On the bounds of feedback numbers of (n, k)-star graphs ${ }^{\star}$

Jian Wang ${ }^{\mathrm{a}}$, Xirong Xu^{a}, Dejun Zhu ${ }^{\text {a }}$, Liqing Gao ${ }^{\text {a }}$, Jun-Ming $\mathrm{Xu}^{\mathrm{b}, *}$
${ }^{\text {a }}$ School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
${ }^{\mathrm{b}}$ School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei, Anhui, 230026, China

A R T I C L E I N F O

Article history:

Received 8 October 2011
Received in revised form 29 February 2012
Accepted 15 March 2012
Available online 19 March 2012
Communicated by T.-S. Hsu

Keywords:

Combinatorial problems
Graph theory
Feedback set
Feedback number
(n, k)-star graphs
Cycles
Acyclic subgraph
Networks

Abstract

The feedback number of a graph G is the minimum number of vertices whose removal from G results in an acyclic subgraph. We use $f(n, k)$ to denote the feedback number of the (n, k)-star graph $S_{n, k}$ and $p(n, k)$ the number of k-permutations of an n-element set. This paper proves that

$p(n, k)-2(k-1)!\binom{n}{k-1} \leqslant f(n, k) \leqslant p(n, k)-2(k-1)!\sum_{i=1}^{\theta}\binom{n-2 i+1}{k-i}$,
where $\theta=\min \{k-1, n-k+1\}$.

1. Introduction

Let $G=(V, E)$ be a graph without loops and multiple edges, with vertex-set $V(G)$ and edge-set $E(G)$. A subset $F \subset V(G)$ is called a feedback set if the subgraph $G-F$ is acyclic, that is, if $G-F$ is a forest. The minimum cardinality of a feedback set is called the feedback number of G.

Determining the feedback number is quite difficult even for some well-known graphs, such as the hypercube [3]. In fact, the problem determining feedback number for a graph was proved to be NP-complete by Karp in 1972 (see the 7th of 21 problems in [4]). However, some upper bounds of feedback numbers for some well-known graphs have been established (see, for example, [1], the recent article [8] and references cited therein). In particular, Wang

[^0]et al. [5] gave an upper bound of the feedback number for the n-star graph S_{n}, which has n ! vertices. There is a large gap between n ! and $(n+1)$! if S_{n} is extended to S_{n+1}. To compensate for this shortcoming, Chiang and Chen [2] proposed the (n, k)-star graph $S_{n, k}$, where $S_{n, n-1}=S_{n}$ and $S_{n, 1}=K_{n}$, the complete graph on n vertices. Let $f(n, k)$ denote the feedback number of $S_{n, k}$. This paper proves that
\[

$$
\begin{aligned}
& p(n, k)-2(k-1)!\binom{n}{k-1} \\
& \quad \leqslant f(n, k) \\
& \quad \leqslant p(n, k)-2(k-1)!\sum_{i=1}^{\theta}\binom{n-2 i+1}{k-i},
\end{aligned}
$$
\]

where $\theta=\min \{k-1, n-k+1\}$ and $p(n, k)$ is the number of k-permutations of an n-element set.

The proof of the result is in Section 3. In Section 2, we give the definition of the (n, k)-star graph $S_{n, k}$, several lemmas and construct a feedback set of $S_{n, k}$.

2. Some definitions and lemmas

Throughout this paper, we follow Xu [6] for graphtheoretical terminology and notation not defined here. Let $G=(V, E)$ be a graph. For two vertices x and $y, x y \in$ $E(G)$ implies that x and y are adjacent, that is, there is an edge connecting x and y in G. For a subset $S \subset$ $V(G), N_{G}(S)$ denotes the set of neighbors of S, namely, $N_{G}(S)=\{x \in V(G-S): x y \in E(G), y \in S\}$, and $G[S]$ denotes the subgraph induced by S. The set S is called cyclefree or acyclic if $G[S]$ is acyclic, that is, $G[S]$ has no cycles. Let I_{n} be the set $\{1,2,3, \ldots, n\}$, and let $P(n, k)$ be the set of k-permutations on I_{n} for $1 \leqslant k<n$, that is, $P(n, k)=\left\{x_{1} x_{2} \ldots x_{k} \mid x_{i} \in I_{n}, \quad x_{i} \neq x_{j}, \quad 1 \leqslant i \neq j \leqslant k\right\}$. Let $p(n, k)=|P(n, k)|$. Then $p(n, k)=n!/(n-k)!$.

Definition 2.1. The (n, k)-star graph, denoted by $S_{n, k}$, is specified by two integers n and k where $1 \leqslant k<n$. The vertex-set of $S_{n, k}$ is $P(n, k)$. The adjacency is defined as follows: a vertex $x_{1} x_{2} \ldots x_{i} \ldots x_{k}$ is adjacent to a vertex
(1) $x_{i} x_{2} \cdots x_{i-1} x_{1} x_{i+1} \cdots x_{k}$, where $2 \leqslant i \leqslant k$ (swap x_{1} with x_{i}).
(2) $\alpha x_{2} x_{3} \cdots x_{k}$, where $\alpha \in I_{n}-\left\{x_{i} \mid 1 \leqslant i \leqslant k\right\}$ (replace x_{1} by α).

Fig. 1 shows a (4, 2)-star graph $S_{4,2}$.
The edges of type (1) are referred to as i-edges ($2 \leqslant$ $i \leqslant k$), and the edges of type (2) are referred to as 1 -edges. The vertices of type (1) are referred to as swap-adjacent vertices, and the vertices of type (2) are referred to as unswap-adjacent vertices. We also call i-edge as swap-edge $(2 \leqslant i \leqslant k)$, and call 1-edge as unswap-edge. Clearly, every vertex in $S_{n, k}$ has $k-1$ swap-adjacent vertices and $n-k$ unswap-adjacent vertices. Usually, if $x=x_{1} x_{2} \ldots x_{k}$ is a vertex in $S_{n, k}$, we call x_{i} the i-th bit for each $i=1,2, \ldots, k$.

It has been shown by Chiang and Chen [2] that $S_{n, k}$ is an $(n-1)$-regular $(n-1)$-connected vertex-transitive graph. In order to simplify our arguments, we will partition $P(n, k)$ into some subsets according an equivalence relation on $P(n, k)$.

Definition 2.2. A relation R on the set $P(n, k)$ is defined as follows. For any two elements $x=x_{1} x_{2} \ldots x_{k}$ and $y=$ $y_{1} y_{2} \ldots y_{k}$ in $P(n, k)$, we have
$x R y \quad \Leftrightarrow \quad x_{i}=y_{i} \quad$ for each $i=2,3, \ldots, k$.

It is a simple exercise to verify that the relation R defined in Definition 2.2 is an equivalence relation on $P(n, k)$.

For each $u \in P(n, k)$, the equivalence class of u is the set
$[u]=\{x \mid x R u, x \in P(n, k)\}$.
For example, see Fig. 1, if $u=14$ is a vertex in $S_{4,2}$, then $[u]=\{14,24,34\}$. So, all equivalence classes form a partition of $P(n, k)$, denoted by
$\mathscr{P}(n, k)=\{[u] \mid u \in P(n, k)\}$.
For example, see Fig. 1,

Fig. 1. (4, 2)-star graph $S_{4,2}$.

$$
\begin{aligned}
& \mathscr{P}(4,2) \\
& \quad=\{\{21,31,41\},\{12,32,42\},\{13,23,43\},\{14,24,34\}\} .
\end{aligned}
$$

Clearly, $|\mathscr{P}(n, k)|=p(n, k-1)$. It is also clear that, for any two distinct elements x and y in $P(n, k)$, if they are in different equivalence classes, say $x \in[u]$ and $y \in[v]$, then there is a swap-edge between x and y. On the other hand, if they are in the same equivalence class, say $x, y \in[u]$, then there is an unswap-edge between x and y, which implies that the subgraph of $S_{n, k}$ induced by $[u$] is isomorphic to a complete graph K_{n-k+1}. Since $S_{n, 1}$ is isomorphic to K_{n}, whose feedback number is $n-2$, we can assume $k \geqslant 2$ in the following discussion.

Definition 2.3. Define a mapping
$\sigma: P(n, k-1) \rightarrow \mathscr{P}(n, k)$
subject to, for any $\alpha=x_{2} x_{3} \ldots x_{k} \in P(n, k-1)$,
$\sigma(\alpha)=\left\{x \alpha \mid x \in I_{n} \backslash\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}\right\}$.
Lemma 2.1. The mapping σ is a bijection from $P(n, k-1)$ to $\mathscr{P}(n, k)$.

Proof. On the one hand, for any two distinct elements $\alpha=x_{2} x_{3} \ldots x_{k}$ and $\beta=y_{2} y_{3} \ldots y_{k}$ in $P(n, k-1)$, we have $\sigma(\alpha)=\left\{x \alpha \mid x \in I_{n} \backslash\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}\right\}$ and $\sigma(\beta)=\{y \beta \mid$ $\left.y \in I_{n} \backslash\left\{y_{2}, y_{3}, \ldots, y_{k}\right\}\right\}$. Clearly, $\sigma(\alpha) \cap \sigma(\beta)=\varnothing$, which means σ is an injection.

On the other hand, for any $[u] \in \mathscr{P}(n, k)$, say $u=$ $x_{1} x_{2} \ldots x_{k}$, let us set $\alpha=x_{2} x_{3} \ldots x_{k}$. Then $\alpha \in P(n, k-1)$ and $\sigma(\alpha)=\left\{x \alpha \mid x \in I_{n} \backslash\left\{x_{2}, x_{3}, \ldots, x_{k}\right\}\right\}=[u]$. Then σ is a surjection.

It follows that σ is a bijection from $P(n, k-1)$ to $\mathscr{P}(n, k)$. The lemma follows.

By Lemma 2.1, $\mathscr{P}(n, k)$ can be viewed as
$\mathscr{P}(n, k)=\{\sigma(\alpha) \mid \alpha \in P(n, k-1)\}$,
which is a partition of vertex-set $V\left(S_{n, k}\right)$, that is, $V\left(S_{n, k}\right)=$ $\bigcup_{\alpha \in P(n, k-1)} \sigma(\alpha)$, and $\sigma\left(\alpha_{i}\right) \cap \sigma\left(\alpha_{j}\right)=\varnothing$ for any two distinct $\alpha_{i}, \alpha_{j} \in P(n, k-1)$.

Since σ is a bijection, $P(n, k)$ can be decomposed into $p(n, k-1)$ subsets by $\sigma(\alpha)$, each of them induces a subgraph of $S_{n, k}$, denoted by $S_{n, k-1}^{\alpha}$, which is isomorphic to K_{n-k+1}, for each $\alpha \in P(n, k-1)$, see Fig. 1 for $S_{4,2}$.

A subset $S \subseteq V\left(S_{n, k}\right)$ is called an acyclic set of $S_{n, k}$ if the subgraph of $S_{n, k}$ induced by S contains no cycle. A feedback set F of $S_{n, k}$ is called to be minimum if $|F|=f(n, k)$. It is clear that S is an acyclic set of $S_{n, k}$ if and only if $V\left(S_{n, k}-S\right)$ is a feedback set of $S_{n, k}$. Let $\mathscr{S}_{n, k}$ denote the set of all acyclic sets of $S_{n, k}$. Then
$f(n, k)=\left|V\left(S_{n, k}\right)\right|-\max \left\{|S| \mid S \in \mathscr{S}_{n, k}\right\}$.
Let $S \in \mathscr{S}_{n, k}$. Since the feedback number of K_{n-k+1} is $n-k-1$, an acyclic subgraph of K_{n-k+1} has at most two vertices. In other words, for each $\alpha \in P(n, k-1)$, at most two vertices in $S_{n, k-1}^{\alpha}\left(\cong K_{n-k+1}\right)$ are contained in S. This fact implies $|S| \leqslant 2 p(n, k-1)$, and so $\left|V\left(S_{n, k}\right)\right|-|S| \geqslant$ $\left|V\left(S_{n, k}\right)\right|-2 p(n, k-1)$. Thus, we obtain a lower bound of $f(n, k)$ immediately

$$
\begin{aligned}
f(n, k) & =\left|V\left(S_{n, k}\right)\right|-\max \left\{|S| \mid S \in \mathscr{S}_{n, k}\right\} \\
& \geqslant\left|V\left(S_{n, k}\right)\right|-2 p(n, k-1) .
\end{aligned}
$$

We state this lower bound as the following lemma.
Lemma 2.2. $f(n, k) \geqslant\left|V\left(S_{n, k}\right)\right|-2 p(n, k-1)$.
In the following discussion, our aim is to give an upper bound of $f(n, k)$. Thus, to obtain an upper bound of $f(n, k)$, a usual way is to construct an acyclic set of $S_{n, k}$.

We attempt to construct an acyclic set of $S_{n, k}$ based on a simple observation. The set of vertices in $P(n, k)$ whose first position is exactly one less or more than other $k-1$ positions is certainly an acyclic set. For example, in $S_{4,2}$, the set $S=\{12,23,34,21,32,43\}$ is an acyclic set, see Fig. 1. Such a chosen acyclic set S is maybe small. Thus, we add some vertices to S from $P(n, k-1)$ chosen according to the above way.

To state our way in detail, we need some notations.
For each $\alpha=x_{1} \cdots x_{k-1} \in P(n, k-1)$, since $x_{i} \in I_{n}$ for each $i=1,2, \ldots, k$, we can assign it a sequence $\gamma_{1}(\alpha) \gamma_{2}(\alpha) \cdots \gamma_{k-1}(\alpha)$ satisfying $\gamma_{1}(\alpha)<\gamma_{2}(\alpha)<\cdots<$ $\gamma_{k-1}(\alpha)$. For example, if $\alpha=527 \in P(n, 3)$, then $\gamma_{1}(\alpha)=2$, $\gamma_{2}(\alpha)=5$ and $\gamma_{3}(\alpha)=7$.

Let $\theta=\min \{k-1, n-k+1\}$. By the hypothesis of $2 \leqslant$ $k \leqslant n-1$, we have $\theta \geqslant 1$. For each $m \in I_{\theta}=\{1,2, \ldots, \theta\}$, let
$X_{1}=\left\{\alpha \in P(n, k-1) \mid \gamma_{1}(\alpha)>1\right\}$,
$Y_{k-1}=\left\{\alpha \in P(n, k-1) \mid \gamma_{k-1}(\alpha)<n\right\}$,
X_{m}
$=\left\{\begin{array}{l|l}\alpha \in P(n, k-1) & \begin{array}{l}\gamma_{i}(\alpha)=2 i-1 \text { for each } i \in I_{m-1} \\ \gamma_{m}(\alpha)>2 m-1\end{array}\end{array}\right\}$
for $m>1$,

$$
\begin{align*}
& Y_{k-m} \\
& \quad=\left\{\begin{array}{l|l}
\alpha \in P(n, k-1) & \begin{array}{l}
\gamma_{k-i}(\alpha)=n-2 i+2, i \in I_{m-1} \\
\gamma_{k-m}(\alpha)<n-2 m+2
\end{array}
\end{array}\right\} \tag{2.1}
\end{align*}
$$

for $m>1$.
By the definition of X_{m}, if $n \geqslant 2 k-2$, then $\theta=k-1$ and $n \geqslant \gamma_{\theta}(\alpha)>2(k-1)-1=2 k-3$; if $n \leqslant 2 k-3$, then
$\theta=n-k+1 \leqslant k-2$, since $2 \theta-1<\gamma_{\theta}(\alpha)<\gamma_{\theta+1}(\alpha)<$ $\cdots<\gamma_{k-1}(\alpha) \leqslant n$, we have $n \geqslant 2 \theta-1+(k-\theta)=\theta+k-1$, that is, $\gamma_{\theta}(\alpha)=2 \theta, \gamma_{\theta+i}(\alpha)=2 \theta+i$ for $i=1, \ldots, k-1-\theta$ and $\gamma_{k-1}(\alpha)=n$. Thus, X_{m} is well-defined for any $m \in I_{\theta}$ when $\theta+k-1 \leqslant n \leqslant 2 k-3$.

Similarly, Y_{k-m} is also well-defined for any $m \in I_{\theta}$.
For example, in $S_{6,4}$, for $\alpha \in P(6,3)$, we have $\theta=3$, and

$$
\left\{\begin{array}{l}
X_{1}=\left\{\alpha \in P(6,3) \mid \gamma_{1}(\alpha)>1\right\}, \\
Y_{3}=\left\{\alpha \in P(6,3) \mid \gamma_{3}(\alpha)<6\right\}, \\
X_{2}=\left\{\alpha \in P(6,3) \mid \gamma_{1}(\alpha)=1, \gamma_{2}(\alpha)>3\right\}, \\
Y_{2}=\left\{\alpha \in P(6,3) \mid \gamma_{3}(\alpha)=6, \gamma_{2}(\alpha)<4\right\}, \\
X_{3}=\left\{\alpha \in P(6,3) \mid \gamma_{1}(\alpha)=1, \gamma_{2}(\alpha)=3, \gamma_{3}(\alpha)>5\right\}, \\
Y_{1}=\left\{\alpha \in P(6,3) \mid \gamma_{3}(\alpha)=6, \gamma_{2}(\alpha)=4, \gamma_{1}(\alpha)<2\right\} .
\end{array}\right.
$$

In other words, the set X_{m} defined in (2.1) is such a set of $(k-1)$-elements in $P(n, k-1)$ which contains $(m-1)$ elements $1,3, \ldots, 2 m-3$ but m elements $2,4, \ldots, 2 m-$ $2,2 m-1$ in I_{n}. The former have $p(k-1, m-1)$ choices and the latter have $p(n-2 m+1, k-m)$ choices from $P(n, k-$ 1). Similarly, the set Y_{k-m} defined in (2.1) is such a set of $(k-1)$-elements in $P(n, k-1)$ which contains ($m-1$) elements $n, n-2, \ldots, n-2 m$ but m elements $n-1, n-$ $3, \ldots, n-2 m+3, n-2 m+2$ in I_{n}. The former have $p(k-$ $1, m-1)$ choices and the latter have $p(n-2 m+1, k-m)$ choices from $P(n, k-1)$. Thus, for any $m \in I_{\theta}$,

$$
\begin{align*}
\left|X_{m}\right| & =\left|Y_{k-m}\right| \\
& =p(k-1, m-1) p(n-2 m+1, k-m) \tag{2.2}
\end{align*}
$$

Let
$X_{0}=P(n, k-1)-\bigcup_{m=1}^{\theta} X_{m}$,
$Y_{k}=P(n, k-1)-\bigcup_{m=1}^{\theta} Y_{k-m}$.
It is easy to see that both $\left\{X_{0}, X_{1}, X_{2}, \ldots, X_{\theta}\right\}$ and $\left\{Y_{k}, Y_{k-1}, Y_{k-2}, \ldots, Y_{k-\theta}\right\}$ are partitions of $P(n, k-1)$. Furthermore, we have the following conclusion.

Lemma 2.3. $\left\{X_{i} \cap Y_{k-j} \mid i, j \in\{0,1, \ldots, \theta\}\right\}$ is a partition of $P(n, k-1)$.

Proof. We first show that, for any $i, j, s, t \in\{0,1, \ldots, \theta\}$, either $\left(X_{i} \cap Y_{k-j}\right) \cap\left(X_{s} \cap Y_{k-t}\right)=\varnothing$ or $X_{i} \cap Y_{k-j}=X_{s} \cap$ Y_{k-t}.

Noting that both $\left\{X_{0}, X_{1}, X_{2}, \ldots, X_{\theta}\right\}$ and $\left\{Y_{k}, Y_{k-1}\right.$, $\left.Y_{k-2}, \ldots, Y_{k-\theta}\right\}$ are partitions of $P(n, k-1)$, we prove this conclusion according to the relationship among i, j, s, t.

If $s=i$ and $t=j$, then $X_{i} \cap Y_{k-j}=X_{s} \cap Y_{k-t}$.
If $s=i$ and $t \neq j$, then

$$
\begin{aligned}
\left(X_{i} \cap Y_{k-j}\right) \cap\left(X_{s} \cap Y_{k-t}\right) & =\left(X_{i} \cap X_{s}\right) \cap\left(Y_{k-j} \cap Y_{k-t}\right) \\
& =X_{i} \cap \varnothing=\varnothing
\end{aligned}
$$

If $s \neq i$ and $t=j$, then

$$
\begin{aligned}
\left(X_{i} \cap Y_{k-j}\right) \cap\left(X_{s} \cap Y_{k-t}\right) & =\left(X_{i} \cap X_{s}\right) \cap\left(Y_{k-j} \cap Y_{k-t}\right) \\
& =\varnothing \cap Y_{k-j}=\varnothing
\end{aligned}
$$

If $s \neq i$ and $t \neq j$, then

$$
\begin{aligned}
\left(X_{i} \cap Y_{k-j}\right) \cap\left(X_{s} \cap Y_{k-t}\right) & =\left(X_{i} \cap X_{s}\right) \cap\left(Y_{k-j} \cap Y_{k-t}\right) \\
& =\varnothing \cap \varnothing=\varnothing
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
\bigcup_{i=0}^{\theta} \bigcup_{j=0}^{\theta}\left(X_{i} \cap Y_{k-j}\right) & =\bigcup_{i=0}^{\theta}\left(X_{i} \cap \bigcup_{j=0}^{\theta} Y_{k-j}\right) \\
& =\bigcup_{i=0}^{\theta} X_{i}=P(n, k-1) .
\end{aligned}
$$

Thus, the lemma follows.

For each $m \in I_{\theta}$, let
$S_{m}=\left\{x \alpha \in P(n, k) \mid \alpha \in X_{m}, x=\gamma_{m}(\alpha)-1\right\}$,
$T_{k-m}=\left\{x \alpha \in P(n, k) \mid \alpha \in Y_{k-m}, x=\gamma_{k-m}(\alpha)+1\right\}$.

Clearly, $S_{i} \cap S_{j}=\varnothing, T_{i} \cap T_{j}=\varnothing$ and $S_{i} \cap T_{j}=\varnothing$ for any $i, j \in I_{\theta}$. Thus,
$\left|S_{m}\right|=\left|X_{m}\right|=\left|Y_{k-m}\right|=\left|T_{k-m}\right| \quad$ for each $m \in I_{\theta}$.
Let
$S=S_{1} \cup S_{2} \cup \cdots \cup S_{\theta}$,
$T=T_{k-1} \cup T_{k-2} \cup \cdots \cup T_{k-\theta}$.
From the definitions of S_{m} and T_{k-m}, we can easily find the following proposition.

Proposition 2.1. For any $\alpha \in P(n, k-1)$,
$\sigma(\alpha) \cap S=\varnothing$ if $\alpha \in X_{0}$ and $|\sigma(\alpha) \cap S|=1$ if $\alpha \in X_{i}$ for any $i \in I_{\theta}$;
$\sigma(\alpha) \cap T=\varnothing$ if $\alpha \in Y_{k}$ and $|\sigma(\alpha) \cap T|=1$ if $\alpha \in Y_{k-j}$ for any $j \in I_{\theta}$.

From Proposition 2.1, we have the following proposition immediately.

Proposition 2.2. For any $\alpha \in P(n, k-1)$,
$|\sigma(\alpha) \cap(S \cup T)|=2$ if $\alpha \in X_{i} \cap Y_{k-j}$ for any $i, j \in I_{\theta} ;$
$|\sigma(\alpha) \cap(S \cup T)|=1$ if $\alpha \in X_{i} \cap Y_{k}$ for any $i \in I_{\theta}$;
$|\sigma(\alpha) \cap(S \cup T)|=1$ if $\alpha \in X_{0} \cap Y_{k-j}$ for any $j \in I_{\theta}$;
$|\sigma(\alpha) \cap(S \cup T)|=0$ if $\alpha \in X_{0} \cap Y_{k}$.

Lemma 2.4. Let $\alpha \in P(n, k-1)$.
If $\alpha \in X_{0}$, then either
$\gamma_{i}(\alpha)=2 i-1 \quad$ for each $i=1,2, \ldots, k-1$
or there exists some $\ell \in I_{n}$ such that
$\gamma_{i}(\alpha)=2 i-1 \quad$ for each $i=1,2, \ldots, \ell$,
$\gamma_{\ell+1}(\alpha)=2 \ell$.

If $\alpha \in Y_{k}$, then either
$\gamma_{k-j}(\alpha)=n-2 j+2 \quad$ for each $j=1,2, \ldots, k-1$
or there exists some $\ell \in I_{n}$ such that
$\gamma_{k-j}(\alpha)=n-2 j+2 \quad$ for each $j=1,2, \ldots, \ell$,
$\gamma_{k-\ell-1}(\alpha)=n-2 \ell+1$.
Proof. If $\alpha \in X_{0}$, then $\alpha \notin X_{1}$, which implies $\gamma_{1}(\alpha)=1$, and $\alpha \notin X_{2}$, which implies $\gamma_{2}(\alpha) \leqslant 3$.

If $\gamma_{2}(\alpha)=2$, we get $\ell=1$. If $\gamma_{2}(\alpha)=3$ and $\alpha \notin X_{3}$, then $\gamma_{3}(\alpha) \leqslant 5$.

If $\gamma_{3}(\alpha)=4$, we get $\ell=2$. Else, if $\gamma_{3}(\alpha)=5$ and $\alpha \notin$ X_{4}, then $\gamma_{4}(\alpha) \leqslant 7$.

In general, we have $\gamma_{i}(\alpha)=2 i-1$ for each $i=$ $1,2, \ldots, k-1$, or we can find an ℓ such that $\gamma_{i}(\alpha)=2 i-1$ for each $i=1,2, \ldots, \ell$ and $\gamma_{\ell+1}(\alpha)=2 \ell$.

In the same argument, we can prove that the conclusion is true for $\alpha \in Y_{k}$.

Lemma 2.5. The set $S \cup T$ is an acyclic set in $S_{n, k}$.

Proof. Let H be the subgraph of $S_{n, k}$ induced by $S \cup T$ and let u be any vertex in H. In order to prove the lemma, we only need to prove that u is not in a cycle in H. Since $u \in S \cup T$, by (2.6), there exist i and j in I_{θ} such that $u \in$ $S_{i} \cup T_{k-j}$. We can, without loss of generality, assume $u \in$ S_{i}. We want to prove that u is not in a cycle in H.

By the definition of S_{i} in (2.4), there exists $\alpha \in X_{i}$ such that $u=\left(\gamma_{i}(\alpha)-1\right) \alpha$, where $\gamma_{i}(\alpha)>2 i-1$. By Lemma 2.3, we consider two cases depending on $\alpha \in X_{i} \cap Y_{k}$ or $\alpha \in$ $X_{i} \cap Y_{k-j}$.

Case 1. $\alpha \in X_{i} \cap Y_{k}$.
Since $\alpha \in X_{i}$, by Proposition 2.2, we have $\sigma(\alpha) \cap(S \cup$ $T)=\{u\}$. Thus, $\sigma(\alpha) \cap S_{i}=\{u\}, \sigma(\alpha) \cap S_{j}=\varnothing$ and $\sigma(\alpha) \cap$ $T_{k-j}=\varnothing$ for any $j \neq i$. So, the neighbors of u in H are all swap-adjacent vertices. By Lemma $2.4, \alpha \in Y_{k}$ satisfies (2.9) or (2.10).

If $\alpha \in Y_{k}$ satisfies (2.9) then, when $j=k-1, \gamma_{1}(\alpha)=$ $n-2 k+4$. Since $\alpha \in X_{i}$, we consider two cases depending on $i=1$ or $i>1$ by (2.1).
(a) If $i>1$, then $\gamma_{1}(\alpha)=1$ by (2.1). Thus, we have $n-$ $2 k+4=1$, that is, $n=2 k-3$, and so $\theta=\min \{k-1, n-$ $k+1\}=k-2$. This fact implies that α consists of all $k-1$ odd integers in $I_{2 k-3}$. However, $\gamma_{i}(\alpha) \neq 2 i-1$ in $\alpha \in X_{i}$ and $1 \leqslant i \leqslant \theta=k-2$, a contradiction.
(b) If $i=1$, then $\gamma_{1}(\alpha)>1$ by (2.1). Thus, $n-2 k+4=$ $\gamma_{1}(\alpha)>1$, and $u=\left(\gamma_{1}(\alpha)-1\right) \alpha=(n-2 k+3) \alpha$. Since $\gamma_{k-j}(\alpha)=n-2 j+2(j=1,2, \ldots, k-1)$ by (2.1), it is clear that u is an isolated vertex in $G[S \cup T]$.

If $\alpha \in Y_{k}$ satisfies (2.10), then the degree of u in H is at most one. Moreover, if the degree of u is one then its neighbor is a swap-adjacent vertex obtained from u by replacing the first bit of u with $\gamma_{k-1-\ell}(\alpha)$. Thus, u is not in a cycle in H.

Case 2. $\alpha \in X_{i} \cap Y_{k-j}$.
In this case, $|\sigma(\alpha) \cap(S \cup T)|=2$ by Proposition 2.2. Then u has the only unswap-adjacent vertex, say, v in
$\sigma(\alpha) \cap T_{k-j}$. Since $u=\left(\gamma_{i}(\alpha)-1\right) \alpha, v=\left(\gamma_{k-j}(\alpha)+1\right) \alpha$ by (2.4). Thus, $k-j \geqslant i$ since $\alpha \in X_{i} \cap Y_{k-j} \neq \varnothing$. So, we have that

$$
\left\{\begin{array}{l}
\gamma_{1}(\alpha)=1, \\
\ldots \\
\gamma_{i-1}(\alpha)=2 i-1, \\
\gamma_{i}(\alpha)>2 i-1, \\
\ldots \\
\gamma_{k-j}(\alpha)<n-2 j+2, \\
\gamma_{k-j+1}(\alpha)=n-2 j+4, \\
\ldots \\
\gamma_{k-1}(\alpha)=n .
\end{array}\right.
$$

We want to prove that u is not in a cycle in H. To understand our proof, let us see an example first. For example, in $S_{12,7}, u=56378(12) 1$, then $\alpha=6378(12) 1 \epsilon$ $X_{3} \cap Y_{5}$, where $k=7, i=3, j=2$, and

$$
\left\{\begin{array}{l}
\gamma_{1}(\alpha)=1 \\
\gamma_{2}(\alpha)=3, \\
\gamma_{3}(\alpha)=6>5, \\
\gamma_{4}(\alpha)=7, \\
\gamma_{5}(\alpha)=8<10, \\
\gamma_{6}(\alpha)=12 .
\end{array}\right.
$$

The vertex u has the only unswap-adjacent vertex $v=96378(12) 1$ and the only swap-adjacent vertex $v_{1}^{-}=$ 86375(12) 1 in H, where v_{1}^{-}is obtained from u by swapping the first bit (5) with 8 . The vertex v_{1}^{-}has no unswapadjacent vertex and has the only swap-adjacent vertex $u_{1}^{+}=69378(12) 1$ in H obtained from v by swapping the first bit (9) with 6 . The vertex u_{1}^{+}has the only unswapadjacent vertex $v_{1}^{+}=(10) 9378(12) 1$ in H. The vertex v_{1}^{+} has the only swap-adjacent vertex $u_{2}^{+}=793(10) 8(12) 1$ in H obtained from v_{1}^{+}by swapping the first bit (10) with 7. The vertex u_{2}^{+}has no unswap-adjacent vertex. Thus, the subgraph of H induced by $\left\{v_{1}^{-}, u, v, u_{1}^{+}, v_{1}^{+}, u_{2}^{+}\right\}$is a path $\left(v_{1}^{-}, u, v, u_{1}^{+}, v_{1}^{+}, u_{2}^{+}\right)$in H whose edges are alternately in swap-edges and unswap-edges starting and ending with swap-edges.

In general, there are two possible cases: either $\gamma_{k-j}(\alpha)=\gamma_{k-j-1}(\alpha)+1$ or $\gamma_{i}(\alpha)=\gamma_{i+1}(\alpha)-1$.

If $\gamma_{k-j}(\alpha)=\gamma_{k-j-1}(\alpha)+1$, then u has the only swapadjacent vertex, say v_{1}^{-}, obtained from u by swapping the first bit with $\gamma_{k-j}(\alpha)$, and denoted by $v_{1}^{-}=\gamma_{k-j}(\alpha) \alpha_{1}^{-}$. If $\gamma_{i}\left(\alpha_{1}^{-}\right)>2 i-1$, then v_{1}^{-}has the only unswap-adjacent vertex $u_{1}^{-}=\left(\gamma_{i}\left(\alpha_{1}^{-}\right)-1\right) \alpha_{1}^{-}$; else v_{1}^{-}has no unswapadjacent vertex. Similarly, if $\gamma_{k-j}\left(\alpha_{1}^{-}\right)=\gamma_{k-j-1}\left(\alpha_{1}^{-}\right)+1$, then u_{1}^{-}has the only swap-adjacent vertex, say v_{2}^{-}, obtained from u_{1}^{-}by swapping the first bit with $\gamma_{k-j}\left(\alpha_{1}^{-}\right)$, and denoted by $v_{2}^{-}=\gamma_{k-j}\left(\alpha_{1}^{-}\right) \alpha_{2}^{-}$.

Continue this process. Since $\gamma_{i}\left(\alpha_{\ell}^{-}\right)=\gamma_{i}\left(\alpha_{\ell-1}^{-}\right)-1$ (where $\alpha_{0}^{-}=\alpha$), this process will stop in finite steps. Until either $\gamma_{k-j}\left(\alpha_{\ell}^{-}\right)>\gamma_{k-j-1}\left(\alpha_{\ell}^{-}\right)+1$, which implies that u_{ℓ}^{-}has no swap-adjacent vertex, or $\gamma_{i}\left(\alpha_{\ell}^{-}\right)=2 i-1$, which implies that v_{ℓ}^{-}has no unswap-adjacent vertex. In other
words, this process must stop when it meets with a vertex of degree one. So, we can get the vertex-sequence $\left(u, v_{1}^{-}, u_{1}^{-}, v_{2}^{-}, u_{2}^{-}, \ldots, v_{\ell}^{-}, u_{\ell}^{-}\right)$, whose induced subgraph of H is not a cycle, but a path. Thus, u is not in a cycle in H.

Similarly, if $\gamma_{i}(\alpha)=\gamma_{i+1}(\alpha)-1$, then v has the only swap-adjacent vertex, say u_{1}^{+}, obtained from v by swapping the first bit with $\gamma_{i}(\alpha)$, and denoted by $u_{1}^{+}=$ $\gamma_{i}(\alpha) \alpha_{1}^{+}$. If $\gamma_{k-j}\left(\alpha_{1}^{+}\right)<n-2 j+2$, then u_{1}^{+}has the only unswap-adjacent vertex v_{1}^{+}, which is $\left(\gamma_{k-j}\left(\alpha_{1}^{+}\right)+1\right) \alpha_{1}^{+}$. Similarly, if $\gamma_{i}\left(\alpha_{1}^{+}\right)=\gamma_{i+1}\left(\alpha_{1}^{+}\right)-1$, then v_{1}^{+}has the only swap-adjacent vertex, say u_{2}^{+}, obtained from v_{1}^{+}by swapping the first bit with $\gamma_{i}\left(\alpha_{1}^{+}\right)$, and denoted by $u_{2}^{+}=$ $\gamma_{i}\left(\alpha_{1}^{+}\right) \alpha_{2}^{+}$.

Continue this process. Since $\gamma_{k-j}\left(\alpha_{\ell}^{+}\right)=\gamma_{k-j}\left(\alpha_{\ell-1}^{+}\right)+1$ (where $\alpha_{0}^{+}=\alpha$), this process will stop in finite steps. Until either $\gamma_{i}\left(\alpha_{\ell}^{+}\right)<\gamma_{i+1}\left(\alpha_{\ell}^{+}\right)-1$, which implies that v_{ℓ}^{+} has no swap-adjacent vertex, or $\gamma_{k-j}\left(\alpha_{\ell}^{+}\right)=n-2 j+2$, which implies that u_{ℓ}^{+}has no unswap-adjacent vertex. In other words, this process must stop when it meets with a vertex of degree one. So, we can get the vertex-sequence $\left(v, u_{1}^{+}, v_{1}^{+}, u_{2}^{+}, v_{2}^{+}, \ldots, u_{\ell}^{+}, v_{\ell}^{+}\right)$, whose induced subgraph of H is not a cycle, but a path. Thus, v is not in a cycle in H.

Thus, we proved that u is not in a cycle in H, and the lemma follows.

By Lemma 2.5, we immediately have the following conclusion.

Lemma 2.6. The set $V\left(S_{n, k}\right)-(S \cup T)$ is a feedback set of $S_{n, k}$.

3. Proofs of main results

Theorem 3.1. For each k with $2 \leqslant k<n$ and $\theta=\min \{k-1, n-$ $k+1$ \},

$$
\begin{aligned}
& p(n, k)-2(k-1)!\binom{n}{k-1} \\
& \quad \leqslant f(n, k) \\
& \quad \leqslant p(n, k)-2(k-1)!\sum_{i=0}^{\theta-1}\binom{n-2 i-1}{k-i-1} .
\end{aligned}
$$

Proof. Since $S \cap T=\varnothing$, by (2.5) and (2.2), we have that

$$
\begin{aligned}
|S \cup T| & =2 \sum_{i=1}^{\theta} p(k-1, i-1) p(n-2 i+1, k-i) \\
& =2 \sum_{i=1}^{\theta} \frac{(k-1)!}{(k-i)!} \frac{(n-2 i+1)!}{(n-k-i+1)!} \\
& =2(k-1)!\sum_{i=1}^{\theta}\binom{n-2 i+1}{k-i}
\end{aligned}
$$

Thus, by Lemma 2.6, we have

$$
\begin{aligned}
f(n, k) & \leqslant\left|V\left(S_{n, k}\right)\right|-|S \cup T| \\
& =p(n, k)-2(k-1)!\sum_{i=1}^{\theta}\binom{n-2 i+1}{k-i} .
\end{aligned}
$$

Combining this with Lemma 2.2, the theorem holds.

Remarks. The lower bound given in Theorem 3.1 can be reachable in the following senses. When $k=2$ and $k=3$, these lower bounds are $n(n-3)$ and $n(n-1)(n-4)$, respectively. Very recently, Xu et al. [7] have showed that $f(n, 2)=n(n-3)$ and $f(n, 3)=n(n-1)(n-4)$.

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their kind suggestions and com-
mons on the original manuscript, which resulted in this version.

References

[1] S. Bau, L.W. Beineke, The decycling number of graphs, Australasian Journal of Combinatorics 25 (2002) 285-298.
[2] W.K. Chiang, R.J. Chen, The (n, k)-star graphs: A generalized star graph, Information Processing Letters 56 (1995) 259-264.
[3] R. Focardi, F.L. Luccio, D. Peleg, Feedback vertex set in hypercubes, Information Processing Letters 76 (2000) 1-5.
[4] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of Computer Computations, Plenum, New York, 1972, pp. 85-103.
[5] F.-H. Wang, Y.-L. Wang, J.-M. Chang, Feedback vertex sets in star graphs, Information Processing Letters 89 (2004) 203-208.
[6] J.-M. Xu, Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.
[7] X.-R. Xu, B.-C. Wang, J. Wang, Y. Zhang, Y.-S. Yang, Feedback number of (n, k)-star graphs, Utilitas Math., in press.
[8] X.-R. Xu, J.-M. Xu, Y.-C. Cao, Bounds on feedback numbers of de Bruijn graphs, Taiwanese Journal of Mathematics 15 (3) (2011) 1101-1113.

[^0]: the work was supported by NNSF of China (Nos. 11071233, 61170303,60973014) and Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 200801411073).

 * Corresponding author.

 E-mail address: xujm@ustc.edu.cn (J.-M. Xu).

