 1 \).

By Lemma 1, \(D[v] \subseteq S \). Hence \(S \cap V(T') = S - \{u\} \) is a \(p \)-dominating set of \(T' \) with \(|S \cap V(T')| = |S| - 1 = \gamma_p(T) - 1 \leq \gamma_p(T') \). That is, \(S \cap V(T') \) is also a \(\gamma_p \)-set of \(T' \). Hence \(S \cap V(T') = D \cap V(T') \). Thus

\[
S = (S \cap V(T')) \cup \{u\} = (D \cap V(T')) \cup \{u\} = D.
\]

Case 2. \(deg_T(v) = p \).

For every \(v' \in D(w) \cap X_p(T) (= C(w) \cap X_p(T)) \), we have \(|D \cap N_T(v')| \geq |D(v')| = deg_T(v') - 1 \geq p - 1 \), and so \(v' \notin D \) since \(T \) and \(D \) fulfil (iii). Then, by Lemma 1, \(D \cap D(w) = L_p(T) \cap D(w) \). By \(deg_T(v) = p \), \(v \notin D \). Since \(D \) \(p \)-dominates \(v \), we have \(w \in D \).

Let \(T' = T - D(w) \), then \(D \cap V(T') \) is a \(p \)-dominating set of \(T' \). Since \(w \in D \) and \(deg_T(w) = 1 \), for every \(z \in (D \cap V(T')) \cap X_p(T') \), \((D \cap V(T')) \cap N_T(z) = D \cap N_T(z) \) and \(PN_p(z, D \cap V(T'), T') = PN_p(z, D, T) \). Hence \(T' \) is a tree whose \(p \)-dominating set \(D \cap V(T') \) fulfils (iii) since \(T \) and \(D \) fulfil (iii). By our assumption that \(T \) is the
counterexample of minimum order, \(D \cap V(T') \) is a unique \(\gamma_p \)-set of \(T' \). So \(|D \cap V(T')| = \gamma_p(T') \) and \(\gamma_p(T) \leq |D| = |D \cap D(w)| + |D \cap V(T')| = |D \cap D(w)| + \gamma_p(T'). \)

Now we prove \(S = D \). Suppose that \(v \in S \), then, by the definition of \(\gamma_p \)-set and Lemma 1, \(w \notin S \) and \((S \cap D(w)) \cap X_p(T) = \{v\} \) (Assume that \((S \cap D(w)) \cap X_p(T)\) contains another vertex \(v' \), then \(v' \) is a neighbor of \(w \) in \(D(w) \). Note that \(D(v') \subseteq S \) by Lemma 1 and \(|D(v')| \geq p - 1 \). We can replace \(v, v' \) by \(w \) in \(S \) and get a \(p \)-dominating set of \(T \) of order \(|S| - 1 \), a contradiction). Hence \(S \cap D(w) = (L_p(T) \cap D(w)) \cup \{v\} = (D \cap D(w)) \cup \{v\} \). Since \((S \cap V(T')) \cup \{w\}\) is a \(p \)-dominating set of \(T' \) with

\[
|\{w\}| = |S| - |S \cap D(w)| + 1 = \gamma_p(T) - |D \cap D(w)| \leq \gamma_p(T'),
\]

we know that \((S \cap V(T')) \cup \{w\}\) is a \(\gamma_p \)-set of \(T' \). Hence \((S \cap V(T')) \cup \{w\}\) is a \(p \)-dominating set of \(T' \). By \(w \notin S \) and \(w \in D \), we have \(\deg_T(w) \geq p \) and \(w \in D \cap X_p(T) \). Note that

\[
|D \cap N_T(w)| = |(D \cap D(w)) \cap N_T(w)| + |D \cap \{x\}|
\]

\[
= |((S \cap D(w)) \setminus \{v\}) \cap N_T(w)| + |S \cap \{x\}|
\]

\[
= |(S \cap D(w)) \cap N_T(w)| - 1 + |S \cap \{x\}| = |S \cap N_T(w)| - 1 \geq p - 1.
\]

Hence \(|PN_p(w, D, T)| \geq 2 \) since \(T \) and \(D \) satisfy (iii). By \(w \notin S \) and \((S \cap D(w)) \cap X_p(T) = \{v\}, D(w) \cap X_p(T) (= C(w) \cap X_p(T))\) contains a unique vertex \(v \) of degree \(p \). Thus \(PN_p(w, D, T) \cap D(w) = \{v\} \). From \(|PN_p(w, D, T)| \geq 2 \), we know that

\[
PN_p(w, D, T) = PN_p(w, D, T) \cap (D(w) \cup \{x\}) = \{v, x\}.
\]

So \(|D \cap N_T(x)| = p \) and \(x \notin D \cap V(T') = (S \cap V(T')) \cup \{w\} \). Further, \(x \notin S \). To \(p \)-dominate \(x \), \(|S \cap N_T(x)| \geq p \), which contradicts with

\[
|S \cap N_T(x)| = |(S \cap V(T')) \cap N_T(x)|
\]

\[
= |(D \cap N_T(x)) \setminus \{w\}| = |D \cap N_T(x)| - 1 = p - 1.
\]

Hence \(v \notin S \).

To \(p \)-dominate \(v \), \(w \in S \) and, by the definition of \(\gamma_p \)-set, \(S \cap D(w) = L_p(T) \cap D(w) = D \cap D(w) \). Then \(S \cap V(T') \) is a \(p \)-dominating set of \(T' \) with \(|S \cap V(T')| = \)
\[|S| - |S \cap D(w)| = \gamma_p(T) - |D \cap D(w)| \leq \gamma_p(T'),\] which implies that \(S \cap V(T')\) is also a \(\gamma_p\)-set of \(T'\). Hence \(S \cap V(T') = D \cap V(T')\), and so

\[S = (S \cap V(T')) \cup (S \cap D(w)) = (D \cap V(T')) \cup (D \cap D(w)) = D.\]

Case 3. \(\text{deg}_T(v) \geq p + 1\).

Note that \(|D \cap N_T(v)| \geq |D(v)| = \text{deg}_T(v) - 1 \geq p\). We have \(v \notin D\) since \(T\) and \(D\) fulfil (iii). Let \(T' = T - D[v]\), then \(D \cap V(T')\) is a \(p\)-dominating set of \(T'\). Since \(v \notin D\) and \(D \cap N_T(v) = D(v) \cup (D \cap \{w\})\), \((D \cap V(T')) \cap N_T(z) = D \cap N_T(z)\) and \(PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)\) for every \(z \in (D \cap V(T')) \cap N_T(T')\). Hence \(T'\) is a tree whose \(p\)-dominating set \(D \cap V(T')\) fulfils (iii) since \(T\) and \(D\) fulfil (iii). As \(T\) is the counterexample of minimum order, \(D \cap V(T')\) is the unique \(\gamma_p\)-set of \(T'\). So \(|D \cap V(T')| = \gamma_p(T')\) and \(\gamma_p(T) \leq |D| = |D(v)| + |D \cap V(T')| = |D(v)| + \gamma_p(T')\).

Now we prove that \(S = D\). Suppose that \(v \in S\), then by the definition of \(\gamma_p\)-set, \(w \notin S\). Thus \((S \cap V(T')) \cup \{w\}\) is a \(p\)-dominating set of \(T'\) with

\[|(S \cap V(T')) \cup \{w\}| = |S| - |D[v]| + 1 = \gamma_p(T) - |D(v)| \leq \gamma_p(T'),\]

which implies that \((S \cap V(T')) \cup \{w\}\) is a \(\gamma_p\)-set of \(T'\). Hence \((S \cap V(T')) \cup \{w\} = D \cap V(T')\). So \(w \in D\). By \(w \notin S\), \(v \notin D\) and \(v \in S\), we have \(w \in D \cap X_p(T)\) and

\[|D \cap N_T(w)| = |(D \cap V(T')) \cap N_T(w)| = |(S \cap V(T')) \cap N_T(w)| = |S \cap N_T(w)| - 1 \geq p - 1.\]

Hence \(|PN_p(w, D, T)| \geq 2\) since \(T\) and \(D\) fulfil (iii). Thus we can choose a vertex \(y\) in \(V(T')\) from \(PN_p(w, D, T)\). Clearly, \(|D \cap N_T(y)| = p\), \(N_T[y] \subseteq V(T')\) and \(y \notin D \cap V(T') - \{w\} = S \cap V(T')\). So \(y \notin S\) and, to \(p\)-dominate \(y\), \(|S \cap N_T(y)| \geq p\). But

\[|S \cap N_T(y)| = |(S \cap V(T')) \cap N_T(y)| = |(D \cap V(T')) \cap N_T(y) - \{w\}| = |(D \cap N_T(y))| - 1 = p - 1,\]

a contradiction. Therefore, \(v \notin S\) and \(S \cap V(T')\) is a \(p\)-dominating set of \(T'\) with \(|S \cap V(T')| = |S| - |D(v)| = \gamma_p(T) - |D(v)| \leq \gamma_p(T')\). Then \(S \cap V(T')\) is also a \(\gamma_p\)-set.
of T', and so $S \cap V(T') = D \cap V(T')$. Hence

$$S = (S \cap V(T')) \cup D(v) = (D \cap V(T')) \cup D(v) = D.$$\hfill \square

Now we will establish the third equivalent condition for trees with unique minimum p-dominating sets.

Lemma 3. Suppose that T is a tree and p is a positive integer. Let D be a γ_p-set of T and $x \in D$.

(a) If $\gamma_p(T - x) > \gamma_p(T)$, then $|PN_p(x, D)| \geq 2$.

(b) If D is a unique γ_p-set of T, then $\gamma_p(T - x) = \gamma_p(T) + |PN_p(x, D)| - 1$.

Proof. Let T_1, \ldots, T_k be all components of $T - x$. Then $k = \deg_T(x) \geq 1$. For $i = 1, \ldots, k$, we denote the neighbor of x in $V(T_i)$ by y_i and let $D_i = D \cap V(T_i)$. We claim that,

$$|D_i| \leq \gamma_p(T_i) \leq |D_i| + 1, \text{ for every } i = 1, \ldots, k. \quad (1)$$

In fact, for $i = 1, \ldots, k$, it is obvious that $\gamma_p(T_i) \leq |D_i| + 1$ since $D_i \cup \{y_i\}$ is a p-dominating set of T_i. Suppose that there exists some $j \in \{1, \ldots, k\}$ such that $\gamma_p(T_j) \leq |D_j| - 1$. Let D_j' be a γ_p-set of T_j. Since $x \in D$, $(D - D_j) \cup D_j'$ is a p-dominating set of T with $|(D - D_j) \cup D_j'| = |D| - |D_j| + \gamma_p(T_j) \leq \gamma_p(T) - 1$, a contradiction. The claim holds.

Let $|PN_p(x, D)| = t$, then $0 \leq t \leq k$. Since T is a tree, $|PN_p(x, D) \cap V(T_i)| \leq 1$ for every $i = 1, \ldots, k$. So, without loss of generality, we can assume that $PN_p(x, D) = \{y_1, \ldots, y_t\}$. By the definition of p-dominating set, D_i ($i = t + 1, \ldots, k$) is a p-dominating set of T_i since $y_i \notin PN_p(x, D)$, and so $|D_i| \geq \gamma_p(T_i)$. Applying inequality (1), we have

$$|D_i| = \gamma_p(T_i), \text{ for every } i = t + 1, \ldots, k. \quad (2)$$

Now we prove (a). Suppose that $|PN_p(x, D)| \leq 1$. Then, by inequality (1) and
equality (2),
\[\gamma_p(T - x) = \sum_{i=1}^{k} \gamma_p(T_i) \leq \sum_{i=1}^{k} |D_i| + 1 = \gamma_p(T), \]
which contradicts with \(\gamma_p(T - x) > \gamma_p(T) \). (a) is true.

To the end, we prove (b). We claim that, for every \(i = 1, \ldots, t \), \(|D_i| + 1 = \gamma_p(T_i) \) if \(D \) is a unique \(\gamma_p \)-set of \(T \). To the contrary, by inequality (1), there exists some \(j \in \{1, \ldots, t\} \) such that \(|D_j| = \gamma_p(T_j) \). Since \(x \in D \) and \(y_j \in PN_p(x, D) \), \(|D_j \cap N_T(y_j)| = |(D \cap N_T(y_j)) - \{x\}| = p - 1 \), and so \(D_j \) is not a \(p \)-dominating set of \(T_j \). Let \(D_j'' \) be a \(\gamma_p \)-set of \(T_j \), then \((D - D_j) \cup D_j'' \) is a \(p \)-dominating set of \(T \) different from \(D \) and \(|(D - D_j) \cup D_j''| = |D| - |D_j| + |D_j''| = \gamma_p(T) \). Hence, \((D - D_j) \cup D_j'' \) is a \(\gamma_p \)-set of \(T \), which contradicts that \(D \) is the unique \(\gamma_p \)-set of \(T \). The claim holds. Hence, by equality (2) and \(x \in D \),
\[\gamma_p(T - x) = \sum_{i=1}^{k} \gamma_p(T_i) = \sum_{i=1}^{t} (|D_i| + 1) + \sum_{i=t+1}^{k} |D_i| = \gamma_p(T) + |PN_p(x, D)| - 1. \]
\(\square \)

Theorem 4. Suppose that \(T \) is a tree and \(p \geq 2 \) is a positive integer. Let \(D \) be a subset of \(V(T) \). Then \(D \) is a unique \(\gamma_p \)-set of \(T \) if and only if \(D \) is a \(\gamma_p \)-set of \(T \) satisfying either \(|D \cap N_T(x)| \leq p - 2 \) or \(\gamma_p(T - x) > \gamma_p(T) \) for every \(x \in D \cap X_p(T) \).

Proof. If \(D \) is a \(\gamma_p \)-set of \(T \) satisfying, for every \(x \in D \cap X_p(T) \), either \(|D \cap N_T(x)| \leq p - 2 \) or \(\gamma_p(T - x) > \gamma_p(T) \), then, by Lemma 3 (a), \(T \) is a tree whose \(\gamma_p \)-set \(D \) satisfies (ii) of Theorem 2. By Theorem 2 (i) \(\Leftrightarrow \) (ii), \(D \) is a unique \(\gamma_p \)-set of \(T \).

Conversely, by Theorem 2 (i) \(\Leftrightarrow \) (ii), \(D \) is a \(\gamma_p \)-set of \(T \) satisfying, for every \(x \in D \cap X_p(T) \), either \(|D \cap N_T(x)| \leq p - 2 \) or \(|PN_p(x, D, T)| \geq 2 \). By Lemma 3 (b), \(\gamma_p(T - x) = \gamma_p(T) + |PN_p(x, D)| - 1 \) for every \(x \in D \). For every \(x \in D \cap X_p(T) \), if \(|D \cap N_T(x)| \geq p - 1 \), then \(|PN_p(x, D)| \geq 2 \), and so \(\gamma_p(T - x) = \gamma_p(T) + |PN_p(x, D)| - 1 > \gamma_p(T) \). The proof is completed. \(\square \)
3 A constructive characterization of trees with unique \(\gamma_p \)-sets

In this section, we will give a constructive characterization of all trees with unique minimum \(p \)-dominating sets for \(p \geq 2 \).

A vertex is a central vertex of a star \(K_{1,t} \) \((t \geq 1) \) if either \(t \geq 2 \) and it is the support vertex or \(t = 1 \) and it is one of the two leaves. For convenience, an isolated vertex itself is also called its central vertex.

We first introduce a family \(\mathcal{T}_p \).

For any \(T \in \mathcal{T}_p \), \(T \) is obtained from a sequence \(T_1, T_2, \cdots, T_k \) \((k \geq 1) \) of trees, where \(T_1 = K_{1,m} \) \((m \geq p) \), \(T = T_k \), and, for \(k \geq 2 \), \(T_{i+1} \) \((1 \leq i \leq k - 1) \) is obtained from \(T_i \) by one of the operations listed below. Let \(A(T_1) = L(T_1) \).

- **Operation** \(O_1 \): Attach \(h \) \((\geq 0) \) stars \(K_{1,p-1} \), denoted by \(\{H_1, \cdots, H_h\} \), and \(t \) \((\geq 0) \) isolated vertices, denoted by \(\{v_1, \cdots, v_t\} \), to \(T_i \) by adding \(h + t \) edges from their central vertices to a leaf \(w \) of \(T_i \), where \(h, t \) and \(w \) must fulfil one of the following conditions.

 \begin{enumerate}
 \item \(h = 0 \) and \(t \leq p - 2 \);
 \item \(h = 1 \) and \(t \leq p - 3 \);
 \item \(h = 1, t = p - 2 \) and the support vertex of \(w \) in \(T_i \) isn’t in \(A(T_i) \);
 \item \(h = 1, t \geq p - 1 \) and the support vertex of \(w \) is a \(p \)-private vertex of \(w \) with regard to \(A(T_i) \) in \(T_i \);
 \item \(h \geq 2 \).
 \end{enumerate}

Let \(A(T_{i+1}) = A(T_i) \cup (\bigcup_{j=1}^{h} L(H_j)) \cup \{v_1, \cdots, v_t\} \).

- **Operation** \(O_2 \): Attach a star \(K_{1,t} \) \((t \geq p) \) to \(T_i \) by adding an edge from its central vertex to a vertex \(w \) of \(T_i \) satisfying either \(\deg_{T_i}(w) \neq p - 1 \) or \(N_{T_i}(w) \not\subseteq A(T_i) \). Let \(A(T_{i+1}) = A(T_i) \cup L(K_{1,t}) \).

Lemma 5. For any \(T \in \mathcal{T}_p \), \(A(T) \) is a unique \(\gamma_p \)-set of \(T \).
Proof. We claim that $A(T)$ is a p-dominating set of T and, for every vertex $x \in A(T) \cap X_p(T), |A(T) \cap N_T(x)| \leq p - 2$ or $|P_{N_p}(x, A(T), T)| \geq 2$. Then, by (i) \iff (iii) of Theorem 2, $A(T)$ is a unique γ_p-set of T. Assume that T is obtained from a sequence T_1, \ldots, T_k $(k \geq 1)$ of trees constructed recursively from T_1 by Operation O_1 and O_2, where $T_1 = K_{1,m}$ $(m \geq p)$ and $T = T_k$. We can prove easily the claim by induction on the length k of the sequence T_1, \ldots, T_k. We omit the proof. \hfill \Box

From Lemma 1 and the definition of Operation O_1 (a), it is easy to see that the following lemma is true.

Lemma 6. Let T be a tree containing a unique vertex with degree at least p. Then $T \in \mathcal{T}_p$.

Lemma 7. Let T be a tree containing exact two vertices with degree at least p. If T has a unique γ_p-set, then $T \in \mathcal{T}_p$.

Proof. Denote the two vertices with degree at least p by u and v. We distinguish the following two cases.

Case 1. If $uv \in E(T)$, then $deg_T(u) \geq p + 1$ and $deg_T(v) \geq p + 1$ since T has a unique γ_p-set. Let $T_1 = T[N_T[u] \cup \{v\}],$ then T_1 is a star $K_{1,m}$ $(m = deg_T(v) - 1 \geq p)$. Hence $T_2 = T[N_T[u] \cup N_T[v]]$ is obtained from T_1 by Operation O_2 by attaching a star $K_{1,t} =$ $T[N_T[u] \cup \{v\}]$ $(t = deg_T(u) - 1 \geq p)$ to v, and so $T_2 \in \mathcal{T}_p$. Since every vertex of $V(T) - V(T_2)$ has degree at most $p - 1$, T can be obtained recursively from T_2 by Operation O_1 satisfying (a). So $T \in \mathcal{T}_p$.

Case 2. If $uv \notin E(T)$, then we root T at u and denote the father of v by w.

If $deg_T(v) = p$, let $T' = T - D(w)$. Obviously, T' is a tree containing a unique vertex with degree at least p and w is a leaf of T'. By Lemma 6, $T' \in \mathcal{T}_p$. Since $deg_T(v) = p$, $T[N_T[v] \cup \{w\}] = K_{1,p-1}$. By $deg_T(w) \leq p - 1$, $|C(w) - \{v\}| \leq p - 3$. Let $T'' = T[V(T') \cup (N_T[v] \cup \{w\}) \cup (C(v) - \{v\})]$, then T'' is obtained from T' by Operation O_1 satisfying (b), and so $T'' \in \mathcal{T}_p$. Since every vertex of $V(T) - V(T'')$ has degree at most $p - 1$, T can be obtained recursively from T'' by Operation O_1 satisfying
If \(\text{deg}_T(v) \geq p + 1 \), let \(T' = T - D[v] \). Since \(T \) has exact two vertices \(u \) and \(v \) with degree at least \(p \) and \(\text{deg}_T(w) \leq p - 2 \). By Lemma 6, \(T' \in \mathcal{T}_p \). Let \(T'' = T[V(T') \cup (C(v) \cup \{v\})] \), then \(T'' \) is obtained from \(T' \) by Operation \(O_2 \) by attaching a star \(K_{1,t} = T[C(v) \cup \{v\}] \) \((t = \text{deg}_T(v) - 1 \geq p)\) to \(w \). So \(T'' \in \mathcal{T}_p \). Since every vertex of \(V(T) - V(T'') \) has degree at most \(p - 1 \), \(T \) can be obtained recursively from \(T'' \) by Operation \(O_1 \) satisfying (a). So \(T \in \mathcal{T}_p \). □

Theorem 8. Let \(T \) be a tree and \(p \geq 2 \) a positive integer. Then \(T \) has a unique \(\gamma_p \)-set if and only if \(\Delta(T) \leq p - 1 \) or \(T \in \mathcal{T}_p \).

Proof. If \(\Delta(T) \leq p - 1 \) or \(T \in \mathcal{T}_p \), by Lemmas 1 and 5, \(T \) has a unique \(\gamma_p \)-set.

Conversely, let \(T \) be a tree with a unique \(\gamma_p \)-set. We will prove \(\Delta(T) \leq p - 1 \) or \(T \in \mathcal{T}_p \) by induction on the order \(n \) of \(T \).

If \(n \in \{1, 2\} \), then \(\Delta(T) \leq p - 1 \). This establishes the base case. Assume that, if tree \(T' \) with order \(2 \leq |V(T')| < n \) has a unique \(\gamma_p \)-set, then \(\Delta(T') \leq p - 1 \) or \(T' \in \mathcal{T}_p \).

If \(d(T) = 2 \), then \(T \) has at most one vertex with degree at least \(p \). By Lemma 6, the result holds. If \(d(T) = 3 \), then \(T \) has at most two vertices with degree at least \(p \). By Lemmas 6 and 7, the result holds. In the following, we can assume that \(\Delta(T) \geq p \) and \(d(T) \geq 4 \).

Let \(p = uvwx \cdots r \) be a longest path in \(T \) such that the degree of \(v \) is as large as possible. We root \(T \) at \(r \) and denote the unique \(\gamma_p \)-set of \(T \) by \(D \). By Theorem 2, \(T \) and \(D \) fulfil (ii) of Theorem 2.

We claim that, if there exists a vertex \(v' \in C(w) \) with \(2 \leq \text{deg}_T(v') \leq p - 1 \), then \(T \in \mathcal{T}_p \).

In fact, by the choice of path \(P \) and \(v' \in C(w) \), \(T[D(v')] \) consists of \(|D(v')| \) isolated vertices and \(|D(v')| = \text{deg}_T(v') - 1 \leq p - 2 \). By Lemma 1, \(D[v'] \subseteq D \). Let \(T' = \)
\(T - D(v') \), then \(D \cap V(T') \) is a \(p \)-dominating set of \(T' \). Since \(v' \in D \) and \(v' \) is a leaf of \(T' \), \((D \cap V(T')) \cap N_T(z) = D \cap N_T(z) \) and \(PN_p(z, D \cap V(T'), T') = PN_p(z, D, T) \) for every \(z \in (D \cap V(T')) \cap X_p(T') \). Hence \(T' \) is a tree whose \(p \)-dominating set \(D \cap V(T') \) fulfils (iii) of Theorem 2 since \(T \) and \(D \) fulfil (ii) of Theorem 2. By Theorem 2 (i) \(\Leftrightarrow \) (iii), \(D \cap V(T') \) is a unique \(\gamma_p \)-set of \(T' \). Applying the induction on \(T' \), \(\Delta(T') \leq p - 1 \) or \(T' \in \mathcal{T}_p \). If \(\Delta(T') \leq p - 1 \), then \(\Delta(T) \leq p - 1 \), which contradicts with \(\Delta(T) \geq p \). If \(T' \in \mathcal{T}_p \), then \(T \) is obtained from \(T' \) by Operation \(\mathcal{O}_1 \) satisfying (a) by attaching \(|D(v')| \) isolated vertices to the leaf \(v' \) of \(T' \). Hence \(T \in \mathcal{T}_p \). The claim holds.

By claim, we only need consider the case that every vertex of \(C(w) \) has degree 1 or at least \(p \). Since \(v \in C(w) \) and \(\deg_T(v) \geq 2 \), \(\deg_T(v) \geq p \).

Case 1. \(\deg_T(v) = p \).

By the choice of path \(P \), for every vertex \(v' \in C(w) \), \(\deg_T(v') \leq \deg_T(v) = p \), and so \(\deg_T(v') = p \) or 1. Let \(h \) and \(t \) be the number of vertices with degree \(p \) and 1, respectively, in \(C(w) \). Then \(h \geq 1 \) and \(T[D(w)] \) consists of \(h \) stars \(K_{1,p-1} \) and \(t \) isolated vertices. Since \(\deg_T(v) = p \), \(|D \cap N_T(v)| \geq |D(v)| = \deg_T(v) - 1 = p - 1 \). By (ii) of Theorem 2, \(v \notin D \). To \(p \)-dominate \(v, w \in D \). Let \(T' = T - D(w) \), then \(D \cap V(T') \) is a \(p \)-dominating set of \(T' \). Since \(w \in D \) and \(\deg_T(w) = 1 \), for every \(z \in (D \cap V(T')) \cap X_p(T'), (D \cap V(T')) \cap N_T(z) = D \cap N_T(z) \) and \(PN_p(z, D \cap V(T'), T') = PN_p(z, D, T) \). Hence \(T' \) is a tree whose \(p \)-dominating set \(D \cap V(T') \) fulfils (iii) of Theorem 2 since \(T \) and \(D \) fulfil (ii) of Theorem 2. By Theorem 2 (i) \(\Leftrightarrow \) (iii), \(D \cap V(T') \) is a unique \(\gamma_p \)-set of \(T' \). Applying the induction on \(T' \), \(\Delta(T') \leq p - 1 \) or \(T' \in \mathcal{T}_p \).

Subcase 1.1. \(\Delta(T') \leq p - 1 \).

If \(h = 1 \), then every vertex of \(D(w) - \{v\} \) is a leaf of \(T \). Hence all vertices of \(V(T) - \{v, w\} \) have degree at most \(\Delta(T') (\leq p - 1) \) in \(T \). By Lemmas 6 and 7, \(T \in \mathcal{T}_p \).

If \(h \geq 2 \), then, by the definition of Operation \(\mathcal{O}_1 \) and \(\mathcal{O}_2 \), we can check easily that \(T'' = T[D[w] \cup \{x\}] \in \mathcal{T}_p \). Since all vertices of \(V(T) - (D[w] \cup \{x\}) (\subset V(T')) \) have degree at most \(\Delta(T') (\leq p - 1) \) in \(T \) and \(x \) is a leaf of \(T'' \), \(T \) can be obtained recursively
from T'' by Operation \mathcal{O}_1 satisfying condition (a). So $T \in \mathcal{T}_p$.

Subcase 1.2. $T' \in \mathcal{T}_p$.

When $h \geq 2$, then T is obtained from T' by Operation \mathcal{O}_1 satisfying condition (e). Hence $T \in \mathcal{T}_p$. Now we assume that $h = 1$.

If $\text{deg}_T(w) \leq p - 1$, then $t = \text{deg}_T(w) - 2 \leq p - 3$. Thus T is obtained from T' by \mathcal{O}_1 satisfying condition (b). Hence $T \in \mathcal{T}_p$.

If $\text{deg}_T(w) = p$, then $t = \text{deg}_T(w) - 2 = p - 2$. Note that x is the support vertex of w in T'. We claim that $x \notin D \cap V(T') = A(T')$. Otherwise, by $w \in D$, $(D - \{w\}) \cup \{v\}$ is a γ_p-set of T different from D, a contradiction. Hence T is obtained from T' by Operation \mathcal{O}_1 satisfying condition (c). Thus $T \in \mathcal{T}_p$.

If $\text{deg}_T(w) \geq p + 1$, then $t = \text{deg}_T(w) - 2 \geq p - 1$. Note that $w \in D \cap X_p(T)$ and $|D \cap N_T(w)| \geq t \geq p - 1$. By (ii) of Theorem 2, w has at least two p-private vertices with regard to D in T. Then we can see easily that $PN_p(w, D, T) = \{v, x\}$. So $PN_p(w, A(T'), T') = PN_p(w, D \cap V(T'), T') = \{x\}$. Hence T is obtained from T' by \mathcal{O}_1 satisfying condition (d), and so $T \in \mathcal{T}_p$.

Case 2. $\text{deg}_T(v) \geq p + 1$.

Let $T' = T - D[v]$. Since $\text{deg}_T(v) \geq p + 1$ and $|D \cap N_T(v)| \geq |D(v)| = \text{deg}_T(v) - 1 \geq p$, by (ii) of Theorem 2, $v \notin D$. Hence $D \cap V(T')$ is a p-dominating set of T'. Since $v \notin D$ and $D \cap N_T(v) = D(v) \cup (D \cap \{w\})$, $(D \cap V(T')) \cap N_T(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$ for every $z \in (D \cap V(T')) \cap X_p(T')$. Hence T' is a tree whose p-dominating set $D \cap V(T')$ fulfills (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i) \Leftrightarrow (iii), $D \cap V(T')$ is a unique γ_p-set of T'. Applying the induction on T', $\Delta(T') \leq p - 1$ or $T' \in \mathcal{T}_p$.

If $\Delta(T') \leq p - 1$, then all vertices of $T - \{v, w\}$ have degree at most $\Delta(T') \leq p - 1$ in T. By Lemmas 6 and 7, $T \in \mathcal{T}_p$.

If $T' \in \mathcal{T}_p$, then we claim that $\text{deg}_T(w) \neq p - 1$ or $N_T(w) \notin D$. Suppose that
$\text{deg}_T(w) = p - 1$ and $N_T(w) \subseteq D$, then, by Lemma 1, $w \in D$. It is easy to see that $(D - \{w\}) \cup \{v\}$ is a γ_p-set of T different from D, a contradiction. Hence T is obtained from T' by Operation O_2 by attaching a star $K_{1,t} (= T[D[v]], \ t = \text{deg}_T(v) - 1 \geq p)$ to w of T'. So $T \in T_p$. □

References

