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Abstract

The bondage number of a graph G is the cardinality of a smallest

set of edges whose removal results in a graph with domination number

larger than that of G. The bondage number measures to some extent the

robustness of a network with respect to link failure. This note mainly

considers some conjectures on the bondage number of a planar graph,

and shows limitations of known methods and presents some new ap-

proaches to the conjectures by investigating the effects of edge deletion

and contraction on the bondage number.
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1 Introduction

After 30 years’ development, the domination has become one of the major
areas in graph theory. The reason of the rapid growth of this area may be the
various applications of domination to the real-world problems. Considering
possible link faults in the real-world, Fink et al. [3] introduced the concept of
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the bondage number in 1990, which measures to some extend the robustness
of an interconnection network with respect to link failures. Since then, the
bondage number has attracted much attention of the researchers. Recently,
several authors have focused on planar graphs, obtained lots of results, and also
left many conjectures and problems. In this paper, we present some approaches
to them.

We mainly consider an undirected simple graph G = (V, E) with vertex-set
V = V (G) and edge-set E = E(G). For a vertex x ∈ V (G), let = NG(x) be
the set of neighbors of x. Denote the degree of x by dG(x) = |NG(x)|, the
maximum and the minimum degree of G by ∆(G) and δ(G), respectively, and
the distance between two vertices x and y by dG(x, y). The girth of G is the
length of the shortest cycle in G and denoted by g(G). For terminology and
notation on graph theory not given here, the reader is referred to [12].

Given two vertices x and y of G, we say that x dominates y if xy ∈ E(G).
A subset D of V (G) is called a dominating set if every vertex of G − D is
dominated by some vertex of D. The minimum cardinality of all dominating
sets in G is called the domination number and denoted by γ(G). A dominating
set with cardinality γ(G) is called a γ-set for short. The bondage number of
a nonempty graph G, denoted by b(G), is the smallest cardinality of a set of
edges whose removal from G results in a graph with domination number larger
than γ(G). The bondage number was first introduced by Fink et al. [3] in
1990, as a parameter to measure the vulnerability of a network with respect
to link failures. For a general graph G, determining the exact value of b(G)
is difficulty, since Hu and Xu [6] showed that it is NP-hard. Fink et al. [3]
posed a conjecture that b(G) 6 ∆(G) + 1 for any nonempty graph G. This
conjecture was disproved by Teschner [10] three years later. In 1998, Dunbar
et al. [2] proposed the same conjecture for planar graphs.

Conjecture 1.1 [2] b(G) 6 ∆(G) + 1 for any planar graph G.

We have noted that b(C3k+1) = 3 = ∆ + 1 [3] and b(C4k+2 × K2) = 4 =
∆ + 1 [2]. Also we can easily see that b(K6 − M) = 5 = ∆ + 1 where M is
a perfect matching of the complete graph K6. These examples show that if
Conjecture 1.1 is true then the upper bound is best possible for 2 6 ∆ 6 4.

In 2000, Kang and Yuan [8] confirmed this conjecture for ∆(G) > 7 by
proving b(G) 6 min{8, ∆(G) + 2} for any connected planar graph G. Three
years later, Fischermann et al. [4] obtained further results by proving b(G) 6 6
for any connected planar graph G with girth g(G) at least 4, and also proposed
some conjectures.

Conjecture 1.2 [4] b(G) 6 7 for any connected planar graph G.

Conjecture 1.3 [4] b(G) 6 5 for any connected planar graph G with g(G) >

4.
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Conjecture 1.4 [4] b(G) 6 4 for any connected planar graph G with g(G) >

5.

Carlson and Develin [1] gave short proofs for the results on planar graphs
and constructed a planar graph G with b(G) = 6 as follows. The corona G1◦G2

is a graph formed from a copy of G1 and |V (G1)| copies of G2 by joining the
i-th vertex of G1 to every vertex of the i-th copy of G2. Let H be a planar
graph with δ(H) = 5. Then G = H ◦ K1 is also a planar graph and b(G) = 6
by the following lemma.

Lemma 1.5 [1] b(H ◦ K1) = δ(H) + 1.

So far, no planar graphs with b(G) > 7 have been known.
The rest of this paper is organized as follows. In Section 2 we consider the

known ways to prove the results on planar graphs and show their limitations
to the conjectures. In Section 3 we obtain some properties of minimum coun-
terexamples which possibly exist under the assumption that the conjectures
do not hold. Finally we conclude this paper in Section 4.

2 Remarks on known ways

First we give two basic upper bounds of b(G). More bounds can be found in
[3, 9].

Lemma 2.1 [3, 11] b(G) 6 dG(x) + dG(y)− 1 for any two distinct vertices

x and y with dG(x, y) 6 2 in G.

Lemma 2.2 [5] b(G) 6 dG(x) + dG(y) − 1 − |NG(x) ∩ NG(y)| for any two

adjacent vertices x and y in G.

In [1, 4, 8], the authors obtained various results for planar graphs by Lemma
2.1, Lemma 2.2 and Euler’s Formula. Their main results can be stated the
following theorems.

Theorem 2.3 [1, 8] b(G) 6 min{8, ∆(G) + 2} for any connected planar

graph G.

Theorem 2.4 [4] For any connected planar graph G,

b(G) 6















6, if g(G) > 4;
5, if g(G) > 5;
4, if g(G) > 6;
3, if g(G) > 8.
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To prove these results, a basic way is to find two vertices x and y in G
satisfying the conditions in Lemma 2.1 or Lemma 2.2 such that the value
bounded b(G), dG(x) + dG(y) or dG(x) + dG(y) − |NG(x) ∩ NG(y)| is as small
as possible. Precisely, let

B(G) = min
x,y∈V (G)

{

{dG(x) + dG(y) − 1 : 1 6 dG(x, y) 6 2}
⋃

{dG(x) + dG(y) − |NG(x) ∩ NG(y)| − 1 : dG(x, y) = 1}

}

.

Then by Lemma 2.1 and Lemma 2.2, we have

b(G) 6 B(G).

The proofs given in [1, 4, 8] indeed imply the following stronger results.

Theorem 2.3 ′ B(G) 6 min{8, ∆(G) + 2} for any connected planar graph

G.

Theorem 2.4 ′ For any connected planar graph G,

B(G) 6















6, if g(G) > 4;
5, if g(G) > 5;
4, if g(G) > 6;
3, if g(G) > 8.

Now, a natural question is whether Conjecture 1.1∼ 1.4 can be proved
by Lemma 2.1 and Lemma 2.2. In other words, are the following stronger
conjectures valid?

Conjecture 1.1 ′ B(G) 6 ∆(G) + 1 for any planar graph G.

Conjecture 1.2 ′ B(G) 6 7 for any connected planar graph G.

Conjecture 1.3 ′ B(G) 6 5 for any connected planar graph G with g(G) >

4.

Conjecture 1.4 ′ B(G) 6 4 for any connected planar graph G with g(G) >

5.

It is clear that Conjecture 1.1′ ∼ Conjecture 1.4′ imply Conjecture 1.1∼
Conjecture 1.4, respectively, by b(G) 6 B(G). This fact seems to mean that the
conjectures can be proved by Lemma 2.1 and Lemma 2.2. However, Conjecture
1.1′ ∼ Conjecture 1.4′ are disproved by the following theorems.

The construction of our proofs uses the operation of subdividing an edge

xy, i.e, replacing the edge xy by a 2-path xvy through a new vertex v, which
is called the subdividing vertex or s-vertex for short. We say subdividing the
edge xy twice if xy is replaced by a 3-path xv1v2y.
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(b) dodecahedron(a) icosahedron

Figure 1: The two regular planar graphs

Theorem 2.5 There is a planar graph G with B(G) = 8.

Proof. Let H be the icosahedron, shown in Figure 1 (a), and let H ′ be a
graph obtained by subdividing each edge of H . Then for each vertex u in H ′

there are five subdividing vertices adjacent to u. Link these five vertices to
form a cycle and keep the planarity, see Figure 2. Let such a resulting graph
be G.

b
u

b

u1

bu2

b

u3

b
u4

b

u5

a vertex u and NH(u) in H

b
u

v1

v2v3

v4

v5

b

u1

bu2

b

u3

b
u4

b

u5

a vertex u, NG(u) and s-vertices in G

Figure 2: A graph G constructed in Theorem 2.5

Assume V (H) = {u1, . . . , un}. Let S = {v1, . . . , vm} be the set of subdi-
viding vertices in H ′. Then V (G) = V (H) ∪ S. It is easy to observe that,
dG(ui) = 5, dG(vj) = 6 for i = 1, . . . , n and j = 1, . . . , m. Furthermore,
dG(ui, uj) = 2 (i 6= j) and |NG(x) ∩ NG(y)| 6 2 for every edge xy of G. Thus
B(G) = 5 + 6 − 1 − 2 = 8.

Theorem 2.6 There is a planar graph G with B(G) = 6.

Proof. Let H be a 3-cube, and let H ′ be a graph obtained by subdividing
each edge in H twice. Link the subdividing vertices properly such that the
resulting graph is a planar graph with girth 4. Let such a resulting graph be
G, see Figure 3.

Note that all subdividing vertices have degree 4 and dG(u, v) > 3 for any
two vertices u and v in H . Thus B(G) = 4 + 3 − 1 = 6.
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Figure 3: A graph G constructed in the proof of Theorem 2.6

Theorem 2.7 There is a planar graph G with B(G) = 5.

Proof. The dodecahedron G, shown in Figure 1 (b), is a planar graph with
g(G) = 5 and B(G) = 5.

The theorems 2.5∼ 2.7 disprove the conjectures 1.2′ ∼ 1.4′, respectively.
Conjecture 1.1′ is invalid, either, by anyone of the theorems 2.5∼ 2.7. As a
result, Lemma 2.1 and Lemma 2.2 are not enough to prove the conjectures
1.1∼ 1.4 ( if they are right). Therefore, a new method is need to prove these
conjectures.

Remark A careful argument for the dominations in examples provided in the
proofs the theorems 2.5∼ 2.7 shows that their bondage numbers are not large
enough to disprove the conjectures 1.1∼ 1.4. However, all the known upper
bounds (cf. [2, 9]) can not prove that these examples satisfy the conjectures
1.1∼ 1.4. Hence these conjectures can not be proved only by the known upper
bounds.

3 Minimum Counterexamples

As mentioned in Section 2, the known upper bounds are not enough to prove
anyone of the conjectures 1.1∼ 1.4. Thus we present some new approach to
them in this section. Note that, if one of these conjectures is invalid, then there
exists a counterexample G which is minimum with respect to |V (G)|+ |E(G)|.
We call such a graph G a minimum counterexample. Let G1, G2, G3 and G4 be
the possible existing minimum counterexamples to the conjectures 1.1∼ 1.4,
respectively. It follows from Theorem 2.3 and Theorem 2.4 that

b(G1) = ∆(G) + 2, b(G2) = 8, b(G3) = 6, b(G4) = 5.

By Theorem 2.4, it is easy to see that g(G2) = 3, g(G3) = 4 and g(G4) = 5.
In order to obtain further properties of these minimum counterexamples, we
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consider how the bondage number changes under some operation of a graph
G which decreases |V (G)| + |E(G)| and preserves the planarity. A simple
operation satisfying this requirement is the edge deletion.

Lemma 3.1 Let e be an edge of G. Then b(G−e) > b(G)−1. In addition,

b(G − e) 6 b(G) if γ(G − e) = γ(G).

Proof. Let E ′ ⊆ E(G−e) with |E ′| = b(G−e). Then γ(G−e−E ′) > γ(G−e),
and so b(G) 6 |{e} ∪ E ′| = b(G − e) + 1.

Assume γ(G − e) = γ(G) and E ′′ ⊆ E(G) with |E ′′| = b(G) such that
γ(G − E ′′) > γ(G).

If e /∈ E ′′ then γ(G − e − E ′′) > γ(G − E ′′) > γ(G).
If e ∈ E ′′ then γ(G − e − E ′ \ {e}) = γ(G − E ′′) > γ(G).
Thus b(G − e) 6 |E ′′| = b(G).

Theorem 3.2 b(Gi − e) = b(Gi) − 1 for any edge e in Gi, i = 1, 2, 3, 4.

Proof. By Lemma 3.1, b(Gi−e) > b(Gi)−1 for any edge e ∈ E(G). Note that
Gi−e is a planar graph with g(Gi−e) > g(Gi) and ∆(Gi−e) 6 ∆(Gi). Thus,
if b(Gi − e) > b(Gi), then Gi − e is also a counterexample, a contradiction to
the minimum of Gi. Hence b(Gi − e) = b(Gi) − 1 for any edge e ∈ E(G).

Next we consider the effect of the edge contraction on the bondage number.
Given a graph G, the contraction of G by the edge e = xy, denoted by G/xy,
is the graph obtained from G − e by replacing x and y with a new vertex vxy

(contracted vertex ) which is adjacent to all vertices in NG−e(x) ∪ NG−e(y). It
is easy to observe that |V (G/xy)| + |E(G/xy|) < |V (G)| + |E(G)| and G/xy
is also planar if G if planar.

Lemma 3.3 γ(G) − 1 6 γ(G/xy) 6 γ(G) for any edge xy of G.

Proof. Let D be a γ-set of G. If neither x nor y belongs to D, then D is
a dominating set in G/xy. If D ∩ {x, y} 6= ∅, then (D \ {x, y}) ∪ {vxy} is
a dominating set in G/xy, since vxy dominates all neighbors of x and y. It
follows that γ(G/xy) 6 |D| = γ(G).

Conversely, let D′ be a γ-set in G/xy. If vxy ∈ D′, then D = D′ \ {vxy} ∪
{x, y} is a dominating set of G. If vxy /∈ D′, then D′ contains a vertex u such
that uvxy ∈ E(G/xy). By the definition of edge contraction, ux ∈ E(G) or
uy ∈ E(G), which implies that D′ ∪ {y} or D′ ∪ {x} is a dominating set of G.
Thus γ(G) 6 |D′| + 1 = γ(G/xy) + 1.

Theorem 3.4 b(G/xy) > b(G) if γ(G/xy) = γ(G) and NG(x)∩NG(y) = ∅
for some edge xy of G.
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Proof. Let E ′ ⊆ E(G/xy) with |E ′| = b(G/xy). Then γ(G/xy − E ′) >
γ(G/xy). Suppose that NG(x) ∪ NG(y) = {z1, . . . , zt}. Then the hypothesis
NG(x) ∩ NG(y) = ∅ yields the following claim immediately.

Claim For any i ∈ {1, . . . , t}, there exists exact one of {x, y}, denoted by vi,

such that vizi ∈ E(G).

Suppose that vxyzi ∈ E ′ if i 6 k and vxyzi /∈ E ′ if i > k + 1 (k ∈
{0, 1, . . . , t}), without loss of generality. Let

E ′′ = (E ′ \ {vxyz1, . . . , vxyzk}) ∪ {v1z1, . . . , vkzk}.

Then |E ′′| = |E ′| and xy /∈ E ′′. We show that (G − E ′′)/xy = G/xy − E ′.
Then by Lemma 3.3,

γ(G − E ′′) > γ((G − E ′′)/xy) = γ(G/xy − E ′) > γ(G/xy) = γ(G).

Hence b(G) 6 |E ′′| = |E ′| = b(G/xy).
Let G1 = (G−E ′′)/xy and G2 = G/xy −E ′. Note that V (G1) = V (G2) =

V (G/xy). We need only to show E(G1) = E(G2). To this aim, consider two
vertices u, v ∈ V (G/xy). If u, v 6= vxy, then

uv ∈ E(G1) ⇔ uv ∈ E(G − E ′′) ⇔ uv ∈ E(G − E ′) ⇔ uv ∈ E(G2).

Now consider v = vxy and u 6= v. By the above claim and the definition of
E ′′, we have uvxy ∈ E ′ if and only if uvi ∈ E ′′. Thus

uvxy ∈ E(G1) ⇔ uvi ∈ E(G − E ′′) ⇔ uvi ∈ E(G), uvi /∈ E ′′

⇔ uvxy ∈ E(G/xy), uvxy /∈ E ′ ⇔ uvxy ∈ E(G2).

Therefore E(G1) = E(G2). The proof of the theorem is complete.

Theorem 3.4 is best possible. To illustrate this fact, we need some simple
examples.

Example 3.5 [3] b(Cn) =

{

3 if n ≡ 1(mod 3),
2 otherwise.

for a cycle Cn of order

n > 3,

Example 3.6 [3] b(Kn) = ⌈n
2
⌉ for a complete graph Kn of order n > 2.

The above examples show that the conditions of Theorem 3.4 are necessary.
Clearly γ(Cn) = ⌈n/3⌉ and γ(Kn) = 1; for any edge xy, Cn/xy = Cn−1 and
Kn/xy = Kn−1. By Example 3.5, if n ≡ 1 (mod 3), then γ(Cn/xy) < γ(G)
and b(Cn/xy) = 2 < 3 = b(Cn). Thus the result in Theorem 3.4 is generally
invalid without the hypothesis γ(G/xy) = γ(G). Furthermore, the condition
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NG(x) ∩ NG(y) = ∅ can not be omitted even if γ(G/xy) = γ(G) is provided,
since for odd n, b(Kn/xy) = ⌈n−1

2
⌉ < ⌈n

2
⌉ = b(Kn), by Example 3.6.

On the other hand, the above examples also show that the equality in
b(G/xy) > b(G) may hold ( b(Cn/xy) = b(Cn) = 2 if n ≡ 0 (mod 3), b(Kn/xy) =
b(Kn) if n is even). Thus the bound on b(G) given in Theorem 3.4 is tight.
However, b(G/xy) can be arbitrarily larger than b(G) when all the conditions
are satisfied. Given a graph H , let G be the graph formed from H ◦ K1 by
adding a new vertex x and joining it to an vertex y of degree one in H ◦ K1.
Then G/xy = H ◦K1, γ(G) = γ(G/xy) and NG(x)∩NG(y) = ∅. But b(G) = 1
since γ(G− xy) = γ(G/xy) + 1, and b(G/xy) = δ(H) + 1 by Lemma 1.5. The
gap between b(G) and b(G/xy) is δ(H).

Now we apply Theorem 3.4 to G2.

Corollary 3.7 NG(x)∩NG(y) 6= ∅ if γ(G2/xy) = γ(G2) for some edge xy.

Proof. Note that G2/xy is a simple planar graph. If γ(G2/xy) = γ(G2) for
some edge xy and NG(x) ∩ NG(y) = ∅, then it follows from Theorem 3.4 that
b(G2/xy) > b(G2). Hence G2/xy is a counterexample. But G2/xy is smaller
than G2, a contradiction.

Finally we consider G1.

Lemma 3.8 γ(G/xy) 6 γ(G − x) for any edge xy.

Proof. Let D be a γ-set of G− x. If y /∈ D, then there exists a vertex u ∈ D
such that uy ∈ E(G−x). Thus uvxy ∈ E(G/xy), i.e., vxy is dominated by u ∈
D. Therefore D is also a dominating set of G/xy and γ(G/xy) 6 |D| = γ(G).

Now assume y ∈ D and let D′ = (D \ {y}) ∪ {vxy}. If uy ∈ E(G − x),
then uvxy ∈ E(G/xy). That means, the vertices dominated by y in G − x
are all dominated by vxy in G/xy. Thus D′ is a dominating set of G/xy and
γ(G/xy) 6 |D′| = γ(G).

Lemma 3.9 [2] γ(G−v) < γ(G) for all vertices v ∈ V (G) if b(G) > ∆(G).

Theorem 3.10 γ(G1/xy) = γ(G1) − 1 for every edge xy.

Proof. Let xy be an edge of G1. Since b(G1) > ∆(G1) + 1, then by Lemma
3.8 and Lemma 3.9, we have γ(G1/xy) 6 γ(G1 − x) < γ(G1).
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4 Conclusions

In Section 2 we defined B(G) to show that the conjectures 1.1∼ 1.4 can not
be proved only by the known upper bounds. Conversely, if one wants to find a
counterexample G, he or she should first guarantee that B(G) is large enough.

In Section 3 we investigate the minimum counterexamples (if exist) to
these conjectures, and obtained their properties by considering edge deletion
and contraction. Other operations are also worthy of investigation as long as
they decrease the value of |V (G)| + |E(G)| while preserving the planarity.

The results on the edge contraction may have other applications. So far,
no planar graphs with large bondage number have been known to us; we can
not tell the tightness of anyone of the conjectures 1.2∼ 1.4 even if they are
proved to be true. Now we know that contracting edges from a planar graph
G may lead to a planar graph with larger bondage number, since b(G/xy) can
be arbitrarily larger than b(G). Then it is possible to find a planar graph with
large bondage number from some planar graph by suitably choosing its edges
to be contracted. For this purpose, we propose the following problem.

Problem 4.1 Determine when b(G/xy) > b(G) + k for some positive inte-

ger k.

The similar consideration for edge deletions fails since b(G − e) 6 b(G)
when b(G) > 2, by Lemma 3.1.

In view of Theorem 3.2 and Theorem 3.10, we propose the following prob-
lems, which may be helpful to seeking counterexamples or proving their inex-
istence.

Problem 4.2 Characterize the graph G with b(G− e) = b(G)− 1 for every

edge e.

Problem 4.3 Characterize the graph G with γ(G/e) = γ(G) − 1 for every

edge e.

Lastly, we would like to make some remarks on the above problems. The
graphs in Problem 4.2 and Problem 4.3 can be viewed as bondage critical with

respect to edge removal, or domination critical with respect to edge contraction.
Graphs in the latter case can be characterized by the property that every edge
lies in the induced subgraph of some minimum dominating set (See [7].) No
further characterizations are known yet.
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