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Abstract

Let p be a positive integer and G = (V,E) a simple graph. A p-dominating set

of G is a subset S of V such that every vertex not in S is dominated by at least

p vertices in S. The p-domination number γp(G) is the minimum cardinality

among the p-dominating sets of G. In this paper, for p ≥ 2, we give three

equivalent conditions for trees with unique minimum p-dominating sets and also

give a constructive characterization of such trees.
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1 Introduction

For notation and graph theory terminology we follow [3, 10, 11]. Let G = (V (G), E(G))

be a simple graph with vertex set V (G) and edge set E(G). The open neighborhood,

the closed neighborhood and the degree of a vertex v ∈ V (G) are denoted by NG(v) =
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{u ∈ V (G)|uv ∈ E(G)}, NG[v] = NG(v)∪{v} and degG(v) = |NG(v)|, respectively. The

maximum degree ∆(G) = max{degG(v) : v ∈ V (G)}. For S ⊆ V (G), the subgraph

induced by S is denoted by G[S]. For a pair of vertices u, v ∈ V (G), the distance

dG(u, v) of u and v is the length of the shortest uv-paths in G. The diameter of G is

d(G) = max{dG(u, v) : u, v ∈ V (G)}.

Let D be a subset of V (G) and p a positive integer. For any x ∈ D, a vertex

y not in D is called a p-private neighbor of x with regard to D if y is a neighbor of

x and |D ∩ NG(y)| = p. The p-private neighborhood of x with regard to D, denoted

by PNp(x, D, G), is the set of all p-private neighbors of x with regard to D in G.

If the graph G is clear from the context, we will simply use PNp(x, D) instead of

PNp(x, D, G).

Let T be a tree and p ≥ 2 a positive integer. A p-leaf of T is a vertex with degree at

most p−1 in T . Denote the set of p-leaves of T by Lp(T ) and let Xp(T ) = V (T )−Lp(T ).

Then, for x ∈ Xp(T ), degT (x) ≥ p. Note that the 2-leaves are the usual leaves and

L2(T ) is the set of leaves of T . Therefore, we also denote L2(T ) by L(T ). If T is

a rooted tree T , then, for every v ∈ V (T ), we let C(v) and D(v) denote the set of

children and descendants, respectively, of v, and define D[v] = D(v) ∪ {v}.

In [6], Fink and Jacobson introduced the concept of p-domination. Let p be a

positive integer. A subset S of V (G) is a p-dominating set of G if, for every v ∈

V (G)−S, |S∩NG(v)| ≥ p. The p-domination number γp(G) is the minimum cardinality

among the p-dominating sets of G. Any p-dominating set of G with cardinality γp(G)

will be called a γp-set of G. Note that the γ1-set is the classic minimum dominating set.

For any S, T ⊆ V (G), S p-dominates T in G if, for every v ∈ T − S, |S ∩NG(v)| ≥ p.

Unique domination in graphs has been investigated in many papers (see, for exam-

ple, [2, 4, 5, 7, 8, 9]). In [8], Gunther et al. characterized all trees with unique minimum

dominating sets. In this paper, for p ≥ 2, we first give three equivalent conditions for

trees with unique minimum p-dominating sets, and then we give a constructive char-

acterization of such trees.
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2 Equivalent conditions for trees with unique γp-

sets

Lemma 1. ([1]) Every p-dominating set of a graph G contains any vertex of degree at

most p− 1.

Theorem 2. Suppose that T is a tree and p ≥ 2 is a positive integer. Let D be a subset

of V (T ). Then the following conditions are equivalent:

(i) D is a unique γp-set of T ;

(ii) D is a γp-set of T satisfying either |D ∩NT (x)| ≤ p− 2 or |PNp(x, D)| ≥ 2

for every x ∈ D ∩Xp(T );

(iii) D is a p-dominating set of T satisfying either |D ∩NT (x)| ≤ p− 2 or

|PNp(x, D)| ≥ 2 for every x ∈ D ∩Xp(T ).

Proof. We will prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i). (ii) ⇒ (iii) is obvious.

(i) ⇒ (ii) : Suppose to the contrary that there exists some x ∈ D ∩ Xp(T ) such

that |D ∩NT (x)| ≥ p− 1 and |PNp(x, D)| ≤ 1.

If |PNp(x, D)| = 0, then |D∩NT (x)| = p−1 (Otherwise, D−{x} is a p-dominating

set of T , which contradicts that D is a γp-set of T ). Thus, there exists a neighbor,

denoted by y, of x which is not in D since degT (x) ≥ p. Let D′ = (D − {x}) ∪ {y},

then D′ is a γp-set of T different from D, a contradiction.

If |PNp(x, D)| = 1, then we denote PNp(x, D) by {y} and let D′ = (D−{x})∪{y}.

Since |D ∩ NT (x)| ≥ p − 1, |D′ ∩ NT (x)| = |(D ∩ NT (x)) ∪ {y}| ≥ p. Hence D′ is a

γp-set of T different from D, a contradiction.

(iii) ⇒ (i) : Assume that there is a tree T which has a p-dominating set D satisfying

the condition of (iii) but D is not a unique γp-set of T . Let T be such a counterexample

of minimum order. Then, by Lemma 1, D∩Xp(T ) 6= ∅. Let S be an arbitrary γp-set of

T . In the following, we only need prove that S = D, which contradicts the assumption

that D is not a unique γp-set of T .
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If d(T ) = 2, then T is a star, and so |D ∩Xp(T )| ≤ 1. By D ∩Xp(T ) 6= ∅, we can

denote D ∩Xp(T ) by {a}. By Lemma 1 and PNp(a, D) = ∅, degT (a) = |D ∩NT (a)| ≤

p − 2, which contradicts with degT (a) ≥ p. If d(T ) = 3, then T contains exact two

vertices with degree at least 2. For every b ∈ D ∩ Xp(T ), we have degT (b) ≥ p

and |PNp(b, D)| ≤ 1. From D fulfils (iii), we can derive that |D ∩NT (b)| ≤ p− 2. So

degT (b) = |D∩NT (b)|+1 ≤ p−1, a contradiction. Hence d(T ) ≥ 4. Let P = uvwx · · · r

be a longest path in T . We root T at r. By Lemma 1, D(v) ⊆ D and D(v) ⊆ S.

Case 1. degT (v) ≤ p− 1.

By Lemma 1, D[v] ⊆ D. Let T ′ = T − u, then D ∩ V (T ′) = D − {u} is a p-

dominating set of T ′. Note that (D ∩ V (T ′)) ∩ NT ′(z) = D ∩ NT (z) and PNp(z, D ∩

V (T ′), T ′) = PNp(z, D, T ) for every z ∈ (D∩V (T ′))∩Xp(T
′). Hence T ′ is a tree whose

p-dominating set D ∩ V (T ′) fulfils (iii) since T and D fulfil (iii). By our assumption

that T is the counterexample of minimum order, D ∩ V (T ′) is a unique γp-set of T ′.

So γp(T
′) = |D ∩ V (T ′)| = |D| − 1 ≥ γp(T )− 1.

By Lemma 1, D[v] ⊆ S. Hence S ∩ V (T ′) = S − {u} is a p-dominating set of T ′

with |S ∩ V (T ′)| = |S| − 1 = γp(T )− 1 ≤ γp(T
′). That is, S ∩ V (T ′) is also a γp-set of

T ′. Hence S ∩ V (T ′) = D ∩ V (T ′). Thus

S = (S ∩ V (T ′)) ∪ {u} = (D ∩ V (T ′)) ∪ {u} = D.

Case 2. degT (v) = p.

For every v′ ∈ D(w)∩Xp(T ) (= C(w)∩Xp(T )), we have |D∩NT (v′)| ≥ |D(v′)| =

degT (v′) − 1 ≥ p − 1, and so v′ /∈ D since T and D fulfil (iii). Then, by Lemma 1,

D ∩D(w) = Lp(T ) ∩D(w). By degT (v) = p, v /∈ D. Since D p-dominates v, we have

w ∈ D.

Let T ′ = T −D(w), then D ∩ V (T ′) is a p-dominating set of T ′. Since w ∈ D and

degT ′(w) = 1, for every z ∈ (D ∩ V (T ′)) ∩Xp(T
′), (D ∩ V (T ′)) ∩NT ′(z) = D ∩NT (z)

and PNp(z, D ∩ V (T ′), T ′) = PNp(z, D, T ). Hence T ′ is a tree whose p-dominating

set D ∩ V (T ′) fulfils (iii) since T and D fulfil (iii). By our assumption that T is the
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counterexample of minimum order, D∩V (T ′) is a unique γp-set of T ′. So |D∩V (T ′)| =

γp(T
′) and γp(T ) ≤ |D| = |D ∩D(w)|+ |D ∩ V (T ′)| = |D ∩D(w)|+ γp(T

′).

Now we prove S = D. Suppose that v ∈ S, then, by the definition of γp-set and

Lemma 1, w /∈ S and (S ∩ D(w)) ∩ Xp(T ) = {v} (Assume that (S ∩ D(w)) ∩ Xp(T )

contains another vertex v′, then v′ is a neighbor of w in D(w). Note that D(v′) ⊆ S by

Lemma 1 and |D(v′)| ≥ p− 1. We can replace v, v′ by w in S and get a p-dominating

set of T of order |S| − 1, a contradiction). Hence S ∩D(w) = (Lp(T )∩D(w))∪ {v} =

(D ∩D(w)) ∪ {v}. Since (S ∩ V (T ′)) ∪ {w} is a p-dominating set of T ′ with

|(S ∩ V (T ′)) ∪ {w}| = |S| − |S ∩D(w)|+ 1 = γp(T )− |D ∩D(w)| ≤ γp(T
′),

we know that (S∩V (T ′))∪{w} is a γp-set of T ′. Hence (S∩V (T ′))∪{w} = D∩V (T ′).

By w /∈ S and w ∈ D, we have degT (w) ≥ p and w ∈ D ∩Xp(T ). Note that

|D ∩NT (w)| = |(D ∩D(w)) ∩NT (w)|+ |D ∩ {x}|

= |((S ∩D(w))− {v}) ∩NT (w)|+ |S ∩ {x}|

= |(S ∩D(w)) ∩NT (w)| − 1 + |S ∩ {x}| = |S ∩NT (w)| − 1 ≥ p− 1.

Hence |PNp(w, D, T )| ≥ 2 since T and D satisfy (iii). By w /∈ S and (S ∩ D(w)) ∩

Xp(T ) = {v}, D(w) ∩ Xp(T ) (= C(w) ∩ Xp(T )) contains a unique vertex v of degree

p. Thus PNp(w, D, T ) ∩D(w) = {v}. From |PNp(w, D, T )| ≥ 2, we know that

PNp(w, D, T ) = PNp(w, D, T ) ∩ (D(w) ∪ {x}) = {v, x}.

So |D ∩ NT (x)| = p and x /∈ D ∩ V (T ′) = (S ∩ V (T ′)) ∪ {w}. Further, x /∈ S. To

p-dominate x, |S ∩NT (x)| ≥ p, which contradicts with

|S ∩NT (x)| = |(S ∩ V (T ′)) ∩NT (x)|

= |(D ∩NT (x))− {w}| = |D ∩NT (x)| − 1 = p− 1.

Hence v /∈ S.

To p-dominate v, w ∈ S and, by the definition of γp-set, S ∩ D(w) = Lp(T ) ∩

D(w) = D ∩ D(w). Then S ∩ V (T ′) is a p-dominating set of T ′ with |S ∩ V (T ′)| =
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|S| − |S ∩D(w)| = γp(T )− |D ∩D(w)| ≤ γp(T
′), which implies that S ∩ V (T ′) is also

a γp-set of T ′. Hence S ∩ V (T ′) = D ∩ V (T ′), and so

S = (S ∩ V (T ′)) ∪ (S ∩D(w)) = (D ∩ V (T ′)) ∪ (D ∩D(w)) = D.

Case 3. degT (v) ≥ p + 1.

Note that |D ∩ NT (v)| ≥ |D(v)| = degT (v) − 1 ≥ p. We have v /∈ D since T and

D fulfil (iii). Let T ′ = T − D[v], then D ∩ V (T ′) is a p-dominating set of T ′. Since

v /∈ D and D ∩ NT (v) = D(v) ∪ (D ∩ {w}), (D ∩ V (T ′)) ∩ NT ′(z) = D ∩ NT (z) and

PNp(z, D ∩ V (T ′), T ′) = PNp(z, D, T ) for every z ∈ (D ∩ V (T ′)) ∩Xp(T
′). Hence T ′

is a tree whose p-dominating set D ∩ V (T ′) fulfils (iii) since T and D fulfil (iii). As

T is the counterexample of minimum order, D ∩ V (T ′) is the unique γp-set of T ′. So

|D ∩ V (T ′)| = γp(T
′) and γp(T ) ≤ |D| = |D(v)|+ |D ∩ V (T ′)| = |D(v)|+ γp(T

′).

Now we prove that S = D. Suppose that v ∈ S, then by the definition of γp-set,

w /∈ S. Thus (S ∩ V (T ′)) ∪ {w} is a p-dominating set of T ′ with

|(S ∩ V (T ′)) ∪ {w}| = |S| − |D[v]|+ 1 = γp(T )− |D(v)| ≤ γp(T
′),

which implies that (S ∩ V (T ′)) ∪ {w} is a γp-set of T ′. Hence (S ∩ V (T ′)) ∪ {w} =

D ∩ V (T ′). So w ∈ D. By w /∈ S, v /∈ D and v ∈ S, we have w ∈ D ∩Xp(T ) and

|D ∩NT (w)| = |(D ∩ V (T ′)) ∩NT (w)|

= |(S ∩ V (T ′)) ∩NT (w)| = |S ∩NT (w)| − 1 ≥ p− 1.

Hence |PNp(w,D, T )| ≥ 2 since T and D fulfil (iii). Thus we can choose a vertex

y in V (T ′) from PNp(w,D, T ). Clearly, |D ∩ NT (y)| = p, NT [y] ⊆ V (T ′) and y /∈

D ∩ V (T ′)− {w} = S ∩ V (T ′). So y /∈ S and, to p-dominate y, |S ∩NT (y)| ≥ p. But

|S ∩NT (y)| = |(S ∩ V (T ′)) ∩NT (y)|

= |(D ∩ V (T ′)) ∩NT (y)− {w}| = |(D ∩NT (y))| − 1 = p− 1,

a contradiction. Therefore, v /∈ S and S ∩ V (T ′) is a p-dominating set of T ′ with

|S ∩ V (T ′)| = |S| − |D(v)| = γp(T )− |D(v)| ≤ γp(T
′). Then S ∩ V (T ′) is also a γp-set
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of T ′, and so S ∩ V (T ′) = D ∩ V (T ′). Hence

S = (S ∩ V (T ′)) ∪D(v) = (D ∩ V (T ′)) ∪D(v) = D.

�

Now we will establish the third equivalent condition for trees with unique minimum

p-dominating sets.

Lemma 3. Suppose that T is a tree and p is a positive integer. Let D be a γp-set of

T and x ∈ D.

(a) If γp(T − x) > γp(T ), then |PNp(x, D)| ≥ 2.

(b) If D is a unique γp-set of T , then γp(T − x) = γp(T ) + |PNp(x, D)| − 1.

Proof. Let T1, · · · , Tk be all components of T − x. Then k = degT (x) ≥ 1. For

i = 1, · · · , k, we denote the neighbor of x in V (Ti) by yi and let Di = D ∩ V (Ti). We

claim that,

|Di| ≤ γp(Ti) ≤ |Di|+ 1, for every i = 1, · · · , k. (1)

In fact, for i = 1, · · · , k, it is obvious that γp(Ti) ≤ |Di| + 1 since Di ∪ {yi} is a

p-dominating set of Ti. Suppose that there exists some j ∈ {1, · · · , k} such that

γp(Tj) ≤ |Dj| − 1. Let D′
j be a γp-set of Tj. Since x ∈ D, (D − Dj) ∪ D′

j is a

p-dominating set of T with |(D − Dj) ∪ D′
j| = |D| − |Dj| + γp(Tj) ≤ γp(T ) − 1, a

contradiction. The claim holds.

Let |PNp(x, D)| = t, then 0 ≤ t ≤ k. Since T is a tree, |PNp(x, D) ∩ V (Ti)| ≤ 1

for every i = 1, · · · , k. So, without loss of generality, we can assume that PNp(x, D) =

{y1, · · · , yt}. By the definition of p-dominating set, Di (i = t + 1, · · · , k) is a p-

dominating set of Ti since yi /∈ PNp(x, D), and so |Di| ≥ γp(Ti). Applying inequal-

ity (1), we have

|Di| = γp(Ti), for every i = t + 1, · · · , k. (2)

Now we prove (a). Suppose that |PNp(x, D)| ≤ 1. Then, by inequality (1) and
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equality (2),

γp(T − x) =
k∑

i=1

γp(Ti) ≤
k∑

i=1

|Di|+ 1 = γp(T ),

which contradicts with γp(T − x) > γp(T ). (a) is true.

To the end, we prove (b). We claim that, for every i = 1, · · · , t, |Di| + 1 =

γp(Ti) if D is a unique γp-set of T . To the contrary, by inequality (1), there exists

some j ∈ {1, · · · , t} such that |Dj| = γp(Tj). Since x ∈ D and yj ∈ PNp(x, D),

|Dj ∩NTj
(yj)| = |(D ∩NT (yj))− {x}| = p− 1, and so Dj is not a p-dominating set of

Tj. Let D′′
j be a γp-set of Tj, then (D −Dj) ∪D′′

j is a p-dominating set of T different

from D and |(D − Dj) ∪ D′′
j | = |D| − |Dj| + |D′′

j | = γp(T ). Hence, (D − Dj) ∪ D′′
j is

a γp-set of T , which contradicts that D is the unique γp-set of T . The claim holds.

Hence, by equality (2) and x ∈ D,

γp(T − x) =
k∑

i=1

γp(Ti) =
t∑

i=1

(|Di|+ 1) +
k∑

i=t+1

|Di| = γp(T ) + |PNp(x, D)| − 1.

�

Theorem 4. Suppose that T is a tree and p ≥ 2 is a positive integer. Let D be a subset

of V (T ). Then D is a unique γp-set of T if and only if D is a γp-set of T satisfying

either |D ∩NT (x)| ≤ p− 2 or γp(T − x) > γp(T ) for every x ∈ D ∩Xp(T ).

Proof. If D is a γp-set of T satisfying, for every x ∈ D∩Xp(T ), either |D∩NT (x)| ≤ p−2

or γp(T − x) > γp(T ), then, by Lemma 3 (a), T is a tree whose γp-set D satisfies (ii)

of Theorem 2. By Theorem 2 (i)⇔(ii), D is a unique γp-set of T .

Conversely, by Theorem 2 (i) ⇔ (ii), D is a γp-set of T satisfying, for every x ∈

D ∩ Xp(T ), either |D ∩ NT (x)| ≤ p − 2 or |PNp(x, D, T )| ≥ 2. By Lemma 3 (b),

γp(T − x) = γp(T ) + |PNp(x, D)| − 1 for every x ∈ D. For every x ∈ D ∩ Xp(T ), if

|D∩NT (x)| ≥ p−1, then |PNp(x, D)| ≥ 2, and so γp(T−x) = γp(T )+|PNp(x, D)|−1 >

γp(T ). The proof is completed. �

8



3 A constructive characterization of trees with unique

γp-sets

In this section, we will give a constructive characterization of all trees with unique

minimum p-dominating sets for p ≥ 2.

A vertex is a central vertex of a star K1,t (t ≥ 1) if either t ≥ 2 and it is the support

vertex or t = 1 and it is one of the two leaves. For convenience, an isolated vertex itself

is also called its central vertex.

We first introduce a family Tp.

For any T ∈ Tp, T is obtained from a sequence T1, T2, · · · , Tk (k ≥ 1) of trees,

where T1 = K1,m (m ≥ p), T = Tk, and, for k ≥ 2, Ti+1 (1 ≤ i ≤ k − 1) is obtained

from Ti by one of the operations listed below. Let A(T1) = L(T1).

• Operation O1: Attach h (≥ 0) stars K1,p−1, denoted by {H1, · · · , Hh}, and

t (≥ 0) isolated vertices, denoted by {v1, · · · , vt}, to Ti by adding h + t edges from

their central vertices to a leaf w of Ti, where h, t and w must fulfil one of the following

conditions.

(a) h = 0 and t ≤ p− 2;

(b) h = 1 and t ≤ p− 3;

(c) h = 1, t = p− 2 and the support vertex of w in Ti isn’t in A(Ti);

(d) h = 1, t ≥ p− 1 and the support vertex of w is a p-private vertex of w

with regard to A(Ti) in Ti;

(e) h ≥ 2.

Let A(Ti+1) = A(Ti) ∪ (∪h
j=1L(Hj)) ∪ {v1, · · · , vt}.

• Operation O2: Attach a star K1,t (t ≥ p) to Ti by adding an edge from its

central vertex to a vertex w of Ti satisfying either degTi
(w) 6= p− 1 or NTi

(w) * A(Ti).

Let A(Ti+1) = A(Ti) ∪ L(K1,t).

Lemma 5. For any T ∈ Tp, A(T ) is a unique γp-set of T .
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Proof. We claim that A(T ) is a p-dominating set of T and, for every vertex x ∈

A(T ) ∩Xp(T ), |A(T ) ∩NT (x)| ≤ p− 2 or |PNp(x, A(T ), T )| ≥ 2. Then, by (i) ⇔ (iii)

of Theorem 2, A(T ) is a unique γp-set of T . Assume that T is obtained from a sequence

T1, · · · , Tk (k ≥ 1) of trees constructed recursively from T1 by Operation O1 and O2,

where T1 = K1,m (m ≥ p) and T = Tk. We can prove easily the claim by induction on

the length k of the sequence T1, · · · , Tk. We omit the proof. �

From Lemma 1 and the definition of Operation O1 (a), it is easy to see that the

following lemma is true.

Lemma 6. Let T be a tree containing a unique vertex with degree at least p. Then

T ∈ Tp.

Lemma 7. Let T be a tree containing exact two vertices with degree at least p. If T

has a unique γp-set, then T ∈ Tp.

Proof. Denote the two vertices with degree at least p by u and v. We distinguish the

following two cases.

Case 1. If uv ∈ E(T ), then degT (u) ≥ p + 1 and degT (v) ≥ p + 1 since T has a

unique γp-set. Let T1 = T [NT [v]−{u}], then T1 is a star K1,m (m = degT (v)− 1 ≥ p).

Hence T2 = T [NT [u]∪NT [v]] is obtained from T1 by Operation O2 by attaching a star

K1,t = T [NT [u]− {v}] (t = degT (u)− 1 ≥ p) to v, and so T2 ∈ Tp. Since every vertex

of V (T ) − V (T2) has degree at most p − 1, T can be obtained recursively from T2 by

Operation O1 satisfying (a). So T ∈ Tp.

Case 2. If uv /∈ E(T ), then we root T at u and denote the father of v by w.

If degT (v) = p, let T ′ = T − D(w). Obviously, T ′ is a tree containing a unique

vertex with degree at least p and w is a leaf of T ′. By Lemma 6, T ′ ∈ Tp. Since

degT (v) = p, T [NT [v] − {w}] = K1,p−1. By degT (w) ≤ p − 1, |C(w) − {v}| ≤ p − 3.

Let T ′′ = T [V (T ′) ∪ (NT [v] − {w}) ∪ (C(w) − {v})], then T ′′ is obtained from T ′ by

Operation O1 satisfying (b), and so T ′′ ∈ Tp. Since every vertex of V (T )− V (T ′′) has

degree at most p−1, T can be obtained recursively from T ′′ by Operation O1 satisfying
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(a). So T ∈ Tp.

If degT (v) ≥ p + 1, let T ′ = T − D[v]. Since T has exact two vertices u and v

with degree at least p, T ′ is a tree containing a unique vertex u with degree at least

p and degT (w) ≤ p − 2. By Lemma 6, T ′ ∈ Tp. Let T ′′ = T [V (T ′) ∪ (C(v) ∪ {v})],

then T ′′ is obtained from T ′ by Operation O2 by attaching a star K1,t = T [C(v)∪{v}]

(t = degT (v)−1 ≥ p) to w. So T ′′ ∈ Tp. Since every vertex of V (T )−V (T ′′) has degree

at most p− 1, T can be obtained recursively from T ′′ by Operation O1 satisfying (a).

So T ∈ Tp. �

Theorem 8. Let T be a tree and p ≥ 2 a positive integer. Then T has a unique γp-set

if and only if ∆(T ) ≤ p− 1 or T ∈ Tp.

Proof. If ∆(T ) ≤ p− 1 or T ∈ Tp, by Lemmas 1 and 5, T has a unique γp-set.

Conversely, let T be a tree with a unique γp-set. We will prove ∆(T ) ≤ p − 1 or

T ∈ Tp by induction on the order n of T .

If n ∈ {1, 2}, then ∆(T ) ≤ p − 1. This establishes the base case. Assume that, if

tree T ′ with order 2 ≤ |V (T ′)| < n has a unique γp-set, then ∆(T ′) ≤ p− 1 or T ′ ∈ Tp.

If d(T ) = 2, then T has at most one vertex with degree at least p. By Lemma 6,

the result holds. If d(T ) = 3, then T has at most two vertices with degree at least p.

By Lemmas 6 and 7, the result holds. In the following, we can assume that ∆(T ) ≥ p

and d(T ) ≥ 4.

Let p = uvwx · · · r be a longest path in T such that the degree of v is as large as

possible. We root T at r and denote the unique γp-set of T by D. By Theorem 2, T

and D fulfil (ii) of Theorem 2.

We claim that, if there exists a vertex v′ ∈ C(w) with 2 ≤ degT (v′) ≤ p − 1, then

T ∈ Tp.

In fact, by the choice of path P and v′ ∈ C(w), T [D(v′)] consists of |D(v′)| isolated

vertices and |D(v′)| = degT (v′) − 1 ≤ p − 2. By Lemma 1, D[v′] ⊆ D. Let T ′ =

11



T −D(v′), then D ∩ V (T ′) is a p-dominating set of T ′. Since v′ ∈ D and v′ is a leaf of

T ′, (D ∩ V (T ′)) ∩NT ′(z) = D ∩NT (z) and PNp(z, D ∩ V (T ′), T ′) = PNp(z, D, T ) for

every z ∈ (D ∩ V (T ′))∩Xp(T
′). Hence T ′ is a tree whose p-dominating set D ∩ V (T ′)

fulfils (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i)⇔(iii),

D ∩ V (T ′) is a unique γp-set of T ′. Applying the induction on T ′, ∆(T ′) ≤ p − 1 or

T ′ ∈ Tp. If ∆(T ′) ≤ p − 1, then ∆(T ) ≤ p − 1, which contradicts with ∆(T ) ≥ p.

If T ′ ∈ Tp, then T is obtained from T ′ by Operation O1 satisfying (a) by attaching

|D(v′)| isolated vertices to the leaf v′ of T ′. Hence T ∈ Tp. The claim holds.

By claim, we only need consider the case that every vertex of C(w) has degree 1

or at least p. Since v ∈ C(w) and degT (v) ≥ 2, degT (v) ≥ p.

Case 1. degT (v) = p.

By the choice of path P , for every vertex v′ ∈ C(w), degT (v′) ≤ degT (v) = p,

and so degT (v′) = p or 1. Let h and t be the number of vertices with degree p and 1,

respectively, in C(w). Then h ≥ 1 and T [D(w)] consists of h stars K1,p−1 and t isolated

vertices. Since degT (v) = p, |D ∩ NT (v)| ≥ |D(v)| = degT (v) − 1 = p − 1. By (ii) of

Theorem 2 , v /∈ D. To p-dominate v, w ∈ D. Let T ′ = T−D(w), then D∩V (T ′) is a p-

dominating set of T ′. Since w ∈ D and degT ′(w) = 1, for every z ∈ (D∩V (T ′))∩Xp(T
′),

(D ∩ V (T ′))∩NT ′(z) = D ∩NT (z) and PNp(z, D ∩ V (T ′), T ′) = PNp(z, D, T ). Hence

T ′ is a tree whose p-dominating set D ∩ V (T ′) fulfils (iii) of Theorem 2 since T and D

fulfil (ii) of Theorem 2. By Theorem 2 (i)⇔(iii), D ∩ V (T ′) is a unique γp-set of T ′.

Applying the induction on T ′, ∆(T ′) ≤ p− 1 or T ′ ∈ Tp.

Subcase 1.1. ∆(T ′) ≤ p− 1.

If h = 1, then every vertex of D(w) − {v} is a leaf of T . Hence all vertices of

V (T )−{v, w} have degree at most ∆(T ′) (≤ p− 1) in T . By Lemmas 6 and 7, T ∈ Tp.

If h ≥ 2, then, by the definition of Operation O1 and O2, we can check easily that

T ′′ = T [D[w] ∪ {x}] ∈ Tp. Since all vertices of V (T ) − (D[w] ∪ {x}) (⊂ V (T ′)) have

degree at most ∆(T ′) (≤ p−1) in T and x is a leaf of T ′′, T can be obtained recursively
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from T ′′ by Operation O1 satisfying condition (a). So T ∈ Tp.

Subcase 1.2. T ′ ∈ Tp.

When h ≥ 2, then T is obtained from T ′ by Operation O1 satisfying condition (e).

Hence T ∈ Tp. Now we assume that h = 1.

If degT (w) ≤ p− 1, then t = degT (w)− 2 ≤ p− 3. Thus T is obtained from T ′ by

O1 satisfying condition (b). Hence T ∈ Tp.

If degT (w) = p, then t = degT (w)− 2 = p− 2. Note that x is the support vertex of

w in T ′. We claim that x /∈ D∩V (T ′) = A(T ′). Otherwise, by w ∈ D, (D−{w})∪{v}

is a γp-set of T different from D, a contradiction. Hence T is obtained from T ′ by

Operation O1 satisfying condition (c). Thus T ∈ Tp.

If degT (w) ≥ p + 1, then t = degT (w) − 2 ≥ p − 1. Note that w ∈ D ∩ Xp(T )

and |D ∩ NT (w)| ≥ t ≥ p − 1. By (ii) of Theorem 2, w has at least two p-private

vertices with regard to D in T . Then we can see easily that PNp(w, D, T ) = {v, x}.

So PNp(w, A(T ′), T ′) = PNp(w, D ∩ V (T ′), T ′) = {x}. Hence T is obtained from T ′

by O1 satisfying condition (d), and so T ∈ Tp.

Case 2. degT (v) ≥ p + 1.

Let T ′ = T−D[v]. Since degT (v) ≥ p+1 and |D∩NT (v)| ≥ |D(v)| = degT (v)−1 ≥

p, by (ii) of Theorem 2, v /∈ D. Hence D ∩ V (T ′) is a p-dominating set of T ′. Since

v /∈ D and D ∩ NT (v) = D(v) ∪ (D ∩ {w}), (D ∩ V (T ′)) ∩ NT ′(z) = D ∩ NT (z) and

PNp(z, D ∩ V (T ′), T ′) = PNp(z, D, T ) for every z ∈ (D ∩ V (T ′)) ∩Xp(T
′). Hence T ′

is a tree whose p-dominating set D ∩ V (T ′) fulfils (iii) of Theorem 2 since T and D

fulfil (ii) of Theorem 2. By Theorem 2 (i)⇔(iii), D ∩ V (T ′) is a unique γp-set of T ′.

Applying the induction on T ′, ∆(T ′) ≤ p− 1 or T ′ ∈ Tp.

If ∆(T ′) ≤ p−1, then all vertices of T−{v, w} have degree at most ∆(T ′) (≤ p−1)

in T . By Lemmas 6 and 7, T ∈ Tp.

If T ′ ∈ Tp, then we claim that degT (w) 6= p − 1 or NT (w) * D. Suppose that
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degT (w) = p − 1 and NT (w) ⊆ D, then, by Lemma 1, w ∈ D. It is easy to see that

(D−{w})∪{v} is a γp-set of T different from D, a contradiction. Hence T is obtained

from T ′ by Operation O2 by attaching a star K1,t (= T [D[v]], t = degT (v)− 1 ≥ p) to

w of T ′. So T ∈ Tp. �
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