Trees with unique minimum p-dominating sets *

You Lu, Xinmin Hou \dagger Jun-Ming Xu, Ning Li
Department of Mathematics

University of Science and Technology of China
Hefei, Anhui, 230026, China

Abstract

Let p be a positive integer and $G=(V, E)$ a simple graph. A p-dominating set of G is a subset S of V such that every vertex not in S is dominated by at least p vertices in S. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality among the p-dominating sets of G. In this paper, for $p \geq 2$, we give three equivalent conditions for trees with unique minimum p-dominating sets and also give a constructive characterization of such trees.

Key words: domination, p-domination, tree
AMS Subject Classification (2000): 05C69

1 Introduction

For notation and graph theory terminology we follow $[3,10,11]$. Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The open neighborhood, the closed neighborhood and the degree of a vertex $v \in V(G)$ are denoted by $N_{G}(v)=$

[^0]$\{u \in V(G) \mid u v \in E(G)\}, N_{G}[v]=N_{G}(v) \cup\{v\}$ and $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$, respectively. The maximum degree $\Delta(G)=\max \left\{\operatorname{deg}_{G}(v): v \in V(G)\right\}$. For $S \subseteq V(G)$, the subgraph induced by S is denoted by $G[S]$. For a pair of vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ of u and v is the length of the shortest $u v$-paths in G. The diameter of G is $d(G)=\max \left\{d_{G}(u, v): u, v \in V(G)\right\}$.

Let D be a subset of $V(G)$ and p a positive integer. For any $x \in D$, a vertex y not in D is called a p-private neighbor of x with regard to D if y is a neighbor of x and $\left|D \cap N_{G}(y)\right|=p$. The p-private neighborhood of x with regard to D, denoted by $P N_{p}(x, D, G)$, is the set of all p-private neighbors of x with regard to D in G. If the graph G is clear from the context, we will simply use $P N_{p}(x, D)$ instead of $P N_{p}(x, D, G)$.

Let T be a tree and $p \geq 2$ a positive integer. A p-leaf of T is a vertex with degree at most $p-1$ in T. Denote the set of p-leaves of T by $L_{p}(T)$ and let $X_{p}(T)=V(T)-L_{p}(T)$. Then, for $x \in X_{p}(T), d e g_{T}(x) \geq p$. Note that the 2-leaves are the usual leaves and $L_{2}(T)$ is the set of leaves of T. Therefore, we also denote $L_{2}(T)$ by $L(T)$. If T is a rooted tree T, then, for every $v \in V(T)$, we let $C(v)$ and $D(v)$ denote the set of children and descendants, respectively, of v, and define $D[v]=D(v) \cup\{v\}$.

In [6], Fink and Jacobson introduced the concept of p-domination. Let p be a positive integer. A subset S of $V(G)$ is a p-dominating set of G if, for every $v \in$ $V(G)-S,\left|S \cap N_{G}(v)\right| \geq p$. The p-domination number $\gamma_{p}(G)$ is the minimum cardinality among the p-dominating sets of G. Any p-dominating set of G with cardinality $\gamma_{p}(G)$ will be called a γ_{p}-set of G. Note that the γ_{1}-set is the classic minimum dominating set. For any $S, T \subseteq V(G), S p$-dominates T in G if, for every $v \in T-S,\left|S \cap N_{G}(v)\right| \geq p$.

Unique domination in graphs has been investigated in many papers (see, for example, $[2,4,5,7,8,9])$. In [8], Gunther et al. characterized all trees with unique minimum dominating sets. In this paper, for $p \geq 2$, we first give three equivalent conditions for trees with unique minimum p-dominating sets, and then we give a constructive characterization of such trees.

2 Equivalent conditions for trees with unique $\gamma_{p^{-}}$ sets

Lemma 1. ([1]) Every p-dominating set of a graph G contains any vertex of degree at most $p-1$.

Theorem 2. Suppose that T is a tree and $p \geq 2$ is a positive integer. Let D be a subset of $V(T)$. Then the following conditions are equivalent:
(i) D is a unique γ_{p}-set of T;
(ii) D is a γ_{p}-set of T satisfying either $\left|D \cap N_{T}(x)\right| \leq p-2$ or $\left|P N_{p}(x, D)\right| \geq 2$ for every $x \in D \cap X_{p}(T)$;
(iii) D is a p-dominating set of T satisfying either $\left|D \cap N_{T}(x)\right| \leq p-2$ or $\left|P N_{p}(x, D)\right| \geq 2$ for every $x \in D \cap X_{p}(T)$.

Proof. We will prove that $(\mathrm{i}) \Rightarrow(\mathrm{ii}) \Rightarrow(\mathrm{iii}) \Rightarrow(\mathrm{i})$. (ii) \Rightarrow (iii) is obvious.
(i) \Rightarrow (ii) : Suppose to the contrary that there exists some $x \in D \cap X_{p}(T)$ such that $\left|D \cap N_{T}(x)\right| \geq p-1$ and $\left|P N_{p}(x, D)\right| \leq 1$.

If $\left|P N_{p}(x, D)\right|=0$, then $\left|D \cap N_{T}(x)\right|=p-1$ (Otherwise, $D-\{x\}$ is a p-dominating set of T, which contradicts that D is a γ_{p}-set of T). Thus, there exists a neighbor, denoted by y, of x which is not in D since $\operatorname{deg}_{T}(x) \geq p$. Let $D^{\prime}=(D-\{x\}) \cup\{y\}$, then D^{\prime} is a γ_{p}-set of T different from D, a contradiction.

If $\left|P N_{p}(x, D)\right|=1$, then we denote $P N_{p}(x, D)$ by $\{y\}$ and let $D^{\prime}=(D-\{x\}) \cup\{y\}$. Since $\left|D \cap N_{T}(x)\right| \geq p-1,\left|D^{\prime} \cap N_{T}(x)\right|=\left|\left(D \cap N_{T}(x)\right) \cup\{y\}\right| \geq p$. Hence D^{\prime} is a γ_{p}-set of T different from D, a contradiction.
(iii) \Rightarrow (i) : Assume that there is a tree T which has a p-dominating set D satisfying the condition of (iii) but D is not a unique γ_{p}-set of T. Let T be such a counterexample of minimum order. Then, by Lemma $1, D \cap X_{p}(T) \neq \emptyset$. Let S be an arbitrary γ_{p}-set of T. In the following, we only need prove that $S=D$, which contradicts the assumption that D is not a unique γ_{p}-set of T.

If $d(T)=2$, then T is a star, and so $\left|D \cap X_{p}(T)\right| \leq 1$. By $D \cap X_{p}(T) \neq \emptyset$, we can denote $D \cap X_{p}(T)$ by $\{a\}$. By Lemma 1 and $P N_{p}(a, D)=\emptyset, d e g_{T}(a)=\left|D \cap N_{T}(a)\right| \leq$ $p-2$, which contradicts with $\operatorname{deg}_{T}(a) \geq p$. If $d(T)=3$, then T contains exact two vertices with degree at least 2 . For every $b \in D \cap X_{p}(T)$, we have $\operatorname{deg}_{T}(b) \geq p$ and $\left|P N_{p}(b, D)\right| \leq 1$. From D fulfils (iii), we can derive that $\left|D \cap N_{T}(b)\right| \leq p-2$. So $\operatorname{deg}_{T}(b)=\left|D \cap N_{T}(b)\right|+1 \leq p-1$, a contradiction. Hence $d(T) \geq 4$. Let $P=u v w x \cdots r$ be a longest path in T. We root T at r. By Lemma $1, D(v) \subseteq D$ and $D(v) \subseteq S$.

Case 1. $\operatorname{deg}_{T}(v) \leq p-1$.
By Lemma $1, D[v] \subseteq D$. Let $T^{\prime}=T-u$, then $D \cap V\left(T^{\prime}\right)=D-\{u\}$ is a p dominating set of T^{\prime}. Note that $\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(z)=D \cap N_{T}(z)$ and $P N_{p}(z, D \cap$ $\left.V\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}(z, D, T)$ for every $z \in\left(D \cap V\left(T^{\prime}\right)\right) \cap X_{p}\left(T^{\prime}\right)$. Hence T^{\prime} is a tree whose p-dominating set $D \cap V\left(T^{\prime}\right)$ fulfils (iii) since T and D fulfil (iii). By our assumption that T is the counterexample of minimum order, $D \cap V\left(T^{\prime}\right)$ is a unique γ_{p}-set of T^{\prime}. So $\gamma_{p}\left(T^{\prime}\right)=\left|D \cap V\left(T^{\prime}\right)\right|=|D|-1 \geq \gamma_{p}(T)-1$.

By Lemma $1, D[v] \subseteq S$. Hence $S \cap V\left(T^{\prime}\right)=S-\{u\}$ is a p-dominating set of T^{\prime} with $\left|S \cap V\left(T^{\prime}\right)\right|=|S|-1=\gamma_{p}(T)-1 \leq \gamma_{p}\left(T^{\prime}\right)$. That is, $S \cap V\left(T^{\prime}\right)$ is also a γ_{p}-set of T^{\prime}. Hence $S \cap V\left(T^{\prime}\right)=D \cap V\left(T^{\prime}\right)$. Thus

$$
S=\left(S \cap V\left(T^{\prime}\right)\right) \cup\{u\}=\left(D \cap V\left(T^{\prime}\right)\right) \cup\{u\}=D .
$$

Case 2. $d e g_{T}(v)=p$.
For every $v^{\prime} \in D(w) \cap X_{p}(T)\left(=C(w) \cap X_{p}(T)\right)$, we have $\left|D \cap N_{T}\left(v^{\prime}\right)\right| \geq\left|D\left(v^{\prime}\right)\right|=$ $\operatorname{deg}_{T}\left(v^{\prime}\right)-1 \geq p-1$, and so $v^{\prime} \notin D$ since T and D fulfil (iii). Then, by Lemma 1 , $D \cap D(w)=L_{p}(T) \cap D(w)$. By $\operatorname{deg}_{T}(v)=p, v \notin D$. Since $D p$-dominates v, we have $w \in D$.

Let $T^{\prime}=T-D(w)$, then $D \cap V\left(T^{\prime}\right)$ is a p-dominating set of T^{\prime}. Since $w \in D$ and $d e g_{T^{\prime}}(w)=1$, for every $z \in\left(D \cap V\left(T^{\prime}\right)\right) \cap X_{p}\left(T^{\prime}\right),\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(z)=D \cap N_{T}(z)$ and $P N_{p}\left(z, D \cap V\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}(z, D, T)$. Hence T^{\prime} is a tree whose p-dominating set $D \cap V\left(T^{\prime}\right)$ fulfils (iii) since T and D fulfil (iii). By our assumption that T is the
counterexample of minimum order, $D \cap V\left(T^{\prime}\right)$ is a unique γ_{p}-set of T^{\prime}. So $\left|D \cap V\left(T^{\prime}\right)\right|=$ $\gamma_{p}\left(T^{\prime}\right)$ and $\gamma_{p}(T) \leq|D|=|D \cap D(w)|+\left|D \cap V\left(T^{\prime}\right)\right|=|D \cap D(w)|+\gamma_{p}\left(T^{\prime}\right)$.

Now we prove $S=D$. Suppose that $v \in S$, then, by the definition of γ_{p}-set and Lemma 1, $w \notin S$ and $(S \cap D(w)) \cap X_{p}(T)=\{v\}$ (Assume that $(S \cap D(w)) \cap X_{p}(T)$ contains another vertex v^{\prime}, then v^{\prime} is a neighbor of w in $D(w)$. Note that $D\left(v^{\prime}\right) \subseteq S$ by Lemma 1 and $\left|D\left(v^{\prime}\right)\right| \geq p-1$. We can replace v, v^{\prime} by w in S and get a p-dominating set of T of order $|S|-1$, a contradiction). Hence $S \cap D(w)=\left(L_{p}(T) \cap D(w)\right) \cup\{v\}=$ $(D \cap D(w)) \cup\{v\}$. Since $\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}$ is a p-dominating set of T^{\prime} with

$$
\left|\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}\right|=|S|-|S \cap D(w)|+1=\gamma_{p}(T)-|D \cap D(w)| \leq \gamma_{p}\left(T^{\prime}\right)
$$

we know that $\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}$ is a γ_{p}-set of T^{\prime}. Hence $\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}=D \cap V\left(T^{\prime}\right)$. By $w \notin S$ and $w \in D$, we have $\operatorname{deg}_{T}(w) \geq p$ and $w \in D \cap X_{p}(T)$. Note that

$$
\begin{aligned}
\left|D \cap N_{T}(w)\right| & =\left|(D \cap D(w)) \cap N_{T}(w)\right|+|D \cap\{x\}| \\
& =\left|((S \cap D(w))-\{v\}) \cap N_{T}(w)\right|+|S \cap\{x\}| \\
& =\left|(S \cap D(w)) \cap N_{T}(w)\right|-1+|S \cap\{x\}|=\left|S \cap N_{T}(w)\right|-1 \geq p-1 .
\end{aligned}
$$

Hence $\left|P N_{p}(w, D, T)\right| \geq 2$ since T and D satisfy (iii). By $w \notin S$ and $(S \cap D(w)) \cap$ $X_{p}(T)=\{v\}, D(w) \cap X_{p}(T)\left(=C(w) \cap X_{p}(T)\right)$ contains a unique vertex v of degree p. Thus $P N_{p}(w, D, T) \cap D(w)=\{v\}$. From $\left|P N_{p}(w, D, T)\right| \geq 2$, we know that

$$
P N_{p}(w, D, T)=P N_{p}(w, D, T) \cap(D(w) \cup\{x\})=\{v, x\} .
$$

So $\left|D \cap N_{T}(x)\right|=p$ and $x \notin D \cap V\left(T^{\prime}\right)=\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}$. Further, $x \notin S$. To p-dominate $x,\left|S \cap N_{T}(x)\right| \geq p$, which contradicts with

$$
\begin{aligned}
\left|S \cap N_{T}(x)\right| & =\left|\left(S \cap V\left(T^{\prime}\right)\right) \cap N_{T}(x)\right| \\
& =\left|\left(D \cap N_{T}(x)\right)-\{w\}\right|=\left|D \cap N_{T}(x)\right|-1=p-1
\end{aligned}
$$

Hence $v \notin S$.
To p-dominate $v, w \in S$ and, by the definition of γ_{p}-set, $S \cap D(w)=L_{p}(T) \cap$ $D(w)=D \cap D(w)$. Then $S \cap V\left(T^{\prime}\right)$ is a p-dominating set of T^{\prime} with $\left|S \cap V\left(T^{\prime}\right)\right|=$
$|S|-|S \cap D(w)|=\gamma_{p}(T)-|D \cap D(w)| \leq \gamma_{p}\left(T^{\prime}\right)$, which implies that $S \cap V\left(T^{\prime}\right)$ is also a γ_{p}-set of T^{\prime}. Hence $S \cap V\left(T^{\prime}\right)=D \cap V\left(T^{\prime}\right)$, and so

$$
S=\left(S \cap V\left(T^{\prime}\right)\right) \cup(S \cap D(w))=\left(D \cap V\left(T^{\prime}\right)\right) \cup(D \cap D(w))=D
$$

Case 3. $\operatorname{deg}_{T}(v) \geq p+1$.
Note that $\left|D \cap N_{T}(v)\right| \geq|D(v)|=\operatorname{deg}_{T}(v)-1 \geq p$. We have $v \notin D$ since T and D fulfil (iii). Let $T^{\prime}=T-D[v]$, then $D \cap V\left(T^{\prime}\right)$ is a p-dominating set of T^{\prime}. Since $v \notin D$ and $D \cap N_{T}(v)=D(v) \cup(D \cap\{w\}),\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(z)=D \cap N_{T}(z)$ and $P N_{p}\left(z, D \cap V\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}(z, D, T)$ for every $z \in\left(D \cap V\left(T^{\prime}\right)\right) \cap X_{p}\left(T^{\prime}\right)$. Hence T^{\prime} is a tree whose p-dominating set $D \cap V\left(T^{\prime}\right)$ fulfils (iii) since T and D fulfil (iii). As T is the counterexample of minimum order, $D \cap V\left(T^{\prime}\right)$ is the unique γ_{p}-set of T^{\prime}. So $\left|D \cap V\left(T^{\prime}\right)\right|=\gamma_{p}\left(T^{\prime}\right)$ and $\gamma_{p}(T) \leq|D|=|D(v)|+\left|D \cap V\left(T^{\prime}\right)\right|=|D(v)|+\gamma_{p}\left(T^{\prime}\right)$.

Now we prove that $S=D$. Suppose that $v \in S$, then by the definition of γ_{p}-set, $w \notin S$. Thus $\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}$ is a p-dominating set of T^{\prime} with

$$
\left|\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}\right|=|S|-|D[v]|+1=\gamma_{p}(T)-|D(v)| \leq \gamma_{p}\left(T^{\prime}\right)
$$

which implies that $\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}$ is a γ_{p}-set of T^{\prime}. Hence $\left(S \cap V\left(T^{\prime}\right)\right) \cup\{w\}=$ $D \cap V\left(T^{\prime}\right)$. So $w \in D$. By $w \notin S, v \notin D$ and $v \in S$, we have $w \in D \cap X_{p}(T)$ and

$$
\begin{aligned}
\left|D \cap N_{T}(w)\right| & =\left|\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T}(w)\right| \\
& =\left|\left(S \cap V\left(T^{\prime}\right)\right) \cap N_{T}(w)\right|=\left|S \cap N_{T}(w)\right|-1 \geq p-1
\end{aligned}
$$

Hence $\left|P N_{p}(w, D, T)\right| \geq 2$ since T and D fulfil (iii). Thus we can choose a vertex y in $V\left(T^{\prime}\right)$ from $P N_{p}(w, D, T)$. Clearly, $\left|D \cap N_{T}(y)\right|=p, N_{T}[y] \subseteq V\left(T^{\prime}\right)$ and $y \notin$ $D \cap V\left(T^{\prime}\right)-\{w\}=S \cap V\left(T^{\prime}\right)$. So $y \notin S$ and, to p-dominate $y,\left|S \cap N_{T}(y)\right| \geq p$. But

$$
\begin{aligned}
\left|S \cap N_{T}(y)\right| & =\left|\left(S \cap V\left(T^{\prime}\right)\right) \cap N_{T}(y)\right| \\
& =\left|\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T}(y)-\{w\}\right|=\left|\left(D \cap N_{T}(y)\right)\right|-1=p-1,
\end{aligned}
$$

a contradiction. Therefore, $v \notin S$ and $S \cap V\left(T^{\prime}\right)$ is a p-dominating set of T^{\prime} with $\left|S \cap V\left(T^{\prime}\right)\right|=|S|-|D(v)|=\gamma_{p}(T)-|D(v)| \leq \gamma_{p}\left(T^{\prime}\right)$. Then $S \cap V\left(T^{\prime}\right)$ is also a γ_{p}-set
of T^{\prime}, and so $S \cap V\left(T^{\prime}\right)=D \cap V\left(T^{\prime}\right)$. Hence

$$
S=\left(S \cap V\left(T^{\prime}\right)\right) \cup D(v)=\left(D \cap V\left(T^{\prime}\right)\right) \cup D(v)=D .
$$

Now we will establish the third equivalent condition for trees with unique minimum p-dominating sets.

Lemma 3. Suppose that T is a tree and p is a positive integer. Let D be a γ_{p}-set of T and $x \in D$.
(a) If $\gamma_{p}(T-x)>\gamma_{p}(T)$, then $\left|P N_{p}(x, D)\right| \geq 2$.
(b) If D is a unique γ_{p}-set of T, then $\gamma_{p}(T-x)=\gamma_{p}(T)+\left|P N_{p}(x, D)\right|-1$.

Proof. Let T_{1}, \cdots, T_{k} be all components of $T-x$. Then $k=\operatorname{deg}_{T}(x) \geq 1$. For $i=1, \cdots, k$, we denote the neighbor of x in $V\left(T_{i}\right)$ by y_{i} and let $D_{i}=D \cap V\left(T_{i}\right)$. We claim that,

$$
\begin{equation*}
\left|D_{i}\right| \leq \gamma_{p}\left(T_{i}\right) \leq\left|D_{i}\right|+1, \text { for every } i=1, \cdots, k . \tag{1}
\end{equation*}
$$

In fact, for $i=1, \cdots, k$, it is obvious that $\gamma_{p}\left(T_{i}\right) \leq\left|D_{i}\right|+1$ since $D_{i} \cup\left\{y_{i}\right\}$ is a p-dominating set of T_{i}. Suppose that there exists some $j \in\{1, \cdots, k\}$ such that $\gamma_{p}\left(T_{j}\right) \leq\left|D_{j}\right|-1$. Let D_{j}^{\prime} be a γ_{p}-set of T_{j}. Since $x \in D,\left(D-D_{j}\right) \cup D_{j}^{\prime}$ is a p-dominating set of T with $\left|\left(D-D_{j}\right) \cup D_{j}^{\prime}\right|=|D|-\left|D_{j}\right|+\gamma_{p}\left(T_{j}\right) \leq \gamma_{p}(T)-1$, a contradiction. The claim holds.

Let $\left|P N_{p}(x, D)\right|=t$, then $0 \leq t \leq k$. Since T is a tree, $\left|P N_{p}(x, D) \cap V\left(T_{i}\right)\right| \leq 1$ for every $i=1, \cdots, k$. So, without loss of generality, we can assume that $P N_{p}(x, D)=$ $\left\{y_{1}, \cdots, y_{t}\right\}$. By the definition of p-dominating set, $D_{i}(i=t+1, \cdots, k)$ is a p dominating set of T_{i} since $y_{i} \notin P N_{p}(x, D)$, and so $\left|D_{i}\right| \geq \gamma_{p}\left(T_{i}\right)$. Applying inequality (1), we have

$$
\begin{equation*}
\left|D_{i}\right|=\gamma_{p}\left(T_{i}\right), \text { for every } i=t+1, \cdots, k \tag{2}
\end{equation*}
$$

Now we prove (a). Suppose that $\left|P N_{p}(x, D)\right| \leq 1$. Then, by inequality (1) and
equality (2),

$$
\gamma_{p}(T-x)=\sum_{i=1}^{k} \gamma_{p}\left(T_{i}\right) \leq \sum_{i=1}^{k}\left|D_{i}\right|+1=\gamma_{p}(T)
$$

which contradicts with $\gamma_{p}(T-x)>\gamma_{p}(T)$. (a) is true.
To the end, we prove (b). We claim that, for every $i=1, \cdots, t,\left|D_{i}\right|+1=$ $\gamma_{p}\left(T_{i}\right)$ if D is a unique γ_{p}-set of T. To the contrary, by inequality (1), there exists some $j \in\{1, \cdots, t\}$ such that $\left|D_{j}\right|=\gamma_{p}\left(T_{j}\right)$. Since $x \in D$ and $y_{j} \in P N_{p}(x, D)$, $\left|D_{j} \cap N_{T_{j}}\left(y_{j}\right)\right|=\left|\left(D \cap N_{T}\left(y_{j}\right)\right)-\{x\}\right|=p-1$, and so D_{j} is not a p-dominating set of T_{j}. Let $D_{j}^{\prime \prime}$ be a γ_{p}-set of T_{j}, then $\left(D-D_{j}\right) \cup D_{j}^{\prime \prime}$ is a p-dominating set of T different from D and $\left|\left(D-D_{j}\right) \cup D_{j}^{\prime \prime}\right|=|D|-\left|D_{j}\right|+\left|D_{j}^{\prime \prime}\right|=\gamma_{p}(T)$. Hence, $\left(D-D_{j}\right) \cup D_{j}^{\prime \prime}$ is a γ_{p}-set of T, which contradicts that D is the unique γ_{p}-set of T. The claim holds. Hence, by equality (2) and $x \in D$,

$$
\gamma_{p}(T-x)=\sum_{i=1}^{k} \gamma_{p}\left(T_{i}\right)=\sum_{i=1}^{t}\left(\left|D_{i}\right|+1\right)+\sum_{i=t+1}^{k}\left|D_{i}\right|=\gamma_{p}(T)+\left|P N_{p}(x, D)\right|-1 .
$$

Theorem 4. Suppose that T is a tree and $p \geq 2$ is a positive integer. Let D be a subset of $V(T)$. Then D is a unique γ_{p}-set of T if and only if D is a γ_{p}-set of T satisfying either $\left|D \cap N_{T}(x)\right| \leq p-2$ or $\gamma_{p}(T-x)>\gamma_{p}(T)$ for every $x \in D \cap X_{p}(T)$.

Proof. If D is a γ_{p}-set of T satisfying, for every $x \in D \cap X_{p}(T)$, either $\left|D \cap N_{T}(x)\right| \leq p-2$ or $\gamma_{p}(T-x)>\gamma_{p}(T)$, then, by Lemma 3 (a), T is a tree whose γ_{p}-set D satisfies (ii) of Theorem 2. By Theorem $2(\mathrm{i}) \Leftrightarrow(\mathrm{ii}), D$ is a unique γ_{p}-set of T.

Conversely, by Theorem 2 (i) \Leftrightarrow (ii), D is a γ_{p}-set of T satisfying, for every $x \in$ $D \cap X_{p}(T)$, either $\left|D \cap N_{T}(x)\right| \leq p-2$ or $\left|P N_{p}(x, D, T)\right| \geq 2$. By Lemma 3 (b), $\gamma_{p}(T-x)=\gamma_{p}(T)+\left|P N_{p}(x, D)\right|-1$ for every $x \in D$. For every $x \in D \cap X_{p}(T)$, if $\left|D \cap N_{T}(x)\right| \geq p-1$, then $\left|P N_{p}(x, D)\right| \geq 2$, and so $\gamma_{p}(T-x)=\gamma_{p}(T)+\left|P N_{p}(x, D)\right|-1>$ $\gamma_{p}(T)$. The proof is completed.

3 A constructive characterization of trees with unique γ_{p}-sets

In this section, we will give a constructive characterization of all trees with unique minimum p-dominating sets for $p \geq 2$.

A vertex is a central vertex of a star $K_{1, t}(t \geq 1)$ if either $t \geq 2$ and it is the support vertex or $t=1$ and it is one of the two leaves. For convenience, an isolated vertex itself is also called its central vertex.

We first introduce a family \mathcal{T}_{p}.
For any $T \in \mathcal{T}_{p}, T$ is obtained from a sequence $T_{1}, T_{2}, \cdots, T_{k}(k \geq 1)$ of trees, where $T_{1}=K_{1, m}(m \geq p), T=T_{k}$, and, for $k \geq 2, T_{i+1}(1 \leq i \leq k-1)$ is obtained from T_{i} by one of the operations listed below. Let $A\left(T_{1}\right)=L\left(T_{1}\right)$.

- Operation \mathcal{O}_{1} : Attach $h(\geq 0)$ stars $K_{1, p-1}$, denoted by $\left\{H_{1}, \cdots, H_{h}\right\}$, and $t(\geq 0)$ isolated vertices, denoted by $\left\{v_{1}, \cdots, v_{t}\right\}$, to T_{i} by adding $h+t$ edges from their central vertices to a leaf w of T_{i}, where h, t and w must fulfil one of the following conditions.
(a) $h=0$ and $t \leq p-2$;
(b) $h=1$ and $t \leq p-3$;
(c) $h=1, t=p-2$ and the support vertex of w in T_{i} isn't in $A\left(T_{i}\right)$;
(d) $h=1, t \geq p-1$ and the support vertex of w is a p-private vertex of w with regard to $A\left(T_{i}\right)$ in T_{i};
(e) $h \geq 2$.

Let $A\left(T_{i+1}\right)=A\left(T_{i}\right) \cup\left(\cup_{j=1}^{h} L\left(H_{j}\right)\right) \cup\left\{v_{1}, \cdots, v_{t}\right\}$.

- Operation \mathcal{O}_{2} : Attach a star $K_{1, t}(t \geq p)$ to T_{i} by adding an edge from its central vertex to a vertex w of T_{i} satisfying either $\operatorname{deg}_{T_{i}}(w) \neq p-1$ or $N_{T_{i}}(w) \nsubseteq A\left(T_{i}\right)$. Let $A\left(T_{i+1}\right)=A\left(T_{i}\right) \cup L\left(K_{1, t}\right)$.

Lemma 5. For any $T \in \mathcal{T}_{p}, A(T)$ is a unique γ_{p}-set of T.

Proof. We claim that $A(T)$ is a p-dominating set of T and, for every vertex $x \in$ $A(T) \cap X_{p}(T),\left|A(T) \cap N_{T}(x)\right| \leq p-2$ or $\left|P N_{p}(x, A(T), T)\right| \geq 2$. Then, by (i) \Leftrightarrow (iii) of Theorem 2, $A(T)$ is a unique γ_{p}-set of T. Assume that T is obtained from a sequence $T_{1}, \cdots, T_{k}(k \geq 1)$ of trees constructed recursively from T_{1} by Operation \mathcal{O}_{1} and \mathcal{O}_{2}, where $T_{1}=K_{1, m}(m \geq p)$ and $T=T_{k}$. We can prove easily the claim by induction on the length k of the sequence T_{1}, \cdots, T_{k}. We omit the proof.

From Lemma 1 and the definition of Operation $\mathcal{O}_{1}(\mathrm{a})$, it is easy to see that the following lemma is true.

Lemma 6. Let T be a tree containing a unique vertex with degree at least p. Then $T \in \mathcal{T}_{p}$.

Lemma 7. Let T be a tree containing exact two vertices with degree at least p. If T has a unique γ_{p}-set, then $T \in \mathcal{T}_{p}$.

Proof. Denote the two vertices with degree at least p by u and v. We distinguish the following two cases.

Case 1. If $u v \in E(T)$, then $\operatorname{deg}_{T}(u) \geq p+1$ and $d e g_{T}(v) \geq p+1$ since T has a unique γ_{p}-set. Let $T_{1}=T\left[N_{T}[v]-\{u\}\right]$, then T_{1} is a star $K_{1, m}\left(m=\operatorname{deg} g_{T}(v)-1 \geq p\right)$. Hence $T_{2}=T\left[N_{T}[u] \cup N_{T}[v]\right]$ is obtained from T_{1} by Operation \mathcal{O}_{2} by attaching a star $K_{1, t}=T\left[N_{T}[u]-\{v\}\right]\left(t=\operatorname{deg}_{T}(u)-1 \geq p\right)$ to v, and so $T_{2} \in \mathcal{T}_{p}$. Since every vertex of $V(T)-V\left(T_{2}\right)$ has degree at most $p-1, T$ can be obtained recursively from T_{2} by Operation \mathcal{O}_{1} satisfying (a). So $T \in \mathcal{T}_{p}$.

Case 2. If $u v \notin E(T)$, then we root T at u and denote the father of v by w.
If $\operatorname{deg}_{T}(v)=p$, let $T^{\prime}=T-D(w)$. Obviously, T^{\prime} is a tree containing a unique vertex with degree at least p and w is a leaf of T^{\prime}. By Lemma $6, T^{\prime} \in \mathcal{T}_{p}$. Since $\operatorname{deg}_{T}(v)=p, T\left[N_{T}[v]-\{w\}\right]=K_{1, p-1}$. By $\operatorname{deg}_{T}(w) \leq p-1,|C(w)-\{v\}| \leq p-3$. Let $T^{\prime \prime}=T\left[V\left(T^{\prime}\right) \cup\left(N_{T}[v]-\{w\}\right) \cup(C(w)-\{v\})\right]$, then $T^{\prime \prime}$ is obtained from T^{\prime} by Operation \mathcal{O}_{1} satisfying (b), and so $T^{\prime \prime} \in \mathcal{T}_{p}$. Since every vertex of $V(T)-V\left(T^{\prime \prime}\right)$ has degree at most $p-1, T$ can be obtained recursively from $T^{\prime \prime}$ by Operation \mathcal{O}_{1} satisfying
(a). So $T \in \mathcal{T}_{p}$.

If $\operatorname{deg}_{T}(v) \geq p+1$, let $T^{\prime}=T-D[v]$. Since T has exact two vertices u and v with degree at least p, T^{\prime} is a tree containing a unique vertex u with degree at least p and $d e g_{T}(w) \leq p-2$. By Lemma $6, T^{\prime} \in \mathcal{T}_{p}$. Let $T^{\prime \prime}=T\left[V\left(T^{\prime}\right) \cup(C(v) \cup\{v\})\right]$, then $T^{\prime \prime}$ is obtained from T^{\prime} by Operation \mathcal{O}_{2} by attaching a star $K_{1, t}=T[C(v) \cup\{v\}]$ $\left(t=\operatorname{deg}_{T}(v)-1 \geq p\right)$ to w. So $T^{\prime \prime} \in \mathcal{T}_{p}$. Since every vertex of $V(T)-V\left(T^{\prime \prime}\right)$ has degree at most $p-1, T$ can be obtained recursively from $T^{\prime \prime}$ by Operation \mathcal{O}_{1} satisfying (a). So $T \in \mathcal{T}_{p}$.

Theorem 8. Let T be a tree and $p \geq 2$ a positive integer. Then T has a unique γ_{p}-set if and only if $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_{p}$.

Proof. If $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_{p}$, by Lemmas 1 and $5, T$ has a unique γ_{p}-set.
Conversely, let T be a tree with a unique γ_{p}-set. We will prove $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_{p}$ by induction on the order n of T.

If $n \in\{1,2\}$, then $\Delta(T) \leq p-1$. This establishes the base case. Assume that, if tree T^{\prime} with order $2 \leq\left|V\left(T^{\prime}\right)\right|<n$ has a unique γ_{p}-set, then $\Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$.

If $d(T)=2$, then T has at most one vertex with degree at least p. By Lemma 6 , the result holds. If $d(T)=3$, then T has at most two vertices with degree at least p. By Lemmas 6 and 7, the result holds. In the following, we can assume that $\Delta(T) \geq p$ and $d(T) \geq 4$.

Let $p=u v w x \cdots r$ be a longest path in T such that the degree of v is as large as possible. We root T at r and denote the unique γ_{p}-set of T by D. By Theorem $2, T$ and D fulfil (ii) of Theorem 2 .

We claim that, if there exists a vertex $v^{\prime} \in C(w)$ with $2 \leq \operatorname{deg}_{T}\left(v^{\prime}\right) \leq p-1$, then $T \in \mathcal{T}_{p}$.

In fact, by the choice of path P and $v^{\prime} \in C(w), T\left[D\left(v^{\prime}\right)\right]$ consists of $\left|D\left(v^{\prime}\right)\right|$ isolated vertices and $\left|D\left(v^{\prime}\right)\right|=\operatorname{deg}_{T}\left(v^{\prime}\right)-1 \leq p-2$. By Lemma $1, D\left[v^{\prime}\right] \subseteq D$. Let $T^{\prime}=$
$T-D\left(v^{\prime}\right)$, then $D \cap V\left(T^{\prime}\right)$ is a p-dominating set of T^{\prime}. Since $v^{\prime} \in D$ and v^{\prime} is a leaf of $T^{\prime},\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(z)=D \cap N_{T}(z)$ and $P N_{p}\left(z, D \cap V\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}(z, D, T)$ for every $z \in\left(D \cap V\left(T^{\prime}\right)\right) \cap X_{p}\left(T^{\prime}\right)$. Hence T^{\prime} is a tree whose p-dominating set $D \cap V\left(T^{\prime}\right)$ fulfils (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i) \Leftrightarrow (iii), $D \cap V\left(T^{\prime}\right)$ is a unique γ_{p}-set of T^{\prime}. Applying the induction on $T^{\prime}, \Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$. If $\Delta\left(T^{\prime}\right) \leq p-1$, then $\Delta(T) \leq p-1$, which contradicts with $\Delta(T) \geq p$. If $T^{\prime} \in \mathcal{T}_{p}$, then T is obtained from T^{\prime} by Operation \mathcal{O}_{1} satisfying (a) by attaching $\left|D\left(v^{\prime}\right)\right|$ isolated vertices to the leaf v^{\prime} of T^{\prime}. Hence $T \in \mathcal{T}_{p}$. The claim holds.

By claim, we only need consider the case that every vertex of $C(w)$ has degree 1 or at least p. Since $v \in C(w)$ and $\operatorname{deg}_{T}(v) \geq 2, \operatorname{deg}_{T}(v) \geq p$.

Case 1. $\operatorname{deg}_{T}(v)=p$.

By the choice of path P, for every vertex $v^{\prime} \in C(w), \operatorname{deg}_{T}\left(v^{\prime}\right) \leq \operatorname{deg}_{T}(v)=p$, and so $\operatorname{deg}_{T}\left(v^{\prime}\right)=p$ or 1 . Let h and t be the number of vertices with degree p and 1 , respectively, in $C(w)$. Then $h \geq 1$ and $T[D(w)]$ consists of h stars $K_{1, p-1}$ and t isolated vertices. Since $\operatorname{deg}_{T}(v)=p,\left|D \cap N_{T}(v)\right| \geq|D(v)|=\operatorname{deg}_{T}(v)-1=p-1$. By (ii) of Theorem 2, $v \notin D$. To p-dominate $v, w \in D$. Let $T^{\prime}=T-D(w)$, then $D \cap V\left(T^{\prime}\right)$ is a p dominating set of T^{\prime}. Since $w \in D$ and $\operatorname{deg}_{T^{\prime}}(w)=1$, for every $z \in\left(D \cap V\left(T^{\prime}\right)\right) \cap X_{p}\left(T^{\prime}\right)$, $\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(z)=D \cap N_{T}(z)$ and $P N_{p}\left(z, D \cap V\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}(z, D, T)$. Hence T^{\prime} is a tree whose p-dominating set $D \cap V\left(T^{\prime}\right)$ fulfils (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i) $\Leftrightarrow(\mathrm{iii}), D \cap V\left(T^{\prime}\right)$ is a unique γ_{p}-set of T^{\prime}. Applying the induction on $T^{\prime}, \Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$.

Subcase 1.1. $\Delta\left(T^{\prime}\right) \leq p-1$.
If $h=1$, then every vertex of $D(w)-\{v\}$ is a leaf of T. Hence all vertices of $V(T)-\{v, w\}$ have degree at most $\Delta\left(T^{\prime}\right)(\leq p-1)$ in T. By Lemmas 6 and $7, T \in \mathcal{T}_{p}$.

If $h \geq 2$, then, by the definition of Operation \mathcal{O}_{1} and \mathcal{O}_{2}, we can check easily that $T^{\prime \prime}=T[D[w] \cup\{x\}] \in \mathcal{T}_{p}$. Since all vertices of $V(T)-(D[w] \cup\{x\})\left(\subset V\left(T^{\prime}\right)\right)$ have degree at most $\Delta\left(T^{\prime}\right)(\leq p-1)$ in T and x is a leaf of $T^{\prime \prime}, T$ can be obtained recursively
from $T^{\prime \prime}$ by Operation \mathcal{O}_{1} satisfying condition (a). So $T \in \mathcal{T}_{p}$.
Subcase 1.2. $T^{\prime} \in \mathcal{T}_{p}$.
When $h \geq 2$, then T is obtained from T^{\prime} by Operation \mathcal{O}_{1} satisfying condition (e). Hence $T \in \mathcal{T}_{p}$. Now we assume that $h=1$.

If $\operatorname{deg}_{T}(w) \leq p-1$, then $t=\operatorname{deg}_{T}(w)-2 \leq p-3$. Thus T is obtained from T^{\prime} by \mathcal{O}_{1} satisfying condition (b). Hence $T \in \mathcal{T}_{p}$.

If $d e g_{T}(w)=p$, then $t=d e g_{T}(w)-2=p-2$. Note that x is the support vertex of w in T^{\prime}. We claim that $x \notin D \cap V\left(T^{\prime}\right)=A\left(T^{\prime}\right)$. Otherwise, by $w \in D,(D-\{w\}) \cup\{v\}$ is a γ_{p}-set of T different from D, a contradiction. Hence T is obtained from T^{\prime} by Operation \mathcal{O}_{1} satisfying condition (c). Thus $T \in \mathcal{T}_{p}$.

If $\operatorname{deg}_{T}(w) \geq p+1$, then $t=\operatorname{deg}_{T}(w)-2 \geq p-1$. Note that $w \in D \cap X_{p}(T)$ and $\left|D \cap N_{T}(w)\right| \geq t \geq p-1$. By (ii) of Theorem 2, w has at least two p-private vertices with regard to D in T. Then we can see easily that $P N_{p}(w, D, T)=\{v, x\}$. So $P N_{p}\left(w, A\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}\left(w, D \cap V\left(T^{\prime}\right), T^{\prime}\right)=\{x\}$. Hence T is obtained from T^{\prime} by \mathcal{O}_{1} satisfying condition (d), and so $T \in \mathcal{T}_{p}$.

Case 2. $\operatorname{deg}_{T}(v) \geq p+1$.
Let $T^{\prime}=T-D[v]$. Since $\operatorname{deg}_{T}(v) \geq p+1$ and $\left|D \cap N_{T}(v)\right| \geq|D(v)|=\operatorname{deg}_{T}(v)-1 \geq$ p, by (ii) of Theorem $2, v \notin D$. Hence $D \cap V\left(T^{\prime}\right)$ is a p-dominating set of T^{\prime}. Since $v \notin D$ and $D \cap N_{T}(v)=D(v) \cup(D \cap\{w\}),\left(D \cap V\left(T^{\prime}\right)\right) \cap N_{T^{\prime}}(z)=D \cap N_{T}(z)$ and $P N_{p}\left(z, D \cap V\left(T^{\prime}\right), T^{\prime}\right)=P N_{p}(z, D, T)$ for every $z \in\left(D \cap V\left(T^{\prime}\right)\right) \cap X_{p}\left(T^{\prime}\right)$. Hence T^{\prime} is a tree whose p-dominating set $D \cap V\left(T^{\prime}\right)$ fulfils (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i) $\Leftrightarrow\left(\right.$ iii),$D \cap V\left(T^{\prime}\right)$ is a unique $\gamma_{p^{-}}$-set of T^{\prime}. Applying the induction on $T^{\prime}, \Delta\left(T^{\prime}\right) \leq p-1$ or $T^{\prime} \in \mathcal{T}_{p}$.

If $\Delta\left(T^{\prime}\right) \leq p-1$, then all vertices of $T-\{v, w\}$ have degree at most $\Delta\left(T^{\prime}\right)(\leq p-1)$ in T. By Lemmas 6 and $7, T \in \mathcal{T}_{p}$.

If $T^{\prime} \in \mathcal{T}_{p}$, then we claim that $\operatorname{deg}_{T}(w) \neq p-1$ or $N_{T}(w) \nsubseteq D$. Suppose that
$\operatorname{deg}_{T}(w)=p-1$ and $N_{T}(w) \subseteq D$, then, by Lemma $1, w \in D$. It is easy to see that $(D-\{w\}) \cup\{v\}$ is a γ_{p}-set of T different from D, a contradiction. Hence T is obtained from T^{\prime} by Operation \mathcal{O}_{2} by attaching a star $K_{1, t}\left(=T[D[v]], t=\operatorname{deg}_{T}(v)-1 \geq p\right)$ to w of T^{\prime}. So $T \in \mathcal{T}_{p}$.

References

[1] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037.
[2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3-12.
[3] G. Chartrant and L. Lesniak, Graphs \& Digraphs, third ed., Chapman \& Hall, London, (1996).
[4] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247-252.
[5] M. Fischermann, Unique total domination graphs, Ars Combin. 73 (2004) 289-297.
[6] J. F. Fink, M. S. Jacobson, n-Domination in graphs, in: Y.Alavi, A.J.Schwenk (Eds.), Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, (1985) 283-300.
[7] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Utilitas Math. 63 (2003) 229-238.
[8] G. Gunther, B. Hartnell, L. R. Markus, D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55-63.
[9] T. W. Haynes and M. A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory, 22 (2002) 233-246.
[10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, New York, Marcel Deliker, (1998).
[11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Deliker, (1998).

[^0]: *The work was supported by NNSF of China (No. 10701068 and No.10671191).
 ${ }^{\dagger}$ Corresponding author. Email: xmhou@ustc.edu.cn

