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The feedback number of a graph G is the minimum number of vertices whose removal
from G results in an acyclic subgraph. We use f(n,k) to denote the feedback number of
the (n, k)-star graph S, and p(n,k) the number of k-permutations of an n-element set.
This paper proves that
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1. Introduction

Let G = (V, E) be a graph without loops and multiple
edges, with vertex-set V(G) and edge-set E(G). A subset
F C V(G) is called a feedback set if the subgraph G — F is
acyclic, that is, if G — F is a forest. The minimum cardinal-
ity of a feedback set is called the feedback number of G.

Determining the feedback number is quite difficult even
for some well-known graphs, such as the hypercube [3].
In fact, the problem determining feedback number for a
graph was proved to be NP-complete by Karp in 1972
(see the 7th of 21 problems in [4]). However, some upper
bounds of feedback numbers for some well-known graphs
have been established (see, for example, [1], the recent ar-
ticle [8] and references cited therein). In particular, Wang

* The work was supported by NNSF of China (Nos. 11071233,
61170303, 60973014) and Specialized Research Fund for the Doctoral Pro-
gram of Higher Education of China (No. 200801411073).

* Corresponding author,

E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

0020-0190/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ipl.2012.03.014

et al. [5] gave an upper bound of the feedback number
for the n-star graph S, which has n! vertices. There is a
large gap between n! and (n+1)! if Sy is extended to S;4+1.
To compensate for this shortcoming, Chiang and Chen [2]
proposed the (n, k)-star graph S i, where S, ,—1 =S, and
Sn.1 = Ky, the complete graph on n vertices. Let f(n, k) de-
note the feedback number of S x. This paper proves that

p(n, k) —2(k — 1)!<k i 1)
< f(n, k)

6 .
<p(n,k)—2<k—1)!2(”_2'.“),

4 k—i
i=1

where 6 = min{k — 1,n —k + 1} and p(n, k) is the number
of k-permutations of an n-element set.

The proof of the result is in Section 3. In Section 2,
we give the definition of the (n, k)-star graph S, several
lemmas and construct a feedback set of Sy k.
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2. Some definitions and lemmas

Throughout this paper, we follow Xu [6] for graph-
theoretical terminology and notation not defined here. Let
G = (V,E) be a graph. For two vertices x and y, Xy €
E(G) implies that x and y are adjacent, that is, there
is an edge connecting x and y in G. For a subset S C
V(G), Ng(S) denotes the set of neighbors of S, namely,
Ng(S) ={xe V(G —S): xy € E(G),y € S}, and G[S] de-
notes the subgraph induced by S. The set S is called cycle-
free or acyclic if G[S] is acyclic, that is, G[S] has no cy-
cles. Let I, be the set {1,2,3,...,n}, and let P(n,k) be
the set of k-permutations on I, for 1 <k < n, that is,
P(n,k) = {X1X2...X | Xi € In, xi #xj, 1<i%# j<k} Let
p(n, k) =|P(n,k)|. Then p(n,k) =n!/(n —k)!.

Definition 2.1. The (n,k)-star graph, denoted by Sy, is
specified by two integers n and k where 1 <k < n. The
vertex-set of Sp is P(n, k). The adjacency is defined as
follows: a vertex x1X2...X;j...Xy is adjacent to a vertex

(1) Xix -+ Xj—1X1Xi41 - - - Xk, Where 2 <i <k (swap x; with
X,’).

(2) axyx3---xg, where o € I, — {x; | 1 <i <k} (replace xq
by «).

Fig. 1 shows a (4, 2)-star graph S4 5.

The edges of type (1) are referred to as i-edges (2 <
i <k), and the edges of type (2) are referred to as 1-edges.
The vertices of type (1) are referred to as swap-adjacent
vertices, and the vertices of type (2) are referred to as
unswap-adjacent vertices. We also call i-edge as swap-edge
(2 <i<k) and call 1-edge as unswap-edge. Clearly, every
vertex in S, has k — 1 swap-adjacent vertices and n —k
unswap-adjacent vertices. Usually, if x = x1x,...xy is a ver-
tex in Sk, we call x; the i-th bit for eachi=1,2,... k.

It has been shown by Chiang and Chen [2] that S,
is an (n — 1)-regular (n — 1)-connected vertex-transitive
graph. In order to simplify our arguments, we will par-
tition P(n, k) into some subsets according an equivalence
relation on P(n, k).

Definition 2.2. A relation R on the set P(n, k) is defined
as follows. For any two elements x = x1x2...x, and y =
Y1Y2...Yx in P(n, k), we have

xRy <& xj=y; foreachi=2,3,...,k.
It is a simple exercise to verify that the relation R de-
fined in Definition 2.2 is an equivalence relation on P(n, k).

For each u € P(n, k), the equivalence class of u is the
set

[u] = {x|xRu, xe P(n,k)}.

For example, see Fig. 1, if u =14 is a vertex in S4, then
[u] = {14, 24, 34}. So, all equivalence classes form a parti-
tion of P(n, k), denoted by

2, k) ={[ul|ueP®k}.

For example, see Fig. 1,

Fig. 1. (4, 2)-star graph Sy ;.

2(4,2)
= {{21,31,41}, {12, 32,42}, {13, 23,43}, {14, 24, 34} }.

Clearly, |Z(n,k)| = p(n,k — 1). It is also clear that, for
any two distinct elements x and y in P(n, k), if they are in
different equivalence classes, say x € [u] and y € [v], then
there is a swap-edge between x and y. On the other hand,
if they are in the same equivalence class, say x,y € [u],
then there is an unswap-edge between x and y, which
implies that the subgraph of S, ; induced by [u] is isomor-
phic to a complete graph K,_1. Since Sy 1 is isomorphic
to K,, whose feedback number is n — 2, we can assume
k > 2 in the following discussion.

Definition 2.3. Define a mapping
o:P(n,k—1)— £(n,k)
subject to, for any & =x2x3...x, € P(n,k— 1),

o(a)={xa|x€ly\{X2.x3, ..., x}}.

Lemma 2.1. The mapping o is a bijection from P(n,k — 1) to
P, k).

Proof. On the one hand, for any two distinct elements
o =2x2x3...Xx and 8 = y2y3...y, in P(n,k — 1), we have
o) = {xa | x €In\ {x2,x3,...,%}} and o(B) = {yB |
yelp\{y2,¥3,...,Vk}}. Clearly, o (@) No(B) =, which
means o is an injection.

On the other hand, for any [u] € &(n,k), say u =
X1X2...Xy, let us set & = xXx3...X,. Then ¢ € P(n,k — 1)
and o (o) = {xa | x € In \ {x2,X3,...,x¢}} =[u]. Then o is a
surjection.

It follows that o is a bijection from P(n,k — 1) to
P (n, k). The lemma follows. O

By Lemma 2.1, #2(n, k) can be viewed as
2,k ={o@) |aePmk-1},

which is a partition of vertex-set V (Sp k), thatis, V(S k) =
Uaep(n’k_w o (), and o (aj) No(aj) = @ for any two dis-
tinct o, aj € P(n, k —1).

Since o is a bijection, P(n, k) can be decomposed into
p(n,k — 1) subsets by o(«), each of them induces a sub-
graph of Sy, denoted by Sg,kfr which is isomorphic to
Kn_k+1, for each a € P(n, k — 1), see Fig. 1 for S4 5.
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A subset S € V(Sp k) is called an acyclic set of Sy i if the
subgraph of S, induced by S contains no cycle. A feed-
back set F of Sy is called to be minimum if |F| = f(n, k).
It is clear that S is an acyclic set of S, if and only if
V(Spk — S) is a feedback set of S . Let ./, denote the
set of all acyclic sets of S, ;. Then

f@, k) =|V(Sni)| —max{|S| | S € F«}.

Let S € k. Since the feedback number of Kp_j4q is
n —k —1, an acyclic subgraph of K,_i+1 has at most two
vertices. In other words, for each o € P(n,k — 1), at most
two vertices in Sg,k—l (Z Kp—k+1) are contained in S. This
fact implies |S| < 2p(n,k — 1), and so |V (Spx)| — |S| >
|[V(Spx)l —2p(n, k — 1). Thus, we obtain a lower bound of
f(n, k) immediately

Fk) =V (Spi0| - max{IS| | S € S}
> |V (Sni0| = 2p(n. k= 1).

We state this lower bound as the following lemma.
Lemma 2.2. f(n,k) > |V (Spx)| —2p(n, k —1).

In the following discussion, our aim is to give an up-
per bound of f(n,k). Thus, to obtain an upper bound of
f(n, k), a usual way is to construct an acyclic set of Sy .

We attempt to construct an acyclic set of S, based on
a simple observation. The set of vertices in P(n, k) whose
first position is exactly one less or more than other k — 1
positions is certainly an acyclic set. For example, in S4 2,
the set S = {12,23,34,21,32,43} is an acyclic set, see
Fig. 1. Such a chosen acyclic set S is maybe small. Thus,
we add some vertices to S from P(n,k — 1) chosen accord-
ing to the above way.

To state our way in detail, we need some notations.

For each a = x1---xx,_1 € P(n,k — 1), since x; € I,
for each i =1,2,...,k, we can assign it a sequence
yi(@)y2(a) - yi—1 (@) satisfying yi(@) < y2(a) < --- <
Vk—1(c). For example, if o« =527 € P(n, 3), then y; () =2,
y2(a) =5 and y3(o) =7.

Let & = min{k — 1,n — k + 1}. By the hypothesis of 2 <
k<n-—1, we have § > 1. For each me Iy ={1,2,...,0},
let

Xi={aeP,k—1) | y() > 1},
Yio1 = {a € P(nk—=1) | por (@) <n},

Xm
() =2i—1foreachie l,_
= ozeP(n,k—l)‘yl() m-1
Ym(a) >2m —1
form>1,
Yk—m
_il)=n—-2i4+2,iely_
_ OteP(n,k—])‘yk i(@) + m—1
Vik-m(@) <n—2m+42
form > 1. (2.1)

By the definition of X, if n > 2k — 2, then 6 =k — 1
and n > yp (o) > 2(k — 1) — 1 =2k — 3; if n <2k — 3, then

O=n—k+1<k—2, since 20 —1 < yp(a) < Yo+1(@) <
co < Yk—1(@) <n,wehaven>20—-1+(k—-0)=0+k—1,
that is, () =20, ypyi(@) =20+ifori=1,...,k—1-0
and y—1() =n. Thus, X, is well-defined for any m € Iy
when 6 +k —1<n<2k—3.

Similarly, Yy_n, is also well-defined for any m € Iy.

For example, in Sg 4, for a € P(6,3), we have 6 =3,
and

Xi={aeP(6.3)|yi(a)>1},
Y3={a€P(6,3) | y3(ex) <6},

Xo={aeP®.3) (@ =1, y2(@) >3},
Y2={aeP(6,3)|ys(e) =6, ya() <4,
X3={aeP6.3)| yi(@) =1, ya(@) =3, y3(ax) > 5},
Yi={aeP(6,3)|y3() =6, ya(ex) =4, y1(ex) <2}.

In other words, the set X, defined in (2.1) is such a set
of (k — 1)-elements in P(n,k — 1) which contains (m — 1)
elements 1,3,...,2m — 3 but m elements 2,4,...,2m —
2,2m—1 in I,,. The former have p(k—1,m—1) choices and
the latter have p(n —2m + 1,k —m) choices from P(n, k —
1). Similarly, the set Yy_,, defined in (2.1) is such a set
of (k — 1)-elements in P(n,k — 1) which contains (m — 1)
elements n,n —2,...,n — 2m but m elements n — 1,n —
3,...,n—=2m+3,n—2m+2 in I,,. The former have p(k —
1,m — 1) choices and the latter have p(n —2m + 1,k — m)
choices from P(n,k — 1). Thus, for any m € Iy,

[Xm| = Yk—m]
=pk—-1,m—1)pn—2m+1,k—m). (2.2)
Let
0
Xo=Pm.k—1)— ] Xn.
m=1
0
Yi=Pm.k—1)— | Yicm (2.3)
m=1

It is easy to see that both {Xg, X1, X2,...,Xg} and
{Yi,Yr_1,Yr_2,...,Yr_g} are partitions of P(n,k—1). Fur-
thermore, we have the following conclusion.

Lemma 2.3. (X; N Yy_; |i,j€{0,1,...,0}} is a partition of
P(n,k—1).

Proof. We first show that, for any i, j,s,t € {0,1,...,6},
either (X; N Vi) N(XsNYpp) =D or XiNYp_j=XsN
Yt

Noting that both {Xp, X1, X2,...,Xs} and {Yy, Yi_1,
Yi_2,...,Yr_g} are partitions of P(n,k — 1), we prove this
conclusion according to the relationship among i, j, s, t.

If s=iandt=j, then X; NY,_j=XsN Y.

If s=iand t # j, then

XiNYe— ) N(XsNY—e) =(XiNX) N (Vi j N Yi—g)
=XiNo=0.
If s#i and t = j, then
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XiNY_ ) N(XsNYr) = (Xi N Xs) N (Yie—j N Yier)
=0NY_j=02.
If s#iand t # j, then

XiNYe— ) N(XsNYg_r) =(XiNXs) N (Yie—j N Yyep)

=oNY=0.
It is clear that
0 0 0 0
U U(Xi NYr_j) = U(Xi N U ij)
i=0 j=0 i=0 j=0
0
=JXi=Pm,k-1).

i=0

Thus, the lemma follows. O

For each m € Iy, let

Sm={xa € P(n,k) | o € X, x = Ym(e) — 1},
Tiem = {xat € P(0, k) | &t € Yy, X = Yeem(@) + 1}.
(2.4)
Clearly, SiNSj=o, TiNT; = and S;NT; = @ for any
i, j € Ig. Thus,
ISml = | Xm| = |Yk—m| = |Tk_m| foreachmely. (2.5)
Let

S=S51USU---USy,
T=Tk 1 UTg_2U---UTg_g. (2.6)

From the definitions of S;; and Ty_p,, we can easily find
the following proposition.

Proposition 2.1. For any o € P(n, k — 1),
c@)NS=gifaeXpand |o(@)NS|=1ifx € X; for
anyie€lyp;
oc)NT=gifaecYrand|o(@)NT|=1ifa € Yy_j for
any j € Ily.

From Proposition 2.1, we have the following proposition
immediately.

Proposition 2.2. For any « € P(n,k — 1),
lo(@)N(SUT)|=2ifaeXiNY,_jforanyi, jely;
lo@)NSUT)|=1ifaeXjNYyforanyicly;
lo(@)NSUT)|=1ifae XoNYy_jforany jely;
lo(@)N(SUT)|=0ifo € Xp N Y.

Lemma24. et € P(n,k — 1).
If o € Xo, then either

yi(o)=2i—1 foreachi=1,2,...,k—1 (2.7)
or there exists some £ € I, such that

yi(a) =2i—1 foreachi=1,2,...,¢,

Ve (@) =2¢. (2.8)

If o € Yy, then either

Vi—jl@)=n—2j+2 foreachj=1,2,....k—1 (2.9)

or there exists some £ € I, such that

Vi—j@)=n—2j+2 foreach j=1,2,...,¢,
Ve—e—1() =n—2¢+1. (2.10)

Proof. If @ € X, then o ¢ Xq, which implies y;(x) =1,
and o ¢ X, which implies y,(«) < 3.

If yo(a) =2, we get £=1.If yo(o) =3 and « ¢ X3,
then y3(o) <5.

If y3(o) =4, we get £ =2. Else, if y3(o¢) =5 and « ¢
X4, then y4() <7.

In general, we have y;(w) =2i — 1 for each i =
1,2,...,k—1, or we can find an ¢ such that y;(e) =2i —1
foreachi=1,2,...,¢ and yp11 (o) = 2¢.

In the same argument, we can prove that the conclu-
sion is true for ¢ € Y. O

Lemma 2.5. The set S U T is an acyclic set in Sy, k.

Proof. Let H be the subgraph of S,  induced by SUT and
let u be any vertex in H. In order to prove the lemma, we
only need to prove that u is not in a cycle in H. Since
ueSUT, by (2.6), there exist i and j in Iy such that u e
Si U Tk_j. We can, without loss of generality, assume u €
Si. We want to prove that u is not in a cycle in H.

By the definition of S; in (2.4), there exists « € X; such
that u = (y;(«) — 1), where y;(ev) > 2i — 1. By Lemma 2.3,
we consider two cases depending on o € X; N Yy or o €
XiNYy_j.

Casel. x e XiNYy.

Since « € X;j, by Proposition 2.2, we have o (@) N (SU
T)={u}. Thus, o(x) NS; ={u}, o(@)NS; =2 and o () N
T—j =@ for any j #i. So, the neighbors of u in H are
all swap-adjacent vertices. By Lemma 2.4, o € Y} satisfies
(2.9) or (2.10).

If o € Yy satisfies (2.9) then, when j=k -1, y1(a) =
n — 2k + 4. Since « € X;, we consider two cases depending
oni=1ori>1by(21)

(a) If i > 1, then y1(a) =1 by (2.1). Thus, we have n —
2k +4 =1, that is, n=2k — 3, and so § = min{k — 1,n —
k+ 1} =k — 2. This fact implies that « consists of all k — 1
odd integers in Iy,_3. However, yi(o) #2i — 1 in o € X;
and 1 <i <6 =k—2, a contradiction.

(b) If i =1, then y1() > 1 by (2.1). Thus, n — 2k +4 =
y1(@) > 1, and u = (y1(@) — 1) = (n — 2k + 3) . Since
Vi—j@)=n—2j+2 (j=1,2,...,k—1) by (2.1), it is clear
that u is an isolated vertex in G[SUT].

If o € Yy, satisfies (2.10), then the degree of u in H is
at most one. Moreover, if the degree of u is one then its
neighbor is a swap-adjacent vertex obtained from u by re-
placing the first bit of u with y,_1_¢(«). Thus, u is not in
a cycle in H.

Case2. o € X;NYy_j.
In this case, |0 (@) N (SUT)| =2 by Proposition 2.2.
Then u has the only unswap-adjacent vertex, say, v in
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o (@) N Tg_j. Since u = (yi(@) — Da, v = (Y—j(@) + D
by (2.4). Thus k—j>1isince @ € X; N Yy_j # 3. So, we
have that

yi(@) =1,

Vi-1(@)=2i—1,

yil) > 2i—1,

Vi—j(@) <n—2j+2,
Vi—jy1(@) =n—2j+4,

Vk—1(0) =n.

We want to prove that u is not in a cycle in H. To
understand our proof, let us see an example first. For ex-
ample, in S12.7, u = 56378(12)1, then o = 6378(12)1 €
X3NYs, where k=7,i=3, j=2, and

yi(a) =1,
y2(0) =3
y3(@) =6>5,
yala) =7
ys(a) =8 < 10,
V(o) =12.

The vertex u has the only unswap-adjacent vertex
v =96378(12)1 and the only swap-adjacent vertex v; =
86375(12)1 in H, where v is obtained from u by swap-
ping the first bit (5) with 8. The vertex v; has no unswap-
adjacent vertex and has the only swap-adjacent vertex
u}“ =69378(12)1 in H obtained from v by swapping the
first bit (9) with 6. The vertex ul+ has the only unswap-
adjacent vertex v = (10)9378(12)1 in H. The vertex v}
has the only swap-adjacent vertex u; =793(10)8(12)1 in
H obtained from VT by swapping the first bit (10) with 7.
The vertex uz+ has no unswap-adjacent vertex. Thus, the
subgraph of H induced by {vy,u,v,uj,v{,ul} is a path
(vi,u,v, u1 ,vl ,u2) in H whose edges are alternately in
swap-edges and unswap-edges starting and ending with
swap-edges.

In general, there are two possible cases: either
Vi—j(@) = Yk—j—1(a) + 1 or yi(o0) = yiy1 () — 1.

If Yx—j(@) = Yk—j—1(a) + 1, then u has the only swap-
adjacent vertex, say v, obtained from u by swapping the

first bit with y,_;(@), and denoted by v = y_j(@)a; . If

yi(@y) > 2i — 1, then vi has the only unswap-adjacent
vertex uy = (yi(a;) — Doy ; else vy has no unswap-
adjacent vertex. Similarly, if yx_j(o;) = Ye—j_1(a;) + 1,
then u; has the only swap-adjacent vertex, say v, , ob-
tained from uj by swapping the first bit with y_;(a;),
and denoted by v, = yk—j(a;)a, .

Continue this process. Since y;(x,) = yi(e,_;) — 1
(where oy = «a), this process will stop in finite steps. Un-
til either yy_j(@, ) > Yk—j—1(r, ) + 1, which implies that
u, has no swap-adjacent vertex, or y;(a, ) = 2i — 1, which
implies that v, has no unswap-adjacent vertex. In other

words, this process must stop when it meets with a ver-
tex of degree one. So, we can get the vertex-sequence
(u,vy,uy,vy,u,,...,v,,u, ), whose induced subgraph
of H is not a cycle, but a path. Thus, u is not in a cycle
in H.

Similarly, if y;j(@) = yi+1(@) — 1, then v has the only
swap-adjacent vertex, say uT, obtained from v by swap-
ping the first bit with y;(«), and denoted by uf =
)/,(oc)ozl If p— ](al ) <n—2j+ 2, then ul has the only
unswap-adjacent vertex vl, which is (yk_](oz ) + 1)oz1 .
Similarly, if yi(a]) = y,-+1(ot{*) —1, then v{ has the only
swap-adjacent vertex, say u2 , obtained from vl by swap—
ping the first bit with yl(al) and denoted by u2 =
vitehey .

Continue this process. Since yk,j(ozZ) = yk,j(otetl) +1
(where oto+ = o), this process will stop in finite steps. Un-
til either y,(oz‘Z ) < y,+1(ozl) 1, which implies that v;
has no swap- ad]acent vertex, or yi_ 1(% y=n-—-2j+2,
which implies that ”e has no unswap-adjacent vertex. In
other words, this process must stop when it meets with a
vertex of degree one. So, we can get the vertex-sequence
(v,uf,viul vl ... uf,v)), whose induced subgraph
of H is not a cycle, but a path. Thus, v is not in a cycle
in H.

Thus, we proved that u is not in a cycle in H, and the
lemma follows. O

By Lemma 2.5, we immediately have the following con-
clusion.

Lemma 2.6. The set V (S, k) — (SUT) is a feedback set of Sy k.

3. Proofs of main results

Theorem 3.1. Foreach k with2 < k <nand § = min{k—1,n—
k+1},

p(1, k) —2(k—1)!<ki1)

< f(n,k)
0—1 .
<o -2y (V2]
i=0

Proof. Since SNT =@, by (2.5) and (2.2), we have that

k—-—1! (n—=2i+1)!
k- n—k—i+1)!

0
|SUT|_ZZp(k—l i—1)pmn—2i+1,k—i
0

0 .
=2(k-1)!2<"_kz_ljl>.

i=1
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Thus, by Lemma 2.6, we have

fn,k) < |V(Sn,k)| —|SUT]|

0 .
=pm.k)—2k-1)1) (” 7{2_':”)

i=1
Combining this with Lemma 2.2, the theorem holds. O

Remarks. The lower bound given in Theorem 3.1 can be
reachable in the following senses. When k =2 and k =3,
these lower bounds are n(n — 3) and n(n — 1)(n — 4), re-
spectively. Very recently, Xu et al. [7] have showed that
fm,2)y=nn—-3)and f(n,3)=n(n—1)(n — 4).
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