Trees with unique minimum p-dominating sets *

You Lu, Xinmin Hou[†], Jun-Ming Xu, Ning Li

Department of Mathematics

University of Science and Technology of China

Hefei, Anhui, 230026, China

Abstract

Let p be a positive integer and G = (V, E) a simple graph. A p-dominating set of G is a subset S of V such that every vertex not in S is dominated by at least p vertices in S. The p-domination number $\gamma_p(G)$ is the minimum cardinality among the p-dominating sets of G. In this paper, for $p \ge 2$, we give three equivalent conditions for trees with unique minimum p-dominating sets and also give a constructive characterization of such trees.

Key words: domination, p-domination, tree

AMS Subject Classification (2000): 05C69

1 Introduction

For notation and graph theory terminology we follow [3, 10, 11]. Let G = (V(G), E(G))be a simple graph with vertex set V(G) and edge set E(G). The open neighborhood, the closed neighborhood and the degree of a vertex $v \in V(G)$ are denoted by $N_G(v) =$

^{*}The work was supported by NNSF of China (No.10701068 and No.10671191).

[†]Corresponding author. Email: xmhou@ustc.edu.cn

 $\{u \in V(G) | uv \in E(G)\}, N_G[v] = N_G(v) \cup \{v\}$ and $deg_G(v) = |N_G(v)|$, respectively. The maximum degree $\Delta(G) = \max\{deg_G(v) : v \in V(G)\}$. For $S \subseteq V(G)$, the subgraph induced by S is denoted by G[S]. For a pair of vertices $u, v \in V(G)$, the distance $d_G(u, v)$ of u and v is the length of the shortest uv-paths in G. The diameter of G is $d(G) = \max\{d_G(u, v) : u, v \in V(G)\}$.

Let D be a subset of V(G) and p a positive integer. For any $x \in D$, a vertex y not in D is called a p-private neighbor of x with regard to D if y is a neighbor of x and $|D \cap N_G(y)| = p$. The p-private neighborhood of x with regard to D, denoted by $PN_p(x, D, G)$, is the set of all p-private neighbors of x with regard to D in G. If the graph G is clear from the context, we will simply use $PN_p(x, D, G)$.

Let T be a tree and $p \ge 2$ a positive integer. A *p*-leaf of T is a vertex with degree at most p-1 in T. Denote the set of *p*-leaves of T by $L_p(T)$ and let $X_p(T) = V(T) - L_p(T)$. Then, for $x \in X_p(T)$, $deg_T(x) \ge p$. Note that the 2-leaves are the usual leaves and $L_2(T)$ is the set of leaves of T. Therefore, we also denote $L_2(T)$ by L(T). If T is a rooted tree T, then, for every $v \in V(T)$, we let C(v) and D(v) denote the set of children and descendants, respectively, of v, and define $D[v] = D(v) \cup \{v\}$.

In [6], Fink and Jacobson introduced the concept of *p*-domination. Let *p* be a positive integer. A subset *S* of V(G) is a *p*-dominating set of *G* if, for every $v \in$ V(G)-S, $|S \cap N_G(v)| \ge p$. The *p*-domination number $\gamma_p(G)$ is the minimum cardinality among the *p*-dominating sets of *G*. Any *p*-dominating set of *G* with cardinality $\gamma_p(G)$ will be called a γ_p -set of *G*. Note that the γ_1 -set is the classic minimum dominating set. For any $S, T \subseteq V(G)$, *S p*-dominates *T* in *G* if, for every $v \in T - S$, $|S \cap N_G(v)| \ge p$.

Unique domination in graphs has been investigated in many papers (see, for example, [2, 4, 5, 7, 8, 9]). In [8], Gunther et al. characterized all trees with unique minimum dominating sets. In this paper, for $p \ge 2$, we first give three equivalent conditions for trees with unique minimum *p*-dominating sets, and then we give a constructive characterization of such trees.

2 Equivalent conditions for trees with unique γ_p sets

Lemma 1. ([1]) Every p-dominating set of a graph G contains any vertex of degree at most p - 1.

Theorem 2. Suppose that T is a tree and $p \ge 2$ is a positive integer. Let D be a subset of V(T). Then the following conditions are equivalent:

- (i) D is a unique γ_p -set of T;
- (ii) D is a γ_p -set of T satisfying either $|D \cap N_T(x)| \le p-2$ or $|PN_p(x,D)| \ge 2$ for every $x \in D \cap X_p(T)$;
- (iii) D is a p-dominating set of T satisfying either $|D \cap N_T(x)| \le p-2$ or $|PN_p(x,D)| \ge 2$ for every $x \in D \cap X_p(T)$.

Proof. We will prove that (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (i). (ii) \Rightarrow (iii) is obvious.

(i) \Rightarrow (ii) : Suppose to the contrary that there exists some $x \in D \cap X_p(T)$ such that $|D \cap N_T(x)| \ge p - 1$ and $|PN_p(x, D)| \le 1$.

If $|PN_p(x,D)| = 0$, then $|D \cap N_T(x)| = p-1$ (Otherwise, $D - \{x\}$ is a *p*-dominating set of *T*, which contradicts that *D* is a γ_p -set of *T*). Thus, there exists a neighbor, denoted by *y*, of *x* which is not in *D* since $deg_T(x) \ge p$. Let $D' = (D - \{x\}) \cup \{y\}$, then *D'* is a γ_p -set of *T* different from *D*, a contradiction.

If $|PN_p(x,D)| = 1$, then we denote $PN_p(x,D)$ by $\{y\}$ and let $D' = (D-\{x\}) \cup \{y\}$. Since $|D \cap N_T(x)| \ge p - 1$, $|D' \cap N_T(x)| = |(D \cap N_T(x)) \cup \{y\}| \ge p$. Hence D' is a γ_p -set of T different from D, a contradiction.

(iii) \Rightarrow (i) : Assume that there is a tree T which has a p-dominating set D satisfying the condition of (iii) but D is not a unique γ_p -set of T. Let T be such a counterexample of minimum order. Then, by Lemma 1, $D \cap X_p(T) \neq \emptyset$. Let S be an arbitrary γ_p -set of T. In the following, we only need prove that S = D, which contradicts the assumption that D is not a unique γ_p -set of T. If d(T) = 2, then T is a star, and so $|D \cap X_p(T)| \leq 1$. By $D \cap X_p(T) \neq \emptyset$, we can denote $D \cap X_p(T)$ by $\{a\}$. By Lemma 1 and $PN_p(a, D) = \emptyset$, $deg_T(a) = |D \cap N_T(a)| \leq p - 2$, which contradicts with $deg_T(a) \geq p$. If d(T) = 3, then T contains exact two vertices with degree at least 2. For every $b \in D \cap X_p(T)$, we have $deg_T(b) \geq p$ and $|PN_p(b, D)| \leq 1$. From D fulfils (iii), we can derive that $|D \cap N_T(b)| \leq p - 2$. So $deg_T(b) = |D \cap N_T(b)| + 1 \leq p - 1$, a contradiction. Hence $d(T) \geq 4$. Let $P = uvwx \cdots r$ be a longest path in T. We root T at r. By Lemma 1, $D(v) \subseteq D$ and $D(v) \subseteq S$.

Case 1. $deg_T(v) \leq p - 1$.

By Lemma 1, $D[v] \subseteq D$. Let T' = T - u, then $D \cap V(T') = D - \{u\}$ is a pdominating set of T'. Note that $(D \cap V(T')) \cap N_{T'}(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$ for every $z \in (D \cap V(T')) \cap X_p(T')$. Hence T' is a tree whose p-dominating set $D \cap V(T')$ fulfils (iii) since T and D fulfil (iii). By our assumption that T is the counterexample of minimum order, $D \cap V(T')$ is a unique γ_p -set of T'. So $\gamma_p(T') = |D \cap V(T')| = |D| - 1 \ge \gamma_p(T) - 1$.

By Lemma 1, $D[v] \subseteq S$. Hence $S \cap V(T') = S - \{u\}$ is a *p*-dominating set of T'with $|S \cap V(T')| = |S| - 1 = \gamma_p(T) - 1 \le \gamma_p(T')$. That is, $S \cap V(T')$ is also a γ_p -set of T'. Hence $S \cap V(T') = D \cap V(T')$. Thus

$$S = (S \cap V(T')) \cup \{u\} = (D \cap V(T')) \cup \{u\} = D.$$

Case 2. $deg_T(v) = p$.

For every $v' \in D(w) \cap X_p(T)$ (= $C(w) \cap X_p(T)$), we have $|D \cap N_T(v')| \ge |D(v')| = deg_T(v') - 1 \ge p - 1$, and so $v' \notin D$ since T and D fulfil (iii). Then, by Lemma 1, $D \cap D(w) = L_p(T) \cap D(w)$. By $deg_T(v) = p$, $v \notin D$. Since D p-dominates v, we have $w \in D$.

Let T' = T - D(w), then $D \cap V(T')$ is a *p*-dominating set of T'. Since $w \in D$ and $deg_{T'}(w) = 1$, for every $z \in (D \cap V(T')) \cap X_p(T')$, $(D \cap V(T')) \cap N_{T'}(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$. Hence T' is a tree whose *p*-dominating set $D \cap V(T')$ fulfils (iii) since T and D fulfil (iii). By our assumption that T is the counterexample of minimum order, $D \cap V(T')$ is a unique γ_p -set of T'. So $|D \cap V(T')| = \gamma_p(T')$ and $\gamma_p(T) \le |D| = |D \cap D(w)| + |D \cap V(T')| = |D \cap D(w)| + \gamma_p(T')$.

Now we prove S = D. Suppose that $v \in S$, then, by the definition of γ_p -set and Lemma 1, $w \notin S$ and $(S \cap D(w)) \cap X_p(T) = \{v\}$ (Assume that $(S \cap D(w)) \cap X_p(T)$ contains another vertex v', then v' is a neighbor of w in D(w). Note that $D(v') \subseteq S$ by Lemma 1 and $|D(v')| \ge p - 1$. We can replace v, v' by w in S and get a p-dominating set of T of order |S| - 1, a contradiction). Hence $S \cap D(w) = (L_p(T) \cap D(w)) \cup \{v\} =$ $(D \cap D(w)) \cup \{v\}$. Since $(S \cap V(T')) \cup \{w\}$ is a p-dominating set of T' with

$$|(S \cap V(T')) \cup \{w\}| = |S| - |S \cap D(w)| + 1 = \gamma_p(T) - |D \cap D(w)| \le \gamma_p(T'),$$

we know that $(S \cap V(T')) \cup \{w\}$ is a γ_p -set of T'. Hence $(S \cap V(T')) \cup \{w\} = D \cap V(T')$. By $w \notin S$ and $w \in D$, we have $deg_T(w) \ge p$ and $w \in D \cap X_p(T)$. Note that

$$\begin{aligned} |D \cap N_T(w)| &= |(D \cap D(w)) \cap N_T(w)| + |D \cap \{x\}| \\ &= |((S \cap D(w)) - \{v\}) \cap N_T(w)| + |S \cap \{x\}| \\ &= |(S \cap D(w)) \cap N_T(w)| - 1 + |S \cap \{x\}| = |S \cap N_T(w)| - 1 \ge p - 1. \end{aligned}$$

Hence $|PN_p(w, D, T)| \ge 2$ since T and D satisfy (iii). By $w \notin S$ and $(S \cap D(w)) \cap X_p(T) = \{v\}, D(w) \cap X_p(T) (= C(w) \cap X_p(T))$ contains a unique vertex v of degree p. Thus $PN_p(w, D, T) \cap D(w) = \{v\}$. From $|PN_p(w, D, T)| \ge 2$, we know that

$$PN_p(w, D, T) = PN_p(w, D, T) \cap (D(w) \cup \{x\}) = \{v, x\}.$$

So $|D \cap N_T(x)| = p$ and $x \notin D \cap V(T') = (S \cap V(T')) \cup \{w\}$. Further, $x \notin S$. To *p*-dominate $x, |S \cap N_T(x)| \ge p$, which contradicts with

$$|S \cap N_T(x)| = |(S \cap V(T')) \cap N_T(x)|$$

= $|(D \cap N_T(x)) - \{w\}| = |D \cap N_T(x)| - 1 = p - 1.$

Hence $v \notin S$.

To p-dominate $v, w \in S$ and, by the definition of γ_p -set, $S \cap D(w) = L_p(T) \cap D(w) = D \cap D(w)$. Then $S \cap V(T')$ is a p-dominating set of T' with $|S \cap V(T')| =$

 $|S| - |S \cap D(w)| = \gamma_p(T) - |D \cap D(w)| \le \gamma_p(T')$, which implies that $S \cap V(T')$ is also a γ_p -set of T'. Hence $S \cap V(T') = D \cap V(T')$, and so

$$S = (S \cap V(T')) \cup (S \cap D(w)) = (D \cap V(T')) \cup (D \cap D(w)) = D.$$

Case 3. $deg_T(v) \ge p + 1$.

Note that $|D \cap N_T(v)| \ge |D(v)| = deg_T(v) - 1 \ge p$. We have $v \notin D$ since T and D fulfil (iii). Let T' = T - D[v], then $D \cap V(T')$ is a p-dominating set of T'. Since $v \notin D$ and $D \cap N_T(v) = D(v) \cup (D \cap \{w\}), (D \cap V(T')) \cap N_{T'}(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$ for every $z \in (D \cap V(T')) \cap X_p(T')$. Hence T' is a tree whose p-dominating set $D \cap V(T')$ fulfils (iii) since T and D fulfil (iii). As T is the counterexample of minimum order, $D \cap V(T')$ is the unique γ_p -set of T'. So $|D \cap V(T')| = \gamma_p(T')$ and $\gamma_p(T) \le |D| = |D(v)| + |D \cap V(T')| = |D(v)| + \gamma_p(T')$.

Now we prove that S = D. Suppose that $v \in S$, then by the definition of γ_p -set, $w \notin S$. Thus $(S \cap V(T')) \cup \{w\}$ is a *p*-dominating set of T' with

$$|(S \cap V(T')) \cup \{w\}| = |S| - |D[v]| + 1 = \gamma_p(T) - |D(v)| \le \gamma_p(T'),$$

which implies that $(S \cap V(T')) \cup \{w\}$ is a γ_p -set of T'. Hence $(S \cap V(T')) \cup \{w\} = D \cap V(T')$. So $w \in D$. By $w \notin S$, $v \notin D$ and $v \in S$, we have $w \in D \cap X_p(T)$ and

$$|D \cap N_T(w)| = |(D \cap V(T')) \cap N_T(w)|$$

= $|(S \cap V(T')) \cap N_T(w)| = |S \cap N_T(w)| - 1 \ge p - 1.$

Hence $|PN_p(w, D, T)| \ge 2$ since T and D fulfil (iii). Thus we can choose a vertex y in V(T') from $PN_p(w, D, T)$. Clearly, $|D \cap N_T(y)| = p$, $N_T[y] \subseteq V(T')$ and $y \notin D \cap V(T') - \{w\} = S \cap V(T')$. So $y \notin S$ and, to p-dominate $y, |S \cap N_T(y)| \ge p$. But

$$|S \cap N_T(y)| = |(S \cap V(T')) \cap N_T(y)|$$

= $|(D \cap V(T')) \cap N_T(y) - \{w\}| = |(D \cap N_T(y))| - 1 = p - 1,$

a contradiction. Therefore, $v \notin S$ and $S \cap V(T')$ is a *p*-dominating set of T' with $|S \cap V(T')| = |S| - |D(v)| = \gamma_p(T) - |D(v)| \le \gamma_p(T')$. Then $S \cap V(T')$ is also a γ_p -set of T', and so $S \cap V(T') = D \cap V(T')$. Hence

$$S = (S \cap V(T')) \cup D(v) = (D \cap V(T')) \cup D(v) = D.$$

Now we will establish the third equivalent condition for trees with unique minimum p-dominating sets.

Lemma 3. Suppose that T is a tree and p is a positive integer. Let D be a γ_p -set of T and $x \in D$.

(a) If γ_p(T − x) > γ_p(T), then |PN_p(x, D)| ≥ 2.
(b) If D is a unique γ_p-set of T, then γ_p(T − x) = γ_p(T) + |PN_p(x, D)| − 1.

Proof. Let T_1, \dots, T_k be all components of T - x. Then $k = deg_T(x) \ge 1$. For $i = 1, \dots, k$, we denote the neighbor of x in $V(T_i)$ by y_i and let $D_i = D \cap V(T_i)$. We claim that,

$$|D_i| \le \gamma_p(T_i) \le |D_i| + 1$$
, for every $i = 1, \cdots, k$. (1)

In fact, for $i = 1, \dots, k$, it is obvious that $\gamma_p(T_i) \leq |D_i| + 1$ since $D_i \cup \{y_i\}$ is a p-dominating set of T_i . Suppose that there exists some $j \in \{1, \dots, k\}$ such that $\gamma_p(T_j) \leq |D_j| - 1$. Let D'_j be a γ_p -set of T_j . Since $x \in D$, $(D - D_j) \cup D'_j$ is a p-dominating set of T with $|(D - D_j) \cup D'_j| = |D| - |D_j| + \gamma_p(T_j) \leq \gamma_p(T) - 1$, a contradiction. The claim holds.

Let $|PN_p(x,D)| = t$, then $0 \le t \le k$. Since T is a tree, $|PN_p(x,D) \cap V(T_i)| \le 1$ for every $i = 1, \dots, k$. So, without loss of generality, we can assume that $PN_p(x,D) = \{y_1, \dots, y_t\}$. By the definition of p-dominating set, D_i $(i = t + 1, \dots, k)$ is a pdominating set of T_i since $y_i \notin PN_p(x,D)$, and so $|D_i| \ge \gamma_p(T_i)$. Applying inequality (1), we have

$$|D_i| = \gamma_p(T_i), \text{ for every } i = t + 1, \cdots, k.$$
 (2)

Now we prove (a). Suppose that $|PN_p(x,D)| \leq 1$. Then, by inequality (1) and

equality (2),

$$\gamma_p(T-x) = \sum_{i=1}^k \gamma_p(T_i) \le \sum_{i=1}^k |D_i| + 1 = \gamma_p(T),$$

which contradicts with $\gamma_p(T-x) > \gamma_p(T)$. (a) is true.

To the end, we prove (b). We claim that, for every $i = 1, \dots, t$, $|D_i| + 1 = \gamma_p(T_i)$ if D is a unique γ_p -set of T. To the contrary, by inequality (1), there exists some $j \in \{1, \dots, t\}$ such that $|D_j| = \gamma_p(T_j)$. Since $x \in D$ and $y_j \in PN_p(x, D)$, $|D_j \cap N_{T_j}(y_j)| = |(D \cap N_T(y_j)) - \{x\}| = p - 1$, and so D_j is not a p-dominating set of T_j . Let D''_j be a γ_p -set of T_j , then $(D - D_j) \cup D''_j$ is a p-dominating set of T different from D and $|(D - D_j) \cup D''_j| = |D| - |D_j| + |D''_j| = \gamma_p(T)$. Hence, $(D - D_j) \cup D''_j$ is a γ_p -set of T, which contradicts that D is the unique γ_p -set of T. The claim holds. Hence, by equality (2) and $x \in D$,

$$\gamma_p(T-x) = \sum_{i=1}^k \gamma_p(T_i) = \sum_{i=1}^t (|D_i|+1) + \sum_{i=t+1}^k |D_i| = \gamma_p(T) + |PN_p(x,D)| - 1.$$

Theorem 4. Suppose that T is a tree and $p \ge 2$ is a positive integer. Let D be a subset of V(T). Then D is a unique γ_p -set of T if and only if D is a γ_p -set of T satisfying either $|D \cap N_T(x)| \le p - 2$ or $\gamma_p(T - x) > \gamma_p(T)$ for every $x \in D \cap X_p(T)$.

Proof. If D is a γ_p -set of T satisfying, for every $x \in D \cap X_p(T)$, either $|D \cap N_T(x)| \leq p-2$ or $\gamma_p(T-x) > \gamma_p(T)$, then, by Lemma 3 (a), T is a tree whose γ_p -set D satisfies (ii) of Theorem 2. By Theorem 2 (i) \Leftrightarrow (ii), D is a unique γ_p -set of T.

Conversely, by Theorem 2 (i) \Leftrightarrow (ii), D is a γ_p -set of T satisfying, for every $x \in D \cap X_p(T)$, either $|D \cap N_T(x)| \leq p-2$ or $|PN_p(x, D, T)| \geq 2$. By Lemma 3 (b), $\gamma_p(T-x) = \gamma_p(T) + |PN_p(x, D)| - 1$ for every $x \in D$. For every $x \in D \cap X_p(T)$, if $|D \cap N_T(x)| \geq p-1$, then $|PN_p(x, D)| \geq 2$, and so $\gamma_p(T-x) = \gamma_p(T) + |PN_p(x, D)| - 1 > \gamma_p(T)$. The proof is completed. \Box

3 A constructive characterization of trees with unique γ_p -sets

In this section, we will give a constructive characterization of all trees with unique minimum p-dominating sets for $p \ge 2$.

A vertex is a central vertex of a star $K_{1,t}$ $(t \ge 1)$ if either $t \ge 2$ and it is the support vertex or t = 1 and it is one of the two leaves. For convenience, an isolated vertex itself is also called its central vertex.

We first introduce a family \mathcal{T}_p .

For any $T \in \mathcal{T}_p$, T is obtained from a sequence T_1, T_2, \cdots, T_k $(k \ge 1)$ of trees, where $T_1 = K_{1,m}$ $(m \ge p)$, $T = T_k$, and, for $k \ge 2$, T_{i+1} $(1 \le i \le k-1)$ is obtained from T_i by one of the operations listed below. Let $A(T_1) = L(T_1)$.

• Operation \mathcal{O}_1 : Attach $h \geq 0$ stars $K_{1,p-1}$, denoted by $\{H_1, \dots, H_h\}$, and $t \geq 0$ isolated vertices, denoted by $\{v_1, \dots, v_t\}$, to T_i by adding h + t edges from their central vertices to a leaf w of T_i , where h, t and w must fulfil one of the following conditions.

- (a) h = 0 and $t \le p 2;$
- (b) h = 1 and $t \le p 3$;
- (c) h = 1, t = p 2 and the support vertex of w in T_i isn't in $A(T_i)$;
- (d) $h = 1, t \ge p 1$ and the support vertex of w is a p-private vertex of wwith regard to $A(T_i)$ in T_i ;
- (e) $h \ge 2$.

Let $A(T_{i+1}) = A(T_i) \cup (\bigcup_{j=1}^h L(H_j)) \cup \{v_1, \cdots, v_t\}.$

• Operation \mathcal{O}_2 : Attach a star $K_{1,t}$ $(t \ge p)$ to T_i by adding an edge from its central vertex to a vertex w of T_i satisfying either $deg_{T_i}(w) \ne p-1$ or $N_{T_i}(w) \not\subseteq A(T_i)$. Let $A(T_{i+1}) = A(T_i) \cup L(K_{1,t})$.

Lemma 5. For any $T \in \mathcal{T}_p$, A(T) is a unique γ_p -set of T.

Proof. We claim that A(T) is a *p*-dominating set of T and, for every vertex $x \in A(T) \cap X_p(T)$, $|A(T) \cap N_T(x)| \leq p-2$ or $|PN_p(x, A(T), T)| \geq 2$. Then, by (i) \Leftrightarrow (iii) of Theorem 2, A(T) is a unique γ_p -set of T. Assume that T is obtained from a sequence T_1, \dots, T_k ($k \geq 1$) of trees constructed recursively from T_1 by Operation \mathcal{O}_1 and \mathcal{O}_2 , where $T_1 = K_{1,m}$ ($m \geq p$) and $T = T_k$. We can prove easily the claim by induction on the length k of the sequence T_1, \dots, T_k . We omit the proof.

From Lemma 1 and the definition of Operation \mathcal{O}_1 (a), it is easy to see that the following lemma is true.

Lemma 6. Let T be a tree containing a unique vertex with degree at least p. Then $T \in \mathcal{T}_p$.

Lemma 7. Let T be a tree containing exact two vertices with degree at least p. If T has a unique γ_p -set, then $T \in \mathcal{T}_p$.

Proof. Denote the two vertices with degree at least p by u and v. We distinguish the following two cases.

Case 1. If $uv \in E(T)$, then $deg_T(u) \ge p + 1$ and $deg_T(v) \ge p + 1$ since T has a unique γ_p -set. Let $T_1 = T[N_T[v] - \{u\}]$, then T_1 is a star $K_{1,m}$ $(m = deg_T(v) - 1 \ge p)$. Hence $T_2 = T[N_T[u] \cup N_T[v]]$ is obtained from T_1 by Operation \mathcal{O}_2 by attaching a star $K_{1,t} = T[N_T[u] - \{v\}]$ $(t = deg_T(u) - 1 \ge p)$ to v, and so $T_2 \in \mathcal{T}_p$. Since every vertex of $V(T) - V(T_2)$ has degree at most p - 1, T can be obtained recursively from T_2 by Operation \mathcal{O}_1 satisfying (a). So $T \in \mathcal{T}_p$.

Case 2. If $uv \notin E(T)$, then we root T at u and denote the father of v by w.

If $deg_T(v) = p$, let T' = T - D(w). Obviously, T' is a tree containing a unique vertex with degree at least p and w is a leaf of T'. By Lemma 6, $T' \in \mathcal{T}_p$. Since $deg_T(v) = p$, $T[N_T[v] - \{w\}] = K_{1,p-1}$. By $deg_T(w) \leq p - 1$, $|C(w) - \{v\}| \leq p - 3$. Let $T'' = T[V(T') \cup (N_T[v] - \{w\}) \cup (C(w) - \{v\})]$, then T'' is obtained from T' by Operation \mathcal{O}_1 satisfying (b), and so $T'' \in \mathcal{T}_p$. Since every vertex of V(T) - V(T'') has degree at most p-1, T can be obtained recursively from T'' by Operation \mathcal{O}_1 satisfying (a). So $T \in \mathcal{T}_p$.

If $deg_T(v) \ge p + 1$, let T' = T - D[v]. Since T has exact two vertices u and vwith degree at least p, T' is a tree containing a unique vertex u with degree at least p and $deg_T(w) \le p - 2$. By Lemma 6, $T' \in \mathcal{T}_p$. Let $T'' = T[V(T') \cup (C(v) \cup \{v\})]$, then T'' is obtained from T' by Operation \mathcal{O}_2 by attaching a star $K_{1,t} = T[C(v) \cup \{v\}]$ $(t = deg_T(v) - 1 \ge p)$ to w. So $T'' \in \mathcal{T}_p$. Since every vertex of V(T) - V(T'') has degree at most p - 1, T can be obtained recursively from T'' by Operation \mathcal{O}_1 satisfying (a). So $T \in \mathcal{T}_p$.

Theorem 8. Let T be a tree and $p \ge 2$ a positive integer. Then T has a unique γ_p -set if and only if $\Delta(T) \le p - 1$ or $T \in \mathcal{T}_p$.

Proof. If $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_p$, by Lemmas 1 and 5, T has a unique γ_p -set.

Conversely, let T be a tree with a unique γ_p -set. We will prove $\Delta(T) \leq p-1$ or $T \in \mathcal{T}_p$ by induction on the order n of T.

If $n \in \{1, 2\}$, then $\Delta(T) \leq p - 1$. This establishes the base case. Assume that, if tree T' with order $2 \leq |V(T')| < n$ has a unique γ_p -set, then $\Delta(T') \leq p - 1$ or $T' \in \mathcal{T}_p$.

If d(T) = 2, then T has at most one vertex with degree at least p. By Lemma 6, the result holds. If d(T) = 3, then T has at most two vertices with degree at least p. By Lemmas 6 and 7, the result holds. In the following, we can assume that $\Delta(T) \ge p$ and $d(T) \ge 4$.

Let $p = uvwx \cdots r$ be a longest path in T such that the degree of v is as large as possible. We root T at r and denote the unique γ_p -set of T by D. By Theorem 2, Tand D fulfil (ii) of Theorem 2.

We claim that, if there exists a vertex $v' \in C(w)$ with $2 \leq deg_T(v') \leq p-1$, then $T \in \mathcal{T}_p$.

In fact, by the choice of path P and $v' \in C(w)$, T[D(v')] consists of |D(v')| isolated vertices and $|D(v')| = deg_T(v') - 1 \le p - 2$. By Lemma 1, $D[v'] \subseteq D$. Let T' = T - D(v'), then $D \cap V(T')$ is a *p*-dominating set of T'. Since $v' \in D$ and v' is a leaf of T', $(D \cap V(T')) \cap N_{T'}(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$ for every $z \in (D \cap V(T')) \cap X_p(T')$. Hence T' is a tree whose *p*-dominating set $D \cap V(T')$ fulfils (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i) \Leftrightarrow (iii), $D \cap V(T')$ is a unique γ_p -set of T'. Applying the induction on T', $\Delta(T') \leq p - 1$ or $T' \in \mathcal{T}_p$. If $\Delta(T') \leq p - 1$, then $\Delta(T) \leq p - 1$, which contradicts with $\Delta(T) \geq p$. If $T' \in \mathcal{T}_p$, then T is obtained from T' by Operation \mathcal{O}_1 satisfying (a) by attaching |D(v')| isolated vertices to the leaf v' of T'. Hence $T \in \mathcal{T}_p$. The claim holds.

By claim, we only need consider the case that every vertex of C(w) has degree 1 or at least p. Since $v \in C(w)$ and $deg_T(v) \ge 2$, $deg_T(v) \ge p$.

Case 1. $deg_T(v) = p$.

By the choice of path P, for every vertex $v' \in C(w)$, $deg_T(v') \leq deg_T(v) = p$, and so $deg_T(v') = p$ or 1. Let h and t be the number of vertices with degree p and 1, respectively, in C(w). Then $h \geq 1$ and T[D(w)] consists of h stars $K_{1,p-1}$ and t isolated vertices. Since $deg_T(v) = p$, $|D \cap N_T(v)| \geq |D(v)| = deg_T(v) - 1 = p - 1$. By (ii) of Theorem 2, $v \notin D$. To p-dominate $v, w \in D$. Let T' = T - D(w), then $D \cap V(T')$ is a pdominating set of T'. Since $w \in D$ and $deg_{T'}(w) = 1$, for every $z \in (D \cap V(T')) \cap X_p(T')$, $(D \cap V(T')) \cap N_{T'}(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$. Hence T' is a tree whose p-dominating set $D \cap V(T')$ fulfils (iii) of Theorem 2 since T and Dfulfil (ii) of Theorem 2. By Theorem 2 (i) \Leftrightarrow (iii), $D \cap V(T')$ is a unique γ_p -set of T'. Applying the induction on T', $\Delta(T') \leq p - 1$ or $T' \in \mathcal{T}_p$.

Subcase 1.1. $\Delta(T') \leq p - 1$.

If h = 1, then every vertex of $D(w) - \{v\}$ is a leaf of T. Hence all vertices of $V(T) - \{v, w\}$ have degree at most $\Delta(T') (\leq p - 1)$ in T. By Lemmas 6 and 7, $T \in \mathcal{T}_p$.

If $h \geq 2$, then, by the definition of Operation \mathcal{O}_1 and \mathcal{O}_2 , we can check easily that $T'' = T[D[w] \cup \{x\}] \in \mathcal{T}_p$. Since all vertices of $V(T) - (D[w] \cup \{x\}) (\subset V(T'))$ have degree at most $\Delta(T') (\leq p-1)$ in T and x is a leaf of T'', T can be obtained recursively from T'' by Operation \mathcal{O}_1 satisfying condition (a). So $T \in \mathcal{T}_p$.

Subcase 1.2. $T' \in T_p$.

When $h \ge 2$, then T is obtained from T' by Operation \mathcal{O}_1 satisfying condition (e). Hence $T \in \mathcal{T}_p$. Now we assume that h = 1.

If $deg_T(w) \leq p-1$, then $t = deg_T(w) - 2 \leq p-3$. Thus T is obtained from T' by \mathcal{O}_1 satisfying condition (b). Hence $T \in \mathcal{T}_p$.

If $deg_T(w) = p$, then $t = deg_T(w) - 2 = p - 2$. Note that x is the support vertex of w in T'. We claim that $x \notin D \cap V(T') = A(T')$. Otherwise, by $w \in D$, $(D - \{w\}) \cup \{v\}$ is a γ_p -set of T different from D, a contradiction. Hence T is obtained from T' by Operation \mathcal{O}_1 satisfying condition (c). Thus $T \in \mathcal{T}_p$.

If $deg_T(w) \ge p+1$, then $t = deg_T(w) - 2 \ge p-1$. Note that $w \in D \cap X_p(T)$ and $|D \cap N_T(w)| \ge t \ge p-1$. By (ii) of Theorem 2, w has at least two p-private vertices with regard to D in T. Then we can see easily that $PN_p(w, D, T) = \{v, x\}$. So $PN_p(w, A(T'), T') = PN_p(w, D \cap V(T'), T') = \{x\}$. Hence T is obtained from T'by \mathcal{O}_1 satisfying condition (d), and so $T \in \mathcal{T}_p$.

Case 2. $deg_T(v) \ge p + 1$.

Let T' = T - D[v]. Since $deg_T(v) \ge p+1$ and $|D \cap N_T(v)| \ge |D(v)| = deg_T(v) - 1 \ge p$, by (ii) of Theorem 2, $v \notin D$. Hence $D \cap V(T')$ is a *p*-dominating set of T'. Since $v \notin D$ and $D \cap N_T(v) = D(v) \cup (D \cap \{w\})$, $(D \cap V(T')) \cap N_{T'}(z) = D \cap N_T(z)$ and $PN_p(z, D \cap V(T'), T') = PN_p(z, D, T)$ for every $z \in (D \cap V(T')) \cap X_p(T')$. Hence T' is a tree whose *p*-dominating set $D \cap V(T')$ fulfils (iii) of Theorem 2 since T and D fulfil (ii) of Theorem 2. By Theorem 2 (i) \Leftrightarrow (iii), $D \cap V(T')$ is a unique γ_p -set of T'. Applying the induction on T', $\Delta(T') \le p-1$ or $T' \in \mathcal{T}_p$.

If $\Delta(T') \leq p-1$, then all vertices of $T - \{v, w\}$ have degree at most $\Delta(T') (\leq p-1)$ in T. By Lemmas 6 and 7, $T \in \mathcal{T}_p$.

If $T' \in \mathcal{T}_p$, then we claim that $deg_T(w) \neq p-1$ or $N_T(w) \notin D$. Suppose that

 $deg_T(w) = p - 1$ and $N_T(w) \subseteq D$, then, by Lemma 1, $w \in D$. It is easy to see that $(D - \{w\}) \cup \{v\}$ is a γ_p -set of T different from D, a contradiction. Hence T is obtained from T' by Operation \mathcal{O}_2 by attaching a star $K_{1,t}$ (= T[D[v]], $t = deg_T(v) - 1 \ge p$) to w of T'. So $T \in \mathcal{T}_p$.

References

- M. Blidia, M. Chellali and L. Volkmann, Some bounds on the *p*-domination number in trees, Discrete Math. 306 (2006) 2031-2037.
- [2] M. Chellali and T. W. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3-12.
- [3] G. Chartrant and L. Lesniak, Graphs & Digraphs, third ed., Chapman & Hall, London, (1996).
- [4] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247-252.
- [5] M. Fischermann, Unique total domination graphs, Ars Combin. 73 (2004) 289-297.
- [6] J. F. Fink, M. S. Jacobson, n-Domination in graphs, in: Y.Alavi, A.J.Schwenk (Eds.), Graph Theory with Applications to Algorithms and Computer Science, Wiley, New York, (1985) 283-300.
- [7] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Utilitas Math. 63 (2003) 229-238.
- [8] G. Gunther, B. Hartnell, L. R. Markus, D. Rall, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994) 55-63.
- [9] T. W. Haynes and M. A. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory, 22 (2002) 233-246.

- [10] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, New York, Marcel Deliker, (1998).
- [11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics, New York, Marcel Deliker, (1998).