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Abstract

Let p be a positive integer and G = (V, E') a simple graph. A p-dominating set
of G is a subset S of V' such that every vertex not in S is dominated by at least
p vertices in S. The p-domination number v,(G) is the minimum cardinality
among the p-dominating sets of G. In this paper, for p > 2, we give three
equivalent conditions for trees with unique minimum p-dominating sets and also
give a constructive characterization of such trees.
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1 Introduction

For notation and graph theory terminology we follow [3, 10, 11]. Let G = (V(G), E(G))
be a simple graph with vertex set V(G) and edge set F(G). The open neighborhood,
the closed neighborhood and the degree of a vertex v € V(G) are denoted by Ng(v) =
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{u e V(G)|luww € E(G)}, Ng[v] = Ng(v)U{v} and degg(v) = | Ng(v)|, respectively. The
maximum degree A(G) = max{degs(v) : v € V(G)}. For S C V(G), the subgraph
induced by S is denoted by G[S]. For a pair of vertices u,v € V(G), the distance
dg(u,v) of u and v is the length of the shortest uv-paths in G. The diameter of G is

d(G) = max{dg(u,v) : u,v € V(G)}.

Let D be a subset of V(G) and p a positive integer. For any =z € D, a vertex
y not in D is called a p-private neighbor of x with regard to D if y is a neighbor of
xz and |D N Ng(y)| = p. The p-private neighborhood of x with regard to D, denoted
by PN,(z,D,G), is the set of all p-private neighbors of x with regard to D in G.
If the graph G is clear from the context, we will simply use PN,(z, D) instead of
PN,(z,D, Q).

Let T be a tree and p > 2 a positive integer. A p-leaf of T is a vertex with degree at
most p—1in T". Denote the set of p-leaves of T' by L,(T") and let X,,(T') = V(T')—L,(T).
Then, for x € X,(T), degr(z) > p. Note that the 2-leaves are the usual leaves and
Lo(T) is the set of leaves of T. Therefore, we also denote Lo(T) by L(T). If T is
a rooted tree T, then, for every v € V(T), we let C(v) and D(v) denote the set of

children and descendants, respectively, of v, and define D[v] = D(v) U {v}.

In [6], Fink and Jacobson introduced the concept of p-domination. Let p be a
positive integer. A subset S of V(G) is a p-dominating set of G if, for every v €
V(G)—S, |SNNg(v)| > p. The p-domination number 7,(G) is the minimum cardinality
among the p-dominating sets of G. Any p-dominating set of G' with cardinality v,(G)
will be called a v,-set of G. Note that the 7;-set is the classic minimum dominating set.

For any S,T C V(G), S p-dominates T" in G if, for every v € T — S, |S N Ng(v)| > p.

Unique domination in graphs has been investigated in many papers (see, for exam-
ple, [2,4,5,7,8,9]). In [8], Gunther et al. characterized all trees with unique minimum
dominating sets. In this paper, for p > 2, we first give three equivalent conditions for
trees with unique minimum p-dominating sets, and then we give a constructive char-

acterization of such trees.



2  Equivalent conditions for trees with unique ~,-

sets

Lemma 1. ([1]) Every p-dominating set of a graph G contains any vertex of degree at
most p — 1.

Theorem 2. Suppose that'T" is a tree and p > 2 is a positive integer. Let D be a subset

of V(T). Then the following conditions are equivalent:

(1) D is a unique vy,-set of T’
(ii) D is a vyp-set of T satisfying either |D N Np(x)| <p—2 or |PN,(xz,D)| > 2
for every x € DN X,(T);
(iii) D is a p-dominating set of T satisfying either |D N Np(z)| < p—2 or
|PNy(z, D)| > 2 for every x € DN X,(T).

Proof. We will prove that (i) = (ii) = (iii) = (i). (ii) = (iii) is obvious.

(i) = (ii) : Suppose to the contrary that there exists some x € D N X,(T") such
that |[D N Np(z)| > p—1and |[PNy(z,D)| < 1.

If |PN,(z, D)| = 0, then |[DNNr(z)| = p—1 (Otherwise, D—{z} is a p-dominating
set of T', which contradicts that D is a ~,-set of T'). Thus, there exists a neighbor,
denoted by y, of x which is not in D since degr(x) > p. Let D' = (D — {z}) U{y},

then D’ is a 7,-set of T" different from D, a contradiction.

If |PN,(z, D)| = 1, then we denote PN, (z, D) by {y} and let D' = (D—{z})U{y}.
Since |D N Nr(x)| > p—1, |D'N Np(x)| = [(D N Np(z)) U{y}| > p. Hence D" is a

vp-set of T' different from D, a contradiction.

(iii) = (i) : Assume that there is a tree 7" which has a p-dominating set D satisfying
the condition of (iii) but D is not a unique ~,-set of 7. Let T" be such a counterexample
of minimum order. Then, by Lemma 1, DN X,(T) # (. Let S be an arbitrary ~,-set of
T. In the following, we only need prove that S = D, which contradicts the assumption

that D is not a unique ~y,-set of T'.



If d(T') =2, then T is a star, and so |[D N X,(T)| < 1. By DN X,(T) # 0, we can
denote DN X,(T) by {a}. By Lemma 1 and PN,(a, D) =0, degr(a) = |D N Nr(a)| <
p — 2, which contradicts with degr(a) > p. If d(T') = 3, then T contains exact two
vertices with degree at least 2. For every b € D N X,(T), we have degr(b) > p
and |PN,(b,D)| < 1. From D fulfils (iii), we can derive that |[D N Np(b)| < p—2. So
degr(b) = |DNNz(b)|+1 < p—1, a contradiction. Hence d(T") > 4. Let P = wvwz - - - r
be a longest path in 7. We root T" at r. By Lemma 1, D(v) € D and D(v) C S.

Case 1. degr(v) <p—1.

By Lemma 1, Djv] C D. Let T" = T — u, then DNV(T") = D — {u} is a p-
dominating set of 7”. Note that (D NV(T")) N Ny (z) = D N Nyp(z) and PN,(z, D N
V(T"),T") = PNy(z,D,T) for every z € (DNV(T"))NX,(T"). Hence T" is a tree whose
p-dominating set D N V(71”) fulfils (iii) since 7" and D fulfil (iii). By our assumption
that 7" is the counterexample of minimum order, D N V(7”) is a unique 7,-set of T".

So % (T") = |[DAV(T)| = |D| =1 = %(T) — 1.

By Lemma 1, Djv] C S. Hence SNV (T") = S — {u} is a p-dominating set of 7"
with [SNV(T")| = 1S| —1=7,(T) =1 < ,(T7"). That is, SNV (T") is also a 7,-set of
T'. Hence SNV (T") = DN V(T"). Thus

S=(SNV(T)U{ul = (DNV(T') U {u} = D.

Case 2. degr(v) = p.

For every v' € D(w) N X,(T) (= C(w)NX,(T)), we have |[DN Np(v')| > |D(v')| =
degr(v') —1 > p—1, and so v' ¢ D since T and D fulfil (iii). Then, by Lemma 1,
DN D(w) = Ly,(T) N D(w). By degr(v) =p, v ¢ D. Since D p-dominates v, we have
we D.

Let 7" =T — D(w), then DNV (T") is a p-dominating set of 7”. Since w € D and
degr(w) = 1, for every z € (DNV(T")) N X, (T"), (DNV(T")) N Ny (2) = DN Np(2)
and PN,(z,D NV (T"),T") = PN,(z,D,T). Hence T" is a tree whose p-dominating

set DN V(T") fulfils (iii) since T" and D fulfil (iii). By our assumption that 7" is the
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counterexample of minimum order, DNV (1”) is a unique ~y,-set of 7. So | DNV (1")| =
w(T') and 7, (T) < [D[ = [D N D(w)[ + [DNV(T)| = [D O D(w)] +7,(T").

Now we prove S = D. Suppose that v € S, then, by the definition of 7,-set and
Lemma 1, w ¢ S and (SN D(w)) N X,(T) = {v} (Assume that (SN D(w)) N X,(T)
contains another vertex v/, then v’ is a neighbor of w in D(w). Note that D(v") C S by
Lemma 1 and |D(v')] > p — 1. We can replace v,v" by w in S and get a p-dominating
set of T' of order |S| — 1, a contradiction). Hence SN D(w) = (L,(T) N D(w)) U{v} =
(DN D(w))U{v}. Since (SNV(T")) U{w} is a p-dominating set of 7" with

[(SNV(T) U{w}] = [S] =[S N D(w)| + 1 =%(T) — [D N D(w)| < (1),

we know that (SNV(T"))U{w} is a y,-set of 7. Hence (SNV(T"))U{w} = DNV (T").
By w ¢ S and w € D, we have degr(w) > p and w € D N X,(T'). Note that

DO Nz(w)| = [(DND(w)) N Np(w)| + DN {z}]
= (5N D(w)) = {v}) N Nr(w)| +[S N {z}]

= |(SND(w))NNr(w)| =1+ [SN{z} =|SNNp(w)| —1>p—1.

Hence |PNy(w,D,T)| > 2 since T and D satisfy (iii). By w ¢ S and (S N D(w)) N
X,(T) = {v}, D(w) N X,(T) (= C(w) N X,(T)) contains a unique vertex v of degree
p. Thus PNy(w,D,T) N D(w) = {v}. From |PN,(w,D,T)| > 2, we know that

PN,(w,D,T) = PN,(w,D,T)N (D(w) U {z}) = {v,z}.

So |[DN Nr(x)l =pand x ¢ DNV(T") = (SNV(T') U{w}. Further, x ¢ S. To
p-dominate z, |S N Np(x)| > p, which contradicts with

[SONp(z)] = |[(SNV(T")) N Np(z)]

— (DA Ne(@)) — {w}] = (DO Np(a)] ~ 1 =p— 1.
Hence v ¢ S.

To p-dominate v, w € S and, by the definition of v,-set, SN D(w) = L,(T) N
D(w) = DN D(w). Then SNV(T") is a p-dominating set of 7" with |[S NV (T")| =
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|S| =[S N D(w)| =7,(T) — |DND(w)| <,(T"), which implies that SNV (T") is also
a yp-set of 7. Hence SNV(T") = DN V(T"), and so

S=(SNV(T)U(SND(w)) = (DNV(T') U (DN D(w)) = D.

Case 3. degr(v) > p+ 1.

Note that |D N Np(v)| > |D(v)| = degr(v) — 1 > p. We have v ¢ D since T' and
D fulfil (iii). Let 7" = T — D[v], then D NV (T") is a p-dominating set of 7". Since
v ¢ D and DN Np(v) = D(v) U(Dn{w}), (DNV(T")) N Np(z) = DN Np(z) and
PN,(z2,DNV(T"),T") = PNy(z,D,T) for every z € (DNV(T")) N X,(T"). Hence T"
is a tree whose p-dominating set D N V(7”) fulfils (iii) since 7" and D fulfil (iii). As
T is the counterexample of minimum order, D N V(1”) is the unique ~,-set of T". So

[DAV(T)| = %(T") and 7,(T) < |D| = [D()| + [D N V(T")| = [D(v)] + 7(T").

Now we prove that S = D. Suppose that v € S, then by the definition of v,-set,
w ¢ S. Thus (SNV(T")) U{w} is a p-dominating set of 7" with

[(SNV(TT) U{w}] = [S] = [D][ + 1 = (1) = [D(v)] < 3(T"),

which implies that (SN V(T")) U{w} is a vy,-set of T'. Hence (SN V(T")) U{w} =
DNV(T"). Sowe D. Byw¢ S, v¢ D andv e S, wehave w € DN X,(T) and
[DN Np(w)| = [(DNV(T') N Nr(w)|
= [(SNV(T") N Nr(w)| =[SO Np(w)| =1=p—1.
Hence |PN,(w,D,T)| > 2 since T and D fulfil (iii). Thus we can choose a vertex

y in V(1) from PNy(w,D,T). Clearly, |D N Np(y)| = p, Nrly] C V(1) and y ¢
DNV(T") —{w}=SNV(T"). Soy ¢ S and, to p-dominate y, |S N Nr(y)| > p. But

1SN Nr(y)

(SN V(T") N Nr(y)l
= [(DNV(T") N Nr(y) —{w}| = (DN Nr(y))| -1=p—1,

a contradiction. Therefore, v ¢ S and S N V(T") is a p-dominating set of 7" with
ISNV(T")| =S| = |DW)| =7,(T) — |D(v)| <~,(T"). Then SNV (T") is also a 7,-set
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of 7", and so SNV(T") = DN V(T"). Hence
S=(SnNV(T))UD(w)=(DNV(T"))UD(v) = D.
U

Now we will establish the third equivalent condition for trees with unique minimum

p-dominating sets.

Lemma 3. Suppose that T is a tree and p is a positive integer. Let D be a v,-set of
T and x € D.

(a) If 3(T — @) > 7,(T), then |PN,(x, D)| > 2.

(b) If D is a unique ~y,-set of T, then v,(T — x) = ~,(T) + |PN,(z, D)| — 1.

Proof. Let Ty,--- , Ty be all components of T — z. Then k = degr(z) > 1. For
i=1,---,k, we denote the neighbor of z in V(T;) by y; and let D; = DNV (T};). We
claim that,

|Dz| < ’Yp(Tz) < ‘DZ| + 17 for every L= 17 7k' (1)

In fact, for ¢ = 1,--- ,k, it is obvious that ~,(7;) < |D;| + 1 since D; U {y;} is a
p-dominating set of 7;. Suppose that there exists some j € {1,--- k} such that
Y(Tj) < [Dj| — 1. Let D} be a y,set of Tj. Since z € D, (D — D;) U Dj is a
p-dominating set of 7" with [(D — D;) U Dj| = |D| — |D;| 4+ 7(Tj) < 7(T) — 1, a

contradiction. The claim holds.

Let |PN,(x,D)| = t, then 0 < t < k. Since T is a tree, |PN,(x,D)NV(T})| <1
for every i = 1,--- k. So, without loss of generality, we can assume that PN, (z, D) =
{y1,-- ,y}. By the definition of p-dominating set, D; (i = ¢t +1,--- k) is a p-
dominating set of T; since y; ¢ PN,(z, D), and so |D;| > v,(7;). Applying inequal-
ity (1), we have

|D;| = 7,(T;), for everyi=t+1,--- k. (2)

Now we prove (a). Suppose that |PN,(x,D)| < 1. Then, by inequality (1) and



equality (2),
k
Z'Yp Z‘D’""l—’YpT)

which contradicts with ,(T" — ) > 7,(T). (a) is true.

To the end, we prove (b). We claim that, for every i = 1,--- ¢, |D;| +1 =
v(T;) if D is a unique y,-set of 7. To the contrary, by inequality (1), there exists
some j € {1,---,t} such that |D;| = 7,(1;). Since € D and y; € PNy(x,D),
|D; N N, (y;)| = (DN Np(y;)) — {z}| =p— 1, and so D; is not a p-dominating set of
T;. Let Dj be a y,-set of Tj, then (D — D;) U D} is a p-dominating set of T" different
from D and |(D — D;) U Df| = |D| — |D;| + |D| = 7,(T). Hence, (D — D;) U DY is
a p-set of T', which contradicts that D is the unique v,-set of 7. The claim holds.
Hence, by equality (2) and x € D,

k t k
T =) = 3 (T = S0+ 1)+ 3 D] = 3(T) + |PN, (2, D)| - 1.
i=1 i=1 i=t+1

O

Theorem 4. Suppose that'T" is a tree and p > 2 is a positive integer. Let D be a subset
of V(T'). Then D is a unique y,-set of T if and only if D is a y,-set of T satisfying
either |D N Np(x)| < p—2 or v,(T — x) > ~,(T) for every x € DN X,(T).

Proof. If D is a y,-set of T satisfying, for every x € DNX,(T), either |[DNNr(z)| < p—2
or V(T — x) > 7,(T), then, by Lemma 3 (a), T is a tree whose 7,-set D satisfies (ii)
of Theorem 2. By Theorem 2 (i)« (ii), D is a unique ~y,-set of 7.

Conversely, by Theorem 2 (i) < (ii), D is a y,-set of T satisfying, for every x €
D N X,(T), either |D N Np(z)] < p—2or |PNy(z,D,T)| > 2. By Lemma 3 (b),
V(T —x) = 7(T) + |PNy(x, D)| — 1 for every x € D. For every x € D N X,(T), if
|DNNp(x)| > p—1, then |PN,(x, D)| > 2, and so v,(T—x) = v,(T)+|PN,(z, D)|—1 >
vp(T"). The proof is completed. O



3 A constructive characterization of trees with unique

Yp-sets

In this section, we will give a constructive characterization of all trees with unique

minimum p-dominating sets for p > 2.

A vertex is a central vertex of a star K, (¢ > 1) if either t > 2 and it is the support
vertex or t = 1 and it is one of the two leaves. For convenience, an isolated vertex itself

is also called its central vertex.
We first introduce a family 7,.

For any T' € 7,, T is obtained from a sequence 11,75, -, T (k > 1) of trees,
where Ty = Ky,, (m > p), T =Ty, and, for k > 2, T;; (1 <i <k —1) is obtained
from T; by one of the operations listed below. Let A(T}) = L(T}).

e Operation O;: Attach h (> 0) stars K;,_;, denoted by {Hy,---,Hp}, and
t (> 0) isolated vertices, denoted by {vy,---,v:}, to T; by adding h + t edges from

their central vertices to a leaf w of T;, where h, t and w must fulfil one of the following

conditions.
(@) h=0and t <p—2;
(b) h=1and t <p—3;
(¢) h=1,t=p— 2 and the support vertex of w in T; isn’t in A(T;);
(d) h=1,t > p—1 and the support vertex of w is a p-private vertex of w
with regard to A(T;) in T;;
(e) h > 2.

Let A(Tier) = A(T) U (U, L(H;)) U {vr,-- - o},

e Operation O,: Attach a star Ky, (t > p) to T; by adding an edge from its
central vertex to a vertex w of T; satisfying either degr, (w) # p—1 or Ny, (w) € A(T;)
Let A(Ti11) = A(T;) U L(Kq ).

Lemma 5. For any T € T,, A(T) is a unique ~,-set of T'.
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Proof. We claim that A(T) is a p-dominating set of 7" and, for every vertex x €
A(T) N X,(T), |A(T) N Nyp(z)| < p—2or |[PN,(x, A(T),T)| > 2. Then, by (i) < (i)
of Theorem 2, A(T") is a unique 7,-set of 7". Assume that 7" is obtained from a sequence
Ty, , T (k> 1) of trees constructed recursively from 7; by Operation O; and Os,
where Ty = Ky, (m > p) and T' = T},. We can prove easily the claim by induction on
the length k of the sequence T, --- ,T;. We omit the proof. U

From Lemma 1 and the definition of Operation O; (a), it is easy to see that the

following lemma is true.

Lemma 6. Let T be a tree containing a unique vertex with degree at least p. Then

T €7,

Lemma 7. Let T be a tree containing exact two vertices with degree at least p. If T

has a unique v,-set, then T' € 7T,,.

Proof. Denote the two vertices with degree at least p by u and v. We distinguish the

following two cases.

Case 1. If uv € E(T), then degr(u) > p+ 1 and degr(v) > p+ 1 since T has a
unique y,-set. Let T} = T'[Nr[v] — {u}], then T} is a star K, (m = degr(v) —1 > p).
Hence T, = T[Nr[u] U Nz [v]] is obtained from T} by Operation Oy by attaching a star
Ky, = T[Nr[u] — {v}] (t = degr(u) —1 > p) to v, and so Ty € 7,. Since every vertex
of V(T') — V(T3) has degree at most p — 1, T' can be obtained recursively from T, by
Operation O; satisfying (a). So T € 7,.

Case 2. If uv ¢ E(T), then we root T" at u and denote the father of v by w.

If degr(v) = p, let 7" = T — D(w). Obviously, 7" is a tree containing a unique
vertex with degree at least p and w is a leaf of 7". By Lemma 6, 7" € 7,. Since
degr(v) = p, TINelo] — {w}] = Kupr. By degr(w) < p— 1, |C(w) — {0} < p— 3
Let 7" = T[V(T") U (Nr[v] — {w}) U (C(w) — {v})], then 7" is obtained from 7" by
Operation O; satisfying (b), and so 7" € 7,,. Since every vertex of V(1) — V(T") has

degree at most p— 1, T' can be obtained recursively from 7" by Operation O; satisfying
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(a). So T € 7,.

If degr(v) > p+ 1, let 7" = T — D[v]. Since T has exact two vertices u and v
with degree at least p, T" is a tree containing a unique vertex u with degree at least
p and degr(w) < p — 2. By Lemma 6, 7" € 7,. Let 7" = T[V(T") U (C(v) U {v})],
then 7" is obtained from 7" by Operation Oy by attaching a star K;; = T[C'(v) U{v}]
(t =degr(v)—1>p)tow. SoT" € T,. Since every vertex of V(T') — V(1) has degree
at most p — 1, T can be obtained recursively from 7" by Operation O, satisfying (a).
So T €7, O

Theorem 8. Let T' be a tree and p > 2 a positive integer. Then T has a unique 7,-set
if and only if A(T) <p—1orT €T,

Proof. It A(T) <p—1orT €7, by Lemmas 1 and 5, T" has a unique ~,-set.

Conversely, let T be a tree with a unique 7,-set. We will prove A(T) < p—1 or
T € 7, by induction on the order n of T'.

If n € {1,2}, then A(T) < p — 1. This establishes the base case. Assume that, if
tree 7" with order 2 < |V(T")| < n has a unique v,-set, then A(7") < p—1or 1" € 7,.

If d(T) = 2, then T has at most one vertex with degree at least p. By Lemma 6,
the result holds. If d(T") = 3, then T" has at most two vertices with degree at least p.
By Lemmas 6 and 7, the result holds. In the following, we can assume that A(T) > p
and d(T') > 4.

Let p = wvwx ---r be a longest path in T such that the degree of v is as large as
possible. We root T" at r and denote the unique 7,-set of 7" by D. By Theorem 2, T
and D fulfil (ii) of Theorem 2.

We claim that, if there exists a vertex v € C(w) with 2 < degr(v') < p —1, then
T e7T,

In fact, by the choice of path P and v" € C(w), T[D(v")] consists of |D(v")| isolated
vertices and |D(v)| = degr(v') — 1 < p — 2. By Lemma 1, D[v/]| C D. Let T' =
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T — D(v'), then DNV (T") is a p-dominating set of T". Since v" € D and v’ is a leaf of
T'. (DN V(T') N Npo(2) = DA Ny(2) and PN,(2, DA V(T"), T') = PN,(z,D,T) for
every z € (DNV(T")) N X,(1"). Hence 1" is a tree whose p-dominating set D NV (17)
fulfils (iii) of Theorem 2 since 7" and D fulfil (ii) of Theorem 2. By Theorem 2 (1)< (iii),
DN V(T") is a unique ,-set of 7". Applying the induction on 7”7, A(T") < p—1 or
T"e 7, If A(T") < p—1, then A(T) < p — 1, which contradicts with A(T") > p.
If 7" € 7,, then T is obtained from 7" by Operation O, satisfying (a) by attaching
|D(v")| isolated vertices to the leaf v’ of T". Hence T € 7,. The claim holds.

By claim, we only need consider the case that every vertex of C'(w) has degree 1

or at least p. Since v € C(w) and degr(v) > 2, degr(v) > p.
Case 1. degr(v) = p.

By the choice of path P, for every vertex v' € C(w), degr(v') < degr(v) = p,
and so degr(v') = p or 1. Let h and t be the number of vertices with degree p and 1,
respectively, in C'(w). Then h > 1 and T[D(w)] consists of h stars K, and ¢ isolated
vertices. Since degr(v) = p, |D N Nr(v)| > |D(v)| = degr(v) — 1 = p — 1. By (ii) of
Theorem 2 , v ¢ D. To p-dominate v, w € D. Let T" = T'— D(w), then DNV (T") is a p-
dominating set of 7. Since w € D and degy (w) = 1, for every z € (DNV(T"))NX,(T"),
(DNV(T")) N Np/(2) = DN Np(z) and PN,(2, DNV (T"),T") = PN,(z,D,T). Hence
T" is a tree whose p-dominating set D NV (T") fulfils (iii) of Theorem 2 since T" and D
fulfil (ii) of Theorem 2. By Theorem 2 (i)<(iii), D N V(7") is a unique y,-set of 1.
Applying the induction on 77, A(T") <p—1or T’ € 7,.

Subcase 1.1. A(T") <p—1.

If h = 1, then every vertex of D(w) — {v} is a leaf of T. Hence all vertices of
V(T) —{v,w} have degree at most A(7") (< p—1)inT. By Lemmas 6 and 7, T' € 7,.

If h > 2, then, by the definition of Operation O; and O,, we can check easily that
T" = T[D[w] U {x}] € 7,. Since all vertices of V(T') — (D[w] U {z}) (C V(T")) have
degree at most A(7") (< p—1)in T and z is a leaf of 7", T' can be obtained recursively
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from 7" by Operation O; satisfying condition (a). So T" € 7,,.
Subcase 1.2. 7" € 7,.

When h > 2, then T is obtained from 7" by Operation O, satisfying condition (e).

Hence T' € 7,. Now we assume that h = 1.

If degr(w) < p—1, then t = degr(w) — 2 < p— 3. Thus T is obtained from 7" by
O, satisfying condition (b). Hence T € 7,,.

If degr(w) = p, then t = degr(w) — 2 = p — 2. Note that z is the support vertex of
win T". We claim that x ¢ DNV (T") = A(T"). Otherwise, by w € D, (D —{w})U{v}
is a y,-set of T different from D, a contradiction. Hence T is obtained from 7" by

Operation O; satisfying condition (c¢). Thus T" € 7,.

If degr(w) > p+ 1, then t = degr(w) —2 > p — 1. Note that w € DN X,(T)
and |D N Np(w)| > ¢t > p— 1. By (ii) of Theorem 2, w has at least two p-private
vertices with regard to D in 7. Then we can see easily that PN,(w,D,T) = {v,z}.
So PN,(w, A(T"),T") = PN,y(w,DNV(T'),T") = {x}. Hence T is obtained from 7"
by O, satisfying condition (d), and so T' € 7,,.

Case 2. degr(v) > p+ 1.

Let T" = T'— D[v]. Since degr(v) > p+1 and |DNNp(v)| > |D(v)| = degr(v)—1 >
p, by (ii) of Theorem 2, v ¢ D. Hence D NV(T") is a p-dominating set of T". Since
v ¢ D and DN Nr(v) = D(v)U(Dn{w}), (DNV(T") N Nr(z) = DN Np(z) and
PN,(z2,DNV(T"),T") = PNy(z,D,T) for every z € (DNV(T")) N X,(T"). Hence T"
is a tree whose p-dominating set D N V/(7”) fulfils (iii) of Theorem 2 since 7" and D
fulfil (ii) of Theorem 2. By Theorem 2 (i)« (iii), D N V(7") is a unique y,-set of 1.
Applying the induction on 77, A(T") <p—1or T" € 7T,.

If A(T") < p—1, then all vertices of T'—{v, w} have degree at most A(7") (< p—1)
in T. By Lemmas 6 and 7, T' € 7,,.

If 7" € T, then we claim that degr(w) # p — 1 or Np(w) € D. Suppose that
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degr(w) = p — 1 and Np(w) C D, then, by Lemma 1, w € D. It is easy to see that
(D —{w})U{v} is a y,-set of T different from D, a contradiction. Hence T is obtained
from 7" by Operation O, by attaching a star K¢ (= T[D[v]], t = degr(v) —1 > p) to
wofT. SoT €T, O
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