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Abstract The (d, m)-domination number 4, is a new measure to characterize the reliability of
resources-sharing in fault tolerant networks, in some sense, which can more accurately characterize the
reliability of networks than the m-diameter does. In this paper, we study the (d, 4)-domination numbers
of undirected toroidal mesh Cg, X Cg, for some special values of d, obtain that vq,4(Cq, x C3) = 2 if and
only if da(G) — e1 < d < da(G) for dy > 5, y4,4(Ca, x Ca) =2 if da(G) — (2e1 — [ 51 ]) < d < du(G)
for di > 24, and v4,4(Ca, X Cay) =2 if da(G) — (e1 — 2) < d < du(G) for dy = dz > 14.

Keywords Undirected toroidal mesh, reliability, m-diameter, domination number

MR(2000) Subject Classification 05C40, 68M10, 68M15, 68R10

1 Introduction

We quote from [1] the terminology and notations not defined here, use graphs to represent
networks and denote the length of a path P by |P|.

The n-dimensional undirected toroidal mesh, denoted by C(d;,ds,...,d,), has the vertex-
set {(x1,...,2)0 < @; < d; (i =1,2,...,n)}. Each vertex (x1,z2,...,2,) is adjacent to 2n
other vertices: (x1+1,x9,...,2,), (x1,22%1,...,2,), ..., (21, 22,...,2, 1), where additions
are performed modulo d; (1 <4 < n). It is well known that C(dy,ds,...,d,) is 2n-regular and
vertex-transitive. Its connectivity is 2n. The toroidal mesh is widely used in network theory
(see [2-4]).

In order to characterize the reliability of transmission delay in a real-time parallel processing
system, Hsu and Lyuu [5] and Flandrin and Li [6] independently introduced m-diameter. For
an m-connected graph G, the distance with width m from vertex x to y, denoted by d,,,(G; x, y),
is the minimum number d for which there are m internally disjoint (x,y)-paths in G of length
at most d. The diameter with width m, denoted by d,, (G), is the maximum of d,,,(G; z,y) over
all pairs (x,y) of vertices of G.
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Recently, Li and Xu in [7] defined a new parameter (d, m)-domination number in m-
connected graphs, in some sense, which can more accurately characterize the reliability of
networks than the wide-diameter does.

Definition  For an m-connected graph G and a given integer d, a nonempty and proper subset
S of the vertex set of G is called a (d, m)-dominating set of G if for any vertex x of G but not
in S there are at least m internally disjoint (x,S)-paths of length at most d. Denote a set of
all (d, m)-dominating sets of G by Sqm(G). The parameter

Ya,m(G) = min{|S| : S € Sqm(G)}

is called the (d, m)-domination number of G.

This notion not only generalizes that of the classical domination numbers of a graph but
also gives a good measure of the problem of resources-sharing in fault tolerant networks. An
important and practical problem is how to choose a (d, m)-dominating set S such that the num-
ber of vertices in S is as small as possible. Thus the (d, m)-domination numbers in conjunction
with other well-known parameters, for example, the (d, m)-independence numbers (see [8]), can
provide a more accurate analysis of fault tolerance for reliability and efficiency of networks of
parallel architectures.

In general, to determine the (d, m)-domination number of a graph is NP-Complete since its
special case of (1,1), the domination number of the graph, is NP-Complete (see [9]). Thus it is
of interest to determine the (d, m)-domination number of some well-known networks for some
special values of m and d. The (1,1)-domination numbers of some graphs have been studied
(see, for example, [10]).

Of course, if d > d,,(G), then we obtain that v4,,(G) = 1. And we have 4, (G) > 2
for d < d,,,(G). So it is of interest to determine values of v4.,(G) for d < d,,(G). Lu and
Zhang [11] proved the (d, 2n)-domination number of C(dy,ds, ..., d,) (# C(3,3,...,3)) is 2 for
d = diam(C(d1,ds,...,dn)) (n > 3,d; > 3,4 € {0,1,...,n}). Xie and Xu [12] proved the
(d, 2n)-domination number of C(3,3,...,3) is 3 for d = diam(C(3,3,...,3)) = n. This paper
obtains v44(Cq, X C3) = 2 if and only if dy(G) —e1 < d < da(G) for di > 5, 74,4(Ca, x Cs) =2
if di(G)— (2e1— [ 1591 ]) < d < du(G) for di > 24, and g4 (Cy, x Cy,) = 2 if da(G) — (e1—2) <
d < dy(G) for dy = dy > 14.

2 Preliminaries

The undirected toroidal mesh C(dy,ds,...,d,) can also be defined as the cartesian products
Cdl XCd2 Xoee XCd

is an m-dimensional orthogonal mesh with global edges. For n = 2, C4, x Cgy, is a mesh on a

., where Cy, is an undirected cycle for each ¢ = 1,2,...,n. This graph
toroidal surface.

In this paper, we denote | % | and [%] by e; and €], define §(z;) = —1 for e; <z; < d; — 1
and 6(x;) =1 for 0 < z; < e;, respectively, where i = 1,2.

Lemma 2.1 ([13])  For any integersn > 2, d; > 3(1 <1i < n),

diam(Cy, x Cg, x - x Cy, ) = Z VgJ

i=1
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We will use another lemma from [13] that relates to the m-diameter of a general toroidal

mesh.

Lemma 2.2 ([13]) Let G =Cq, X Cgy, X -+ X Cq, for anyn > 2,dy > dy > -+ > d,, > 3.
Then
2m+1= 2diam(G) — G = Cgm+1 x C3, m > 2,

(

1
2m + 2 = 2diam G)—Q, G:C'gm+2><03,m22,
e1 + 4 = diam(G) + 2, G=CygxCyd>9 or
G:CdXC5,9§d§13,

don(G) =

1+ Z e; = diam(G) + 1, otherwise.

i=1

3 Main Results

Theorem 3.1 Let G = Cy, x Cs,d1 > 5. We have v4.4(G) = 2 if and only if da(G) — e1 <
d < d4(G).
Proof We easily know dy(G) — ey =dy —e; =€} (> e1) by Lemma 2.2.

First we prove v44(G) = 2 if dy(G) — e1 < d < d4(G). From the definition of the (d,m)-
domination number, we have v44(G) > 2 for d < d4(G) and v4.4(G) < v4-1,4(G), so we only
need to prove v44(G) < 2 for d = €}. Let S = {0, e}, where o = (0,0), e = (e1,1). For any
vertex x = (r1,22) € V(G) = S, 1 € {0,1,...,dy — 1}, 22 € {0,1,2}, we will prove S can
(d,4)-dominate vertex x, we only need to consider the following cases by vertex-transitivity and
symmetry:

Case 1 29=0, 2= (x1,0)(#0).
Subcase la 1<z <e;—2o0r e;1+2<z;<d;—1.

We construct the four paths P; (1 < i < 4) as follows:

Pz = (21,0) = (1 — (z1),0) = -+ — (6(x1),0) — o;

Pz = (x1,0) = (z1,1) — (1 — 0(x1),1) = -+ — (6(x1),1) — (0,1) — o;

Ps;:z=(x1,0) = (21,2) — (1 — 0(x1),2) = - - — (6(x1),2) — (0,2) — o;

Py:x=(x1,0) = (21 +6(21),0) = -+ — (e1,0) — e.

We can see |Py| = x1, |Pa] = |P3| =21+2<ejand [Py =e1—x1+1 < e if 1 <y <e3—2.
When e; +2 <z <djy — 1, we have |P1| =dy — 1, |Po| =|P3|=di —21+2<dy —e; =¢]
and [Py =21 —e1 +1<dy — e =€).

Subcase 1b  z1 =e; —1lorxz; =e; + 1.

We construct the four paths P; (1 < i <4) as follows:

Pz =(e; —(x1),0) — (e —26(x1),0) — -+ — (0(x1),0) — o;

Py:x=(e; —6(x1),0) — (e1,0) — e;

Py:x=(e; —6(x1),0) = (e1 — 0(z1),1) — ¢

Py:x=(e; —6(x1),0) = (ex — (z1),2) — (e1,2) — e.

The length of any path of the four is at most max{z1,d; — 21} =d; —e; —1=¢} — L.
Subcase 1¢  x1 = e;.

We construct the four paths P; (1 <14 < 4) as follows:

Py :x=(e1,0) — e
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Py x=(e1,0) — (e1,2) — ¢

Py:x=(e,0) = (e1+1,0) = (e1 + 1,1) — ¢

Py:x=(e1,0) = (e1—1,0) = (e1 — 1,1) — e.

Of course, the lengths of paths are at most 3 (< ¢f).
Case 2 a5 =1,2=(21,1) (£e).

It is similar to Case 1 by vertex-transitivity.
Case 3 29 =2, = (x1,2).

Subcase 3a x7 = 0.
We can construct four paths between vertices 0 and x in the same way as Subcase lc by

vertex-transitivity.

Subcase 3b 1<z <dy —1 and =1 # e;.

We construct the four paths P; (1 <14 < 4) as follows:

P x=(x1,2) — (21,0) = (21 — 0(21),0) = -+ — (6(x1),0) — o;

Py:x=(x1,2) — (21 — 6(21),2) = -+ — (6(21),2) — (0,2) — o;

Py:x=(x1,2) = (21 +6(21),2) = -+ — (e1,2) — ¢

Py:x=(x1,2) = (21,1) = (21 + 0(21),1) = -+ — e

Wecan see |Pi| =|P =21+ 1<ejand |P3|=|Py=e1—z1+1<eif 1l <71 <e;—1.
When e; +1 <z <dy—1,we have |Pi| = |P2| =di —21+1<dy —e; =€} and | P3| = |Py| =
x1—e1+1<dy —e =e.

Subcase 3¢ 1 = e;.

It is similar to Subcase 1c by vertex-transitivity.

From above, we know there exist four internally disjoint (x, S)-paths of length at most €}
in G for any vertex x. So S is a (d, 4)-dominating set of G, we have v44(G) < 2.

Next we prove d4(G) —e1 < d < dua(G) if v4.4(G) = 2. We only need to prove v44(G) > 3
ifd<dy(G)—er=¢].

Assume S = {o, y} is a (d, 4)-dominating set of G, where 0 = (0,0), y = (y1,42), 0 <11 < ey
and 0 < yo < 1 without loss of generality.

Ify = (y1,0), then the distance between vertices y and z = (y;+¢;—1,1) ismin{e; +2,¢}} =
€} (> d). If there exist four internally disjoint paths of length at most d between vertices o and
x, we can assume that Py contains the vertices o, (d1 — 1,0) and z, P> contains o, (0,1) and z,
P5 contains o, (0,2) and x. So the path Py must contain vertices o, (1,0) and (y; +€} —2,1). Of
course, the length of P, is greater than or equal to y; + ¢} > 1+ ¢} (> d). It is a contradiction.
S can not (d, 4)-dominate the vertex x.

If y = (y1,1), then the distance between vertices y and = = (y; + €} — 1,2) is at least
€} (> d). Similarly, we can easily know there do not exist four internally disjoint paths of length
at most d between vertices o and x = (y; + €} — 1,2), S can not (d,4)-dominate the vertex
(y1 +¢€; —1,2).

It is a contradiction. So we have v44(G) > 3 for d < €.

Thus, we have proven that 4 4(G) = 2 if and only if dy(G) — e1 < d < du(G). O

<

Theorem 3.2 Let G = Cy, x Cy, di > 24. We have 74.4(G) = 2 if dy(G) — (2e1 — [ 51 ])
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Proof By Lemma 2.2, we have dy(G) — (2e; — | “$¢]) = dy — ["§* ] + 4. We only need to
prove 74,4(G) < 2for d =dy — [“5] + 4.

Let S = {o, e}, where o = (0,0), e = (e1,0). We will prove S can (d, 4)-dominate any vertex
x = (x1,22) € V(G) — S, where 1 € {0,1,...,d; — 1} and 25 € {0,1,2,3}. We only consider
the following cases by vertex-transitivity:
Case 1 a2 =0,2=(r1,0)(#o,¢).
Subcase la 1< z; <d; — [dlgeﬂ —4 or [dlgel] +4<z;<dy—1.

We construct the four paths P; (1 < i < 4) as follows:

Py :x=(21,0) = (z1 — 6(21),0) = -+ — (§(x1),0) — o; (1)
Py:x=(x1,0) = (21,1) = (1 — 0(x1),1) = -+ = (6(z1),1) — (0,1) = o; (2)
Py:x=(21,0) = (z1,-1) = (1 — (1), —1) = -+ — (0(z1),—1) — (0,—1) — o; (3)

Py:xz=(21,0) = (21 4+ (x1),0) — (1 4+ (x1),1) — (z1 + 6(21),2) — (£1,2) — -+ —
(6(21),2) — (0,2) — (=8(21),2) — (~6(z1), 1) — (~6(1),0) — o. (1)
We can see |Pi| = 21, |P| = |P3| = 21 +2 and |Py| = 21 +8 < dy — [“F9] + 4 if

1 <z <dy — [dlgel] — 4. When Ldlgelj +5 <z < dy — 1, we have |P;| = dy — zq,

|Py| = |P3| =di —a1+2and [Py =di —a1 +8 < dy — [1F9] +4.

Subcase 1b  d; — [dlgel] —-3<z <d; — (dlgel] +2or (dlgel] -2<z < [dlgeﬂ + 3.
We construct the three paths P; (1 <4 < 3) as (1), (2), (3) and the one other path P, as

follows:

Py:x=(x1,0) = (z1 + 6(21),0) = -+ — (e1,0) =e. (5)
We can see |Pi| = a1, |P2| = |P3] = 21 +2 < dy — fdlgel] +4and [Py =g —a1 <
er —di+ [PE) 434 dy — [MF9] -3 <z < dy — ["]] + 2 When [B]9] -2 <

T < (dlgel] + 3, we have |P| =dy —x1, |P| =|Ps| =di —21+2 < dy — (dlgel] + 4 and

|Py =21 —e1 < [dlgeﬂ —e1 + 3.

Subcase le  dy — ["F9 ] +3 <2y <dy— ["9 ] +4dor [M]] -4 <z < [BE] -3
We construct the two paths Py, Py as (1), (5) and the other two paths Ps, Py as follows:
Py:x=(x1,0) = (21,1) = (x1 + 0(x1),1) = -+ = (e1,1) — ¢ (6)
Py:x=(x1,0) = (21,3) = (1 + 6(x1),3) = - — (e1,3) — e. (7)
We can see |Py| =21 < dj — [dlgeﬂ +4, |Py =e1—x1, |P3s| =Py =e1—z14+2<e;—di1 +

[hFe] —lifdy — ["F974+3 <ay <dy —[P]]+4. When [T]*] -4 <2y < [DT] -3,

we have |Pj| = d; —x; < dj — [dlgeﬂ +4, |P =21 —ey and |Ps| = |Py| =21 —e1+2 <

[hFe] —ep — 1.

Subcase 1d  dy — [P35 ] +5<a; <ey—lore +1<a < [hfa] -5
We construct the three paths Py, Py, P3 as (5), (6), (7) and the one other path Py as follows:
Py:z=(21,0) = (1 — 6(x1),0) — (1 — 6(x1),1) — (x1 — 6(21),2) — (1,2) — -+ —

(e1 +6(x1),2) — (e1 +6(x1),1) — (ex + (21),0) — e
We can see |Pi| =e1—x1, |Pa| = |Ps| =e1—x1+42, [Py =e1—x1+8 = el—d1+(d1;rel]—|—3

if di — [dlgeﬂ +5<z1 <e;—1. Whene; +1 <z < (dlgel] — 5, we have |P| = 1 — eq,

|Ps| = |Ps| =21 —e1 +2, [Pl =21 —e1 +8=[T]] —e; + 3.

Case 2 29 =1,z = (21,1).

Subcase 2a  x = (0,1) or z = (e, 1).
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We can easily construct four (x,S)-paths of length at most 3 in the same way as Subcase 1c
of Theorem 3.1.

Subcase 2b 1<z <d; — fdlgel] —1lor [dlgel] +1<x <dy—1.

We construct the four paths P; (1 <14 < 4) as follows:

P x=(x1,1) = (21 — 0(z1),1) = -+ — (§(x1),1) — (0,1) — o; (8)

Py:x=(x1,1) = (21,0) = (1 — 6(x1),0) = -+ — (6(x1),0) — o; (9)

Py =(21,1) = (21,2) = (21 = 0(21),2) — -+ — (0(21),2) — (0,2) — (=6(21),2) —
(=0(21),1) = (=6(21),0) — o;

Py:x=(x1,1) = (1 +0(x1),1) — (x1 +6(x1),2) — (1 + 6(21),3) — (21,3) = -+ —
(6(x1),3) — (0,3) — o.

We can see |P| = |Py| = z1 + 1 and |Ps| = |P4| = 21 +5 < dy — [“9] +41if 1 <
1 <dy— ["F97 —1. When [P +1 <2y <di — 1, we have |Py| = |P| = dy — 1 + 1,
P3| = |Py| =di —a1 +5 < dy — ["]] +4.

Subcase 2¢  dy — [M3 ) <2y <dy — [MFOT+3or [ME9] -3 <y < [DET.

We construct the two paths Py, Ps as (8), (9) and the other two paths Ps, Py as follows:

Py:x=(x1,1) = (21 +6(z1),1) = -+ — (e1,1) — ¢ (10)

Py:x=(x1,1) = (21,2) = (21,3) = (1 + 5(21),3) = -+ — (e1,3) — e.

We can see |Pi| = |Pal =214+1<dy — [dlgel] +4,|Psl=e1—21+1, |Pyl=€e1—21+3 <
er—di+ [T +3ifdy —[P39] <21 <dy— [P +3. When [1]9] -3 <2y < [NFe],
we have |Py| = |Ps| =dy —a21 + 1 <dy — [P +4, P3| =21 —e1 + 1, |Ps| =21 —e1 + 3 =
[dlgeﬂ —e1 + 3.

Subcase 2d  d; — fdlgel] +4<x1<e—lore+1<z; < fdlérel] — 4.

We construct the one path P; as (10) and the other three paths P, Ps, Py as follows:

Py:x=(x1,1) = (21,0) = (1 + 6(21),0) = -+ — ¢

Py:x=(r1,1) = (21,2) — (21 + 0(21),2) — - — (e1 +0(21),2) — (e1 + 6(x1),1) —
(€1 +0(21),0) — e

Py:xz=(x1,1) = (1 — 6(x1),1) — (1 — 6(x1),0) — (z1 — 6(21),3) — (£1,3) — -+ —
(e1,3) —e.

We can see |Pi| = |Py| =e1 —a1+ 1, [P3| = |Pal =e1 —a1+5=e1 —dy + [P ] + L if
dl—(dlgel]—i—él <z1<e;—1. Whenej+1 < a1 < [dlgel]—él, we have |Py| = |Py| = z1—e1+1,
P3| = |Py| =21 —e1 +5=["F9] —eg + 1.

Case 3 22 =2, 2= (21,2).
Subcase 3a  x = (0,2) or z = (eq, 2).

We can easily construct four (z,.S)-paths of length at most 4.
Subcase 3b 1<z <dj — [“T ] or [DE9] <2y <dy — 1.

We construct the four paths P; (1 <14 < 4) as follows:

P x=(21,2) = (21,1) = (21 — 0(21),1) = -+ — (6(x1),1) — (0,1) — o;

Pz = (x1,2) = (21,3) — (1 — 0(x1),3) = - - — (6(x1),3) — (0,3) — o;

Pz =(21,2) = (1 4+ (x1),2) — (1 4+ (x1),1) — (z1 + 6(21),0) — (1,0) — -+ —
(6(21),0) = o;
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Pria = (21,2) = (21— 6(51),2) — - = (5(21),2) — (0,2) — (=3(21),2) — (~6(z1), 1)
— (=d(x1),0) — o.

We can see |Pi| = |Py| = 31 + 2 and |Ps| = |Py| = 21 +4 < dy — [“9] +41if 1 <
g < dp — (dlgel]. When [dlgel] < x; < dy — 1, we have |Pi| = |P| = di — z1 + 2,
|Ps| =Pyl =dy —21 +4<dy — ["]] +4.

Subcase 3¢ dy — [P +1<a1<er—lore+1<m < [Dfa] -1

We construct the four paths P; (1 <14 < 4) as follows:

Prix=(21,2) = (21,1) = (21 +(21),1) = -+ = (e1, 1) — ¢

Py:x=(x1,2) — (21,3) = (x1 + 6(21),3) = - — (e1,3) — ¢

Pz = (21,2) = (1 +0(21),2) — -+ — (e1 + (21),2) — (e1 +d(x1),1) — (e1 +
6(21),0) — €

Py:xz=(21,2) — (1 — 6(x1),2) — (1 — 6(x1),1) — (x1 — 6(21),0) — (21,0) — -+ —
(e1 —d(x1),0) — e.

We can see |Py| = |Ps| = e1 —z1 +2and |Ps| = |Ps| =e1 — 21 +4 =e1 —dy + [P ] + 3 if
dl—(dl'geﬂ—i—l <z1<e;—1. Whene;+1<z2; < fdl'geﬂ—l, we have |Py| = | Py = z1—e1+2,
P3| = |Py| =21 —er +4 < [DF9] — ey + 3.

Case 4 25 =3,z = (z1,3).
It is similar to Case 2 by vertex-transitivity.

Note that the length of any path of the four in the above cases is at most

d d d
max{el—(h—i—’V 1+61-‘ +3,’V 1+61-‘ —61+37d1—’7 1+61-‘ -‘1-4}

2 2 2
d1 +61—‘

<d1—[ +4.

We know S can (d,4)-dominate any vertex x € V(G) — S. So we have 744(G) < 2.
Thus, we have v4,4(G) = 2 if da(G) — (2e1 — |3 ]) < d < du(G). O
Similarly, we can discuss 7yq,4(Cq, X Cy,) for some special values ds (< dy). Next we consider
vd’4(Cd1 X CdQ) for d1 = d2 > 14.
Theorem 3.3 Let G = Cy, X Cy,, di = dg > 14. We have v4.4(G) =2 if da(G) — (e1 —2) <
d< d4(G)
Proof By Lemma 2.2, we have d4(G) — (e; —2) = e1 + 3. First assume d; and dy are odd, and
we only need to prove v4,4(G) < 2 for d = e; +3. Let S = {o, e}, where 0 = (0,0), e = (e, e1).
For any vertex = = (z1,22) € V(G) — S, where 21,22 € {0,1,...,d; — 1}, we consider the
following cases by vertex-transitivity and symmetry:
Casel 0<z;<e and0<zy<ey.

Subcase la  x1 =1 or 2, x5 = 0.

We construct the four paths P; (1 < i < 4) as (1), (2), (3), (4). We can see |Pi| = 1,
|Py| = |Ps3] =21 +2and |Py =21 +8<10<e; +3.
Subcase 1b 3 < x; <e; —3 and z9 =0.

We construct the four paths P; (1 <14 < 4) as follows:

Pz =(21,0) = (z1,1) = (z1 —1,1) - -+ — (1,1) — (1,0) — o;
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Pz = (21,0) = (z1 +1,0) = (21 + 1,1) — (1 +1,2) — (21,2) — -+ — (0,2) —
(0,1) — o3

Py:x=(21,0) > (21— 1,0) = (1 —1,-1) > (1 — 2,-1) = --- = (0,—1) — o;

Pz = (21,0) = (v1,—-1) = (z1,-2) = (21 - 1,-2) - -+ — (0,-2) — (—1,-2) —
(-1,-1) = (-1,0) — o.

We can see |Py| = |Ps| =21+ 2, |Po| = |Py| =21+ 6 < e +3.
Subcase 1c e —2<z1 <e; —1and 25, = 0.

We construct the three paths P; (1 <4 < 3) as (1), (2), (3) and the one other path P, as
follows:

Py:x=(21,0) — (1 +1,0) - --- — (—=1,0) — o.

We can see |Pi| =21, |Pa| = |Ps| =21 +2<e1+ 1, |Pyl=di —21 <dy—e1 +2=¢1 + 3.
Subcase 1d = = (eq,0).

We can easily construct four paths of length at most e; + 2 in the same way as Subcase 1c
of Theorem 3.1.

Subcase le 1<z < —z9+e; — 1, where 1 < zy <e; — 2.
We construct the four paths P; (1 <14 < 4) as follows:
P x=(x1,22) — (21,29 — 1) = -+ = (21,0) — (1 — 1,0) — - -+ = o; (11)
Py:x=(x1,29) — (21 — 1,29) = -+ = (0,22) — (0,20 — 1) — -+ = o0; (12)
Py:x=(x1,22) = (1 + 1L,22) = (z1+ L2 —1) =5 -+ = (21 +1,0) = (21 +1,-1) —
(x1,-1) — -+ — (0,-1) — o;
Py:x = (x1,22) = (x1,22+1) = (z1 — Lizg+1) —» -+ = (0,22 +1) - (1,20 + 1) —
(-1, 23) —---(=1,0) — o.
We can see |Py = |Po| = 21 + 22, |Ps| = |Py| =21+ 22 +4 < e + 3.
Subcase 1f —xzo+e1 —1<z; < —x9+ €1, where 1 > 1 and z9 > 1.
We construct the two paths Py, Py as (11), (12) and the other two paths Ps, Py as follows:
Ps:z=(x1,22) — (z1,22+1) = -+ = (x1,e1) = (21 + 1,e1) = -+ — ¢
Py:x=(x1,22) = (21 + 1,22) — -+ — (e1,22) — (e1,22+ 1) = - - — e
We can see |P) = |Po| =21 + 29 < ey, |Ps| =|Ps] =21 —21 —29 < ey + 1.
Case 2 e +1<z1<d—1and0<2zy<ey.

Subcase 2a e +1<z1 <d;—1and z9 =0.
We can construct four paths between vertices x and o in the same way as Subcase 1la,
Subcase 1b, Subcase 1c or Subcase 1d, respectively.

Subcase 2b  xo+e1 +2<1x1 <dy — 1, where 1 <z <e; — 2.

We construct the four paths P; (1 <14 < 4) as follows:

Pz = (21,22) = (11 +1L,22) = -+ — (dp — L,z2) — (0,22) —» (0,22 — 1) — -+ —
(0,1) — o; (13

Py:x=(x1,22) = (z1,22 — 1) = -+ = (21,0) = (21 + 1,0) = -+ = (=1,0) —» 0; (14

Py:x=(x1,22) = (1 —L,a2) = (t1 - 1,20 —1) = -+ = (1 —1,0) = (z1 - 1,dy — 1) —
(x1,dy —1) — -+ = (dy —1,dy — 1) = (0,dy — 1) — o;

Py:x=(x1,22) — (21, 22+ 1) = (r1+1,204+1) = -+ = (d1 — L,z2+1) = (0,22 + 1) —
(Lzg+1) — (1,z2) = --- — (1,0) — o.

~— —
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We can see |Py| = |Po| =di —x1+ a9, |P3| =|Py|=di—ax1+22+4<dy—e1+2=e1+3.
Subcase 2¢  zo+e1 < x1 < x99+ €1+ 1, where 1 < d; — 1 and x5 > 1.

We construct the two paths P; (1 <14 < 2) as (13), (14) and the other two paths P; (3 <4
< 4) as follows:

P ix=(x1,22) — (21 — L,m2) — -+ — (e1,22) — (e1,22+ 1) = -+ - — ¢

Pz = (z1,22) = (z1,22+ 1) = -+ = (x1,61) = (21 — 1,€1) = -+ — ¢

We can see |P| = |Po|=dy —x1+22<dy—e1=e1+ 1, |P3| =Py =21 —22 < e; + 1.
Case3 0<zi<erande; +1<uxy<d;—1.

It is similar to Case 2 by vertex-transitivity and symmetry.
Case 4 61—|—1§z1Sdl—landel+1§x2§d1—1.

Subcase 4da €1 +1<x1 < —x9+dy+e1—2, where ey +1 < x5 <dy; — 3.
We construct the four paths P; (1 <14 < 4) as follows:
Pyx=(x1,22) — (21 — 1,29) — -+ — (e1,22) — (e1,22 — 1)
— o= (e, e1+1) — e (15)
Py:x=(x1,22) = (z1,22 — 1) = -+ — (x1,e1) — (x1 — 1,€1)
— (et 1er) — e (16)
Py:ax=(x1,20) = (x1+1,22) = (1 +1,20—1) > - = (x1+1,e1—-1) = (21,61 —1) —
(e1,e1 — 1) — ¢
Py:xz=(z1,22) = (z1,22+1) = (21 — Lo +1) —» -+ = (e1—L,za+1) — (e1 — 1,22) —
o —(e1—1,e1) — e
We can see |Py| = |Po| =21 + 22 — 2eq, |Ps| = |Psl =21 + 2 — 261 +4 < e1 + 3.
Subcase 4b  —xzo+di +e; — 1<z < —x9+dy + ey, where x1 > e; + 1 and x5 > e1 + 1.

We construct the two paths P; (1 < i < 2) as (15), (16) and the other two paths P; (3 <
< 4) as follows:

Pz = (x1,29) = (w1 + L,29) — -+ — (dy — L,29) — (0,22) —» (0,z2 +1) = -+ —
(0,dy — 1) — o;

Py:x = (x1,29) = (z1,22+ 1) = -+ = (21,dy — 1) = (21,0) = (21 +1,0) = -+ —
(d1 —1,0) — o.

We can see |Py| = |Po| =21+ 22— 261 < dy—e; =e1+ 1, |Ps| = |Py| =2d) —x1 — 22 <
di—e1+1=e +2.

From the above cases, we know there exist four internally disjoint (z, .S)-paths of length at
most e; +3 in G. So S can (d, 4)-dominate any vertex z in G — 5, S is a (d, 4)-dominating set
of G.

Next we assume d; and dy are even, and so we only need to consider the case of 0 < z1 < e;
and 0 < x9 < e; in the same way as Case 1 by vertex-transitivity and symmetry. We easily see
S can also (d, 4)-dominate any vertex in V(G) — S.

So we have v44(G) < 2. O

4 Conclusion and Problems

For the undirected toroidal mesh C(di,ds, ..., d,), we prove that v44(C(d1,3)) = 2 if and only
if di(G) —e1 < d < da(G) for di > 5, 74,4(C(dr,4)) = 2 if ds(G) — (2e1 — |3 ]) < d < du(G)
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for di > 24, and v4.4(C(d1,d2)) = 2 if da(G) — (e1 — 2) < d < du(G) for dy = do > 14.
To determine the values of v44(C(d1,4)) for d < dy(G) — (21 — Ld1;€1J)7 v4,4(C(d1,d2)) for
d < d4(G) — (e1 — 2) and v4,2,(C(d1,da,...,dy)) for d < diam(C(dy,ds,...,d,)) are worth
studying further.
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