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a b s t r a c t

Let G = (V , E) be a graph. A subset D ⊆ V is a dominating set if
every vertex not in D is adjacent to a vertex in D. A dominating set
D is called a total dominating set if every vertex in D is adjacent to
a vertex in D. The domination (resp. total domination) number of G
is the smallest cardinality of a dominating (resp. total dominating)
set of G. The bondage (resp. total bondage) number of a nonempty
graph G is the smallest number of edges whose removal from G
results in a graph with larger domination (resp. total domination)
number ofG. The reinforcement (resp. total reinforcement) number
of G is the smallest number of edges whose addition to G results in
a graph with smaller domination (resp. total domination) number.
This paper shows that the decision problems for the bondage, total
bondage, reinforcement and total reinforcement numbers are all
NP-hard.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper,we followXu [19] for graph-theoretical terminology and notation. A graphG = (V , E)
always means a finite, undirected and simple graph, where V = V (G) is the vertex-set and E = E(G)
is the edge-set of G.

A subset D ⊆ V is a dominating set of G if every vertex not in D is adjacent to a vertex in D. The
domination number of G, denoted by γ (G), is the minimum cardinality of a dominating set of G. A
dominating set D is called a γ -set of G if |D| = γ (G). The bondage number of G, denoted by b(G), is the
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minimum number of edges whose removal from G results in a graph with larger domination number
of G. The reinforcement number of G, denoted by r(G), is the smallest number of edges whose addition
toG results in a graphwith smaller domination number ofG. Domination is a classical concept in graph
theory. The bondage number and the reinforcement number were introduced by Fink et al. [3] and
Kok,Mynhardt [13], respectively, in 1990. The reinforcement number for digraphs has been studied by
Huang et al. [12]. Domination aswell as related topics is nowwell studied in graph theory. The bondage
number and the reinforcement number are two important parameters formeasuring the vulnerability
and stability of the network domination under link failure and link addition. The literature on these
subjects has been, in detail, surveyed in the two excellent domination books by Haynes et al. [6,7].

Theory of domination has been applied in many research fields. For different applications, many
variations of dominations were proposed in the research literature by adding some restricted
conditions to dominating sets, for example, the total domination and the restrained domination.

A dominating set D is called a total dominating set if every vertex in D is adjacent to another vertex
in D. The total domination number, denoted by γt(G), of G is the minimum cardinality of a total
dominating set of G. Use the symbol Dt to denote a total dominating set. A total dominating set Dt
is called a γt-set of G if |Dt | = γt(G). The total bondage number of G, denoted by bt(G), is the minimum
number of edges whose removal from G results in a graph with larger total domination number of G.
The total reinforcement number of G, denoted by rt(G), is the smallest number of edges whose
addition to G results in a graph with smaller total domination number of G. The total domination
was introduced by Cockayne et al. [1]. Total domination in graphs has been extensively studied in the
literature. The recent results on the total domination is surveyed in Henning [5]. The total bondage
number of a graph was first studied by Kulli and Patwari [14] and further studied by Sridharan
et al. [16], and Huang and Xu [11]. The total reinforcement number of a graph was first studied by
Sridharan et al. [17] and further studied by Henning et al. [8].

Analogously, a dominating set D is called a restrained dominating set if every vertex not in D is
adjacent to another vertex not in D. The restrained domination number, denoted by γr(G), of G is
the minimum cardinality of a restrained dominating set of G. The restrained bondage number of G,
denoted by br(G), is the minimum number of edges whose removal from G results in a graph with
larger restrained domination number of G. The restrained domination was introduced by Telle and
Proskurowski [18], and the restrained bondage number was defined by Hattingh and Plummer [10].

Why a graph-theoretical parameter is proposed at once is to determine the exact value of this
parameter for all graphs, that is, giving either an explicit expression in terms of other graph-theoretical
parameters, or a polynomial algorithm for computing these parameters. However, the problem
determining domination for general graphs has been proved to be NP-complete (see GT2 in Appendix
in Garey and Johnson [4]); the problems determining total domination and restrained domination for
general graphs have been also proved to be NP-complete by Laskar et al. [15], and by Domke et al. [2],
respectively.

As regards the bondage problem, Hattingh and Plummer [10] showed that the restrained bondage
problem is NP-complete even for bipartite graphs. For the general bondage problem, from the
algorithmic point of view, Hartnell et al. [9] designed a linear time algorithm to compute the bondage
number of a tree. However, the complexity of this problem is still unknown for other classes of graphs.

In this paper, we will show that the decision problems for the bondage, total bondage, reinforce-
ment and total reinforcement numbers are all NP-hard. In other words, there are no polynomial algo-
rithms to compute these parameters unless P = NP . The proofs are in Sections 3–5, respectively.

2. 3-satisfiability problem

Following Garey and Johnson’s techniques for proving NP-hardness [4], we prove our results
by describing a polynomial transformation from the known NP-complete problem: 3-satisfiability
problem. To state the 3-satisfiability problem, in this section, we first recall some terms.

LetU be a set of Boolean variables. A truth assignment forU is amapping t : U → {T , F}. If t(u) = T ,
then u is said to be ‘‘true’’ under t; if t(u) = F , then u is said to be ‘‘false’’ under t . If u is a variable in U ,
then u and ū are literals over U . The literal u is true under t if and only if the variable u is true under t;
the literal ū is true if and only if the variable u is false.



F.-T. Hu, J.-M. Xu / Journal of Complexity ( ) – 3

Fig. 1. An instance of the bondage problem resulting from an instance of the 3-satisfiability problem, in which U =

{u1, u2, u3, u4} and C = {{u1, u2, ū3}, {ū1, u2, u4}, {ū2, u3, u4}}. Here k = 1 and γ = 5, where the set of bold points is a
γ -set.

A clause overU is a set of literals overU . It represents the disjunction of these literals and is satisfied
by a truth assignment if and only if at least one of its members is true under that assignment. A
collection C of clauses over U is satisfiable if and only if there exists some truth assignment for U
that simultaneously satisfies all the clauses in C . Such a truth assignment is called a satisfying truth
assignment for C . The 3-satisfiability problem is specified as follows.

3-satisfiability problem:
Instance: A collection C = {C1, C2, . . . , Cm} of clauses over a finite set U of variables such that |Cj| = 3

for j = 1, 2, . . . ,m.
Question: Is there a truth assignment for U that satisfies all the clauses in C ?

Theorem 2.1 (Theorem 3.1 in [4]). The 3-satisfiability problem is NP-complete.

3. NP-hardness of bondage

In this section, wewill show that the problem determining the bondage numbers of general graphs
is NP-hard. We first state the problem as the following decision problem.

Bondage problem:
Instance: A nonempty graph G and a positive integer k.
Question: Is b(G) ≤ k?

Theorem 3.1. The bondage problem is NP-hard.

Proof. We show the NP-hardness of the bondage problem by transforming the 3-satisfiability
problem to it in polynomial time.

Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance of the 3-satisfiability
problem.Wewill construct a graph G and take a positive integer k such that C is satisfiable if and only
if b(G) ≤ k. Such a graph G can be constructed as follows.

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , associate a triangle Ti with
vertex-set {ui, ūi, vi}. For each j = 1, 2, . . . ,m, corresponding to the clause Cj = {xj, yj, zj} ∈ C ,
associate a single vertex cj and add an edge-set Ej = {cjxj, cjyj, cjzj}. Finally, add a path P = s1s2s3, join
s1 and s3 to each vertex cj with 1 ≤ j ≤ m and set k = 1.

Fig. 1 shows an example of the graph obtained when U = {u1, u2, u3, u4} and C = {C1, C2, C3},
where C1 = {u1, u2, ū3}, C2 = {ū1, u2, u4}, C3 = {ū2, u3, u4}.
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To prove that this is indeed a transformation, we must show that b(G) = 1 if and only if there is
a truth assignment for U that satisfies all the clauses in C . This aim can be obtained by proving the
following four claims.

Claim 3.1. γ (G) ≥ n + 1. Moreover, if γ (G) = n + 1, then for any γ -set D in G, D ∩ V (P) = {s2} and
|D ∩ V (Ti)| = 1 for each i = 1, 2, . . . , n, while cj ∉ D for each j = 1, 2, . . . ,m.

Proof. Let D be a γ -set of G. By the construction of G, the vertex s2 can be dominated only by vertices
in P , which implies |D ∩ V (P)| ≥ 1; for each i = 1, 2, . . . , n, the vertex vi can be dominated only by
vertices in Ti, which implies |D ∩ V (Ti)| ≥ 1. It follows that γ (G) = |D| ≥ n + 1.

Suppose that γ (G) = n + 1. Then |D ∩ V (P)| = 1 and |D ∩ V (Ti)| = 1 for each i = 1, 2, . . . , n.
Consequently, cj ∉ D for each j = 1, 2, . . . ,m. If s1 ∈ D, then |D ∩ V (P)| = 1 implies that
D ∩ V (P) = {s1}, and so s3 could not be dominated by D, a contradiction. Hence s1 ∉ D. Similarly
s3 ∉ D and, thus, D ∩ V (P) = {s2} since |D ∩ V (P)| = 1. �

Claim 3.2. γ (G) = n + 1 if and only if C is satisfiable.

Proof. Suppose that γ (G) = n + 1 and let D be a γ -set of G. By Claim 3.1, for each i = 1, 2, . . . , n,
|D ∩ V (Ti)| = 1, it follows that D ∩ V (Ti) = {ui} or D ∩ V (Ti) = {ūi} or D ∩ V (Ti) = {vi}. Define a
mapping t : U → {T , F} by

t(ui) =


T if ui ∈ D or vi ∈ D,
F if ūi ∈ D,

i = 1, 2, . . . , n. (3.1)

We will show that t is a satisfying truth assignment for C . It is sufficient to show that every clause
in C is satisfied by t . To this end, we arbitrarily choose a clause Cj ∈ C with 1 ≤ j ≤ m. Since the
corresponding vertex cj in G is adjacent to neither s2 nor vi for any iwith 1 ≤ i ≤ n, there exists some i
with 1 ≤ i ≤ n such that cj is dominated by ui ∈ D or ūi ∈ D. Suppose that cj is dominated by ui ∈ D.
Since ui is adjacent to cj in G, the literal ui is in the clause Cj by the construction of G. Since ui ∈ D,
it follows that t(ui) = T by (3.1), which implies that the clause Cj is satisfied by t . Suppose that cj is
dominated by ūi ∈ D. Since ūi is adjacent to cj in G, the literal ūi is in the clause Cj. Since ūi ∈ D, it
follows that t(ui) = F by (3.1). Thus, t assigns ūi the truth value T , that is, t satisfies the clause Cj.
By the arbitrariness of j with 1 ≤ j ≤ m, we show that t satisfies all the clauses in C , that is, C is
satisfiable.

Conversely, suppose that C is satisfiable, and let t : U → {T , F} be a satisfying truth assignment
for C . Construct a subset D′

⊆ V (G) as follows. If t(ui) = T , then put the vertex ui in D′; if t(ui) = F ,
then put the vertex ūi in D′. Clearly, |D′

| = n. Since t is a satisfying truth assignment for C , for
each j = 1, 2, . . . ,m, at least one of literals in Cj is true under the assignment t . It follows that the
corresponding vertex cj in G is adjacent to at least one vertex in D′ since cj is adjacent to each literal in
Cj by the construction of G. Thus D′

∪ {s2} is a dominating set of G, and so γ (G) ≤ |D′
∪ {s2}| = n + 1.

By Claim 3.1, γ (G) ≥ n + 1, and so γ (G) = n + 1. �

Claim 3.3. γ (G − e) ≤ n + 2 for any e ∈ E(G).

Proof. Let E1 = {s2s3, s1cj, uiūi, uivi, : i = 1, 2, . . . , n; j = 1, 2, . . . ,m} (induced by heavy edges
in Fig. 1) and let E2 = E(G) \ E1. Assume e ∈ E2. Let D′

= {u1, u2, . . . , un, s1, s2}. Clearly, D′ is a
dominating set of G − e since every vertex not in D′ is incident with some vertex in D′ via an edge
in E1. Hence, γ (G − e) ≤ |D′

| = n + 2. Now assume e ∈ E1. Let D′′
= {u1, u2, . . . , un, s2, s3}. If e is

either s2s3 or incident with the vertex s1, then D′′ is a dominating set of G− e, clearly. If e is either uiūi
or uivi for some i (1 ≤ i ≤ n), then we use the vertex either vi or ūi instead of ui in D′′ to obtain D′′′,
and hence D′′′ is a dominating set of G − e. These facts imply that γ (G − e) ≤ n + 2. �

Claim 3.4. γ (G) = n + 1 if and only if b(G) = 1.

Proof. Assume γ (G) = n + 1 and consider the edge e = s1s2. Suppose γ (G) = γ (G − e). Let D′ be a
γ -set inG−e. It is clear thatD′ is also a γ -set ofG. By Claim3.1,we have cj ∉ D′ for each j = 1, 2, . . . ,m
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and D′
∩ V (P) = {s2}. But then s1 is not dominated by D′, a contradiction. Hence, γ (G) < γ (G − e),

and so b(G) = 1.
Now, assume b(G) = 1. By Claim 3.1, we have that γ (G) ≥ n + 1. Let e′ be an edge such that

γ (G) < γ (G−e′). By Claim3.3,we have that γ (G−e′) ≤ n+2. Thus, n+1 ≤ γ (G) < γ (G−e′) ≤ n+2,
which yields γ (G) = n + 1. �

By Claims 3.2 and 3.4, we prove that b(G) = 1 if and only if there is a truth assignment for U that
satisfies all the clauses in C . Since the construction of the bondage instance is straightforward from a
3-satisfiability instance, the size of the bondage instance is bounded above by a polynomial function
of the size of 3-satisfiability instance. It follows that this is a polynomial transformation.

The theorem follows. �

4. NP-hardness of total bondage

In this section, we will show that the problem determining the total bondage numbers of general
graphs is NP-hard. We first state it as the following decision problem.

Total bondage problem:
Instance: A nonempty graph G and a positive integer k.
Question: Is bt(G) ≤ k?

Theorem 4.1. The total bondage problem is NP-hard.

Proof. We show the NP-hardness of the total bondage problem by reducing the 3-satisfiability
problem to it in polynomial time.

Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance of the 3-satisfiability
problem. We will construct a graph G and take an integer k such that C is satisfiable if and only if
bt(G) ≤ k. Such a graph G can be constructed as follows.

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , associate a graph Hi with
vertex-setV (Hi) = {ui, ūi, vi, v

′

i} and edge-set E(Hi) = {viui, uiūi, ūivi, viv
′

i}. For each j = 1, 2, . . . ,m,
corresponding to the clause Cj = {xj, yj, zj} ∈ C , associate a single vertex cj and add an edge-set
Ej = {cjxj, cjyj, cjzj}, 1 ≤ j ≤ m. Finally, add a graph H with vertex-set V (H) = {s1, s2, s3, s4, s5} and
edge-set E(H) = {s1s2, s1s4, s2s3, s2s4, s4s5}, join s1 and s3 to each vertex cj, 1 ≤ j ≤ m and set k = 1.

Fig. 2 shows an example of the graph obtained when U = {u1, u2, u3, u4} and C = {C1, C2, C3},
where C1 = {u1, u2, ū3}, C2 = {ū1, u2, u4} and C3 = {ū2, u3, u4}.

It is easy to see that the construction can be accomplished in polynomial time. All that remains
to be shown is that C is satisfiable if and only if bt(G) = 1. This aim can be obtained by proving the
following four claims.

Claim 4.1. γt(G) ≥ 2n + 2. For any γt-set Dt of G, s4 ∈ Dt and vi ∈ Dt for each i = 1, 2, . . . , n.
Moreover, if γt(G) = 2n + 2, then Dt ∩ V (H) = {s2, s4} and |Dt ∩ V (Hi)| = 2 for each i = 1, 2, . . . , n,
while cj ∉ Dt for each j = 1, 2, . . . ,m.

Proof. Let Dt be a γt-set of G. By the construction of G, it is clear that vi is certainly in Dt to dominate
v′

i , and vi can be dominated only by another vertex in Hi. It follows that vi ∈ Dt and |Dt ∩ V (Hi)| ≥ 2
for each i = 1, 2, . . . , n. It is also clear that s4 is certainly in Dt to dominate s5, and s4 can be
dominated only by another vertex in H . This fact implies that s4 ∈ Dt and |Dt ∩ V (H)| ≥ 2. Thus,
γt(G) = |Dt | ≥ 2n + 2.

Suppose that γt(G) = 2n+ 2. Then |Dt ∩ V (Hi)| = 2 for each i = 1, 2, . . . , n, and |Dt ∩ V (H)| = 2.
Consequently, cj ∉ Dt for each j = 1, 2, . . . ,m. As a result, s3 can be dominated only by the vertex s2
in S, that is, s2 ∈ Dt . Noting s4 ∈ Dt and |Dt ∩ V (H)| = 2, we have Dt ∩ V (H) = {s2, s4}. �

Claim 4.2. γt(G) = 2n + 2 if and only if C is satisfiable.
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Fig. 2. An instance of the total bondage problem resulting from an instance of the 3-satisfiability problem, in which U =

{u1, u2, u3, u4} and C = {{u1, u2, ū3}, {ū1, u2, u4}, {ū2, u3, u4}}. Here k = 1 and γt = 10, where the set of bold points is a
γt -set.

Proof. Suppose that γt(G) = 2n+ 2 and let Dt be a γt-set of G. By Claim 4.1, Dt ∩ V (H) = {s2, s4} and
for each i = 1, 2, . . . , n, |Dt ∩ V (Hi)| = 2, it follows that Dt ∩ V (Hi) = {ui, vi} or {ūi, vi} or {vi, v

′

i}.
Define a mapping t : U → {T , F} by

t(ui) =


T if ui ∈ Dt or v′

i ∈ Dt ,
F if ūi ∈ Dt ,

i = 1, 2, . . . , n. (4.1)

We will show that t is a satisfying truth assignment for C . It is sufficient to show that t satisfies
every clause in C . To this end, we arbitrarily choose a clause Cj ∈ C . Since the corresponding vertex
cj is not adjacent to any member of {s2, s4} ∪ {vi, v

′

i : 1 ≤ i ≤ n}, there exists some i with 1 ≤ i ≤ n
such that cj is dominated by ui ∈ Dt or ūi ∈ Dt .

Suppose that cj is dominated by ui ∈ Dt . Then ui is adjacent to cj in G, that is, the literal ui is in
the clause Cj by the construction of G. Since ui ∈ Dt , we have t(ui) = T by (4.1), which implies that t
satisfies the clause Cj.

Suppose that cj is dominated by ūi ∈ Dt . Then ūi is adjacent to cj in G, that is, the literal ūi is in the
clause Cj. Since ūi ∈ Dt , we have t(ui) = F by (4.1), which implies that ūi is assigned the truth value T
by t , so the clause Cj is satisfied by t .

The arbitrariness of j with 1 ≤ j ≤ m shows that all the clauses in C is satisfied, that is, C is
satisfiable.

Conversely, suppose that C is satisfiable, and let t : U → {T , F} be a satisfying truth assignment
for C . Construct a subset D′

⊆ V (G) as follows. If t(ui) = T , then put the vertex ui in D′; if t(ui) = F ,
then put the vertex ūi in D′. Clearly, |D′

| = n. Since t is a satisfying truth assignment for C , for
each j = 1, 2, . . . ,m, at least one of literals in Cj is true under the assignment t . It follows that the
corresponding vertex cj in G is adjacent to at least one vertex in D′ since cj is adjacent to each literal in
Cj by the construction of G. Let D′

t = D′
∪ {s2, s4, v1, . . . , vn}. Clearly, D′

t is a dominating set of G and
|D′

t | = 2n + 2. Since s2 and s4 are dominated by each other, ui and ūi are dominated by vi ∈ D′
t for

each i = 1, 2, . . . , n, D′
t is also a total dominating set of G. Hence, γt(G) ≤ |D′

t | = 2n+2. By Claim 4.1,
γ (G) ≥ 2n + 2. Therefore, γt(G) = 2n + 2. �

Claim 4.3. For any e ∈ E(G), γt(G − e) ≤ 2n + 3.
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Proof. We first assume e = s2s3 or e = viūi for some i with 1 ≤ i ≤ n, and let D′
t = (∪n

i=1{ui, vi}) ∪

{c1, s1, s4}. It is easy to see that D′
t is a total dominating set of G − e. Second, assume e = s1cj for

some j with 1 ≤ j ≤ m, and let D′
t = (∪n

i=1{ui, vi}) ∪ {s2, s3, s4}. Then D′
t is a total dominating set of

G− e. Otherwise, let D′
t = (∪n

i=1{vi, ūi})∪{s1, s2, s4}. Then D′
t is a total dominating set of G− e. Hence,

γt(G − e) ≤ |D′
t | = 2n + 3. �

Claim 4.4. γt(G) = 2n + 2 if and only if bt(G) = 1.

Proof. Assume γt(G) = 2n+2 and take e = s2s4. Suppose that γt(G−e) = γt(G). Let D′
t be a γt-set of

G−e. AsD′
t is also a γt-set ofG, by Claim 4.1we have cj ∉ D′

t for every j andD′
t ∩V (H) = {s2, s4}, which

contradicts the fact that s2 and s4 could not be dominated by each other in G − e. This contradiction
shows that γt(G − e) > γt(G), whence bt(G) = 1.

Now, assume bt(G) = 1. By Claim 4.1, we have that γt(G) ≥ 2n + 2. Let e′ be an edge such that
γt(G−e′) > γt(G). By Claim 4.3, we have that γt(G−e) ≤ 2n+3. Thus, 2n+2 ≤ γt(G) < γt(G−e′) ≤

2n + 3, which yields γt(G) = 2n + 2. �

It follows from Claims 4.2 and 4.4 that bt(G) = 1 if and only if C is satisfiable. The theorem
follows. �

5. NP-hardness of reinforcement

In this section, we will show that the problem determining the reinforcements and total
reinforcements of general graphs are NP-hard. We first state them as the following decision problem.

(Total) Reinforcement problem:
Instance: A graph G and a positive integer k.
Question: Is (rt(G)) r(G) ≤ k?

Theorem 5.1. The reinforcement problem is NP-hard.

Proof. We show the NP-hardness of the reinforcement problem by reducing the 3-satisfiability
problem to it in polynomial time.

Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance of the 3-satisfiability
problem. We will construct a graph G and take an integer k such that C is satisfiable if and only if
r(G) ≤ k. Such a graph G can be constructed as follows.

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , associate a triangle Ti with
vertex-set {ui, ūi, vi}. For each j = 1, 2, . . . ,m, corresponding to the clause Cj = {xj, yj, zj}, associate
a single vertex cj and add edges (cj, xj), (cj, yj) and (cj, zj), 1 ≤ j ≤ m. Finally, add a vertex s and join s
to every vertex cj and set k = 1.

Fig. 3 shows an example of the graph obtained when U = {u1, u2, u3, u4} and C = {C1, C2, C3},
where C1 = {u1, u2, ū3}, C2 = {ū1, u2, u4}, C3 = {ū2, u3, u4}.

It is easy to see that the construction can be accomplished in polynomial time. All that remains to
be shown is that C is satisfiable if and only if r(G) = 1. To this aim, we first prove the following two
claims.

Claim 5.1.1. γ (G) = n + 1.

Proof. Use the symbol N[s] to denote the closed-neighborhood of s in G, that is, N[s] = {u ∈ V (G) :

us ∈ E} ∪ {s}. On the one hand, let D be a γ -set of G, then γ (G) = |D| ≥ n + 1 since |D ∩ V (Ti)| ≥ 1
and |D∩N[s]| ≥ 1. On the other hand, D′

= {s, u1, u2, . . . , un} is a dominating set of G, which implies
that γ (G) ≤ |D′

| = n + 1. It follows that γ (G) = n + 1. �

Claim 5.1.2. If there exists an edge e ∈ E(Ḡ) such that γ (G+ e) = n, and let De be a γ -set of G+ e, then
|De ∩ V (Ti)| = 1 for each i = 1, 2, . . . , n, while cj ∉ De for each j = 1, 2, . . . ,m.
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Fig. 3. An instance of the reinforcement problem resulting from an instance of the 3-satisfiability problem, in which U =

{u1, u2, u3, u4} and C = {{u1, u2, ū3}, {ū1, u2, u4}, {ū2, u3, u4}}. Here k = 1 and γ = 5, where the set of bold points is a γ -set.

Proof. Suppose to the contrary that |De ∩ V (Ti0)| = 0 for some i0 with 1 ≤ i0 ≤ n. Then one
end-vertex of the edge e should be vi0 since De dominates it via the edge e in G + e, and for every
i ≠ i0, |De ∩ V (Ti)| ≥ 1 since De dominates vi. By the hypotheses, two literals ui0 and ūi0 do not
simultaneously appear in the same clause in C , they are not incident with the same vertex cj in G for
some j. Since ui0 and ūi0 should be dominated by De, there exist two distinct vertices cj, cl ∈ De such
that cj dominates ui0 and cl dominates ūi0 . Thus, |De| ≥ n+ 1, a contradiction. Hence, |De ∩V (Ti)| = 1
for each i = 1, 2, . . . , n, and cj ∉ De for every j since |De| = n. �

We now show that C is satisfiable if and only if r(G) = 1.
Suppose that C is satisfiable, and let t : U → {T , F} be a satisfying truth assignment for C . We

construct a subset D′
⊆ V (G) as follows. If t(ui) = T then put the vertex ui in D′; if t(ui) = F

then put the vertex ūi in D′. Then |D′
| = n. Since t is a satisfying truth assignment for C , for each

j = 1, 2, . . . ,m, at least one of literals in Cj is true under the assignment t . It follows that the
corresponding vertex cj in G is adjacent to at least one vertex in D′ since cj is adjacent to each literal
in Cj by the construction of G. Without loss of generality let t(u1) = T , then D′ is a dominating set of
G + su1, and hence γ (G + su1) ≤ |D′

| = n. By Claim 5.1.1, we have γ (G) = n + 1. It follows that
γ (G + su1) ≤ n < n + 1 = γ (G), which implies r(G) = 1.

Conversely, assume r(G) = 1. Then there exists an edge e in Ḡ such that γ (G + e) = n. Let De
be a γ -set of G + e. By Claim 5.1.2, |De ∩ V (Ti)| = 1 for each i = 1, 2, . . . , n, and cj ∉ De for each
j = 1, 2, . . . ,m. Define t : U → {T , F} by

t(ui) =


T if ui ∈ De or vi ∈ De,
F if ūi ∈ De,

i = 1, 2, . . . , n. (5.1)

We will show that t is a satisfying truth assignment for C . It is sufficient to show that every clause
in C is satisfied by t .

Consider arbitrary clause Cj ∈ C with 1 ≤ j ≤ m. By Claim 5.1.2, the corresponding vertex cj in G is
dominated by ui or ūi in De for some i. Suppose that cj is dominated by ui ∈ De. Then ui is adjacent to cj
in G, that is, the literal ui is in the clause Cj by the construction of G. Since ui ∈ De, we have t(ui) = T
by (5.1), which implies that Cj is satisfied by t . Suppose that cj is dominated by ūi ∈ De. Then ūi is
adjacent to cj in G, that is, the literal ūi is in the clause Cj. Since ūi ∈ De, we have t(ui) = F by (5.1),
which implies that ūi is assigned the truth value T by t , so the clause Cj is satisfied. The arbitrariness
of j with 1 ≤ j ≤ m shows that all the clauses in C are satisfied by t , that is, C is satisfiable.

The theorem follows. �

By using an analogous argument as in the proof of Theorem 5.1, we can prove that total
reinforcement problem is also NP-hard. Here, we give an outline of the proof of it, details are omitted.
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Theorem 5.2. The total reinforcement problem is NP-hard.

Proof. Let U = {u1, u2, . . . , un} and C = {C1, C2, . . . , Cm} be an arbitrary instance of the
3-satisfiability problem. We will construct a graph G and take an integer k such that C is satisfiable if
and only if rt(G) ≤ k. Such a graph G can be constructed as follows.

For each i = 1, 2, . . . , n, corresponding to the variable ui ∈ U , associate a graph Hi with
vertex-setV (Hi) = {ui, ūi, vi, v

′

i} and edge-set E(Hi) = {viui, uiūi, ūivi, viv
′

i}. For each j = 1, 2, . . . ,m,
corresponding to the clause Cj = {xj, yj, zj} ∈ C , associate a single vertex cj and add an edge-set
Ej = {cjxj, cjyj, cjzj}, 1 ≤ j ≤ m. Finally, add a path P = s1s2s3 and join s1 to each vertex cj, 1 ≤ j ≤ m
and set k = 1.

It is easy to see that the construction can be accomplished in polynomial time. All that remains to
be shown is that C is satisfiable if and only if rt(G) = 1.

Claim 5.2.1. γt(G) = 2n + 2.

Claim 5.2.2. If there exists an edge e ∈ E(Ḡ) such that γt(G+e) < 2n+2, and let De be a γt-set of G+e,
then |De ∩ V (Hi)| = 2 for each i = 1, 2, . . . , n, while s1 ∉ De and cj ∉ De for each j = 1, 2, . . . ,m.

Using the same methods as in Theorem 5.1, we can show that C is satisfiable if and only if
rt(G) = 1. �

6. Conclusions

Domination is a very important concept in graph theory. It is well known that the domination
number is NP-complete. The (total) bondage number and the (total) reinforcement number are
concepts in graph theory related to domination number, and are also important parameters for
measuring the vulnerability and stability of the (total) domination under edge failure and edge
addition, and have receivedmuch research attention. First of all, we should knowwhether or not there
are explicit expressions in terms of other graph-theoretical parameters or polynomial algorithms for
computing these parameters. However, these problems have not been answered to general graphs in
the recent literature.

In this paper, we investigate the computational complexity of these problems and prove that they
areNP-hard by reductions from3-SAT. These results show that there are neither explicit expressions in
terms of other graph-theoretical parameters nor polynomial algorithms to compute these parameters
unless P = NP . At the same time, these results also show that the following study is of important
significance.

• Find approximation polynomial algorithms with performance ratio as small as possible.
• Find the lower and upper bounds with difference as small as possible.
• Determine exact values for some graphs, specially well-known networks.

Unfortunately, we cannot prove whether or not determining the bondage and the reinforcement
is NP-problem, since for any subset B ⊂ E(G), it is not clear that there is a polynomial algorithm to
verify γ (G − B) > γ (G) (or γ (G + B) < γ (G)). Since the problem of determining the domination
number is NP-complete, we conjecture that they are not in NP . We will focus on this work for further
study.
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