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Abstract

Let G be a graph with vertex set V(G). A function f : V(G) — {—1,1} is a signed
dominating function of G if, for each vertex of GG, the sum of the values of its neighbors
and itself is positive. The signed domination number of a graph G, denoted 7(G), is the
minimum value of Zvev(a) f(v) over all the signed dominating functions f of G. The signed
reinforcement number of G, denoted Rs(G), is defined to be the minimum cardinality |S| of
a set S of edges such that vs(G + S) < 7s(G). In this paper, we initialize the study of signed
reinforcement number and determine the exact values of Rs(G) for several classes of graphs.

Keywords: Signed domination, signed reinforcement number.
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1. Introduction

Let G = (V(G), E(G)) be a simple graph with vertex set V(G) and edge set E(G). The
open neighborhood, the closed neighborhood and the degree of v € V(G) are defined by
Ng(v) ={u e V(GQ) |uv € E(G)}, Ng[v] = Ng(v)U{v} and dg(v) = |Ng(v)|, respectively.
For S C V(G), Ng(S) is defined to be the union of the open neighborhoods Ng(v) for all
v € S and Ng[S] = Ng(S)U S. Let A(G) denote the maximum degree of a graph G. A
vertex of degree one in G is called a leaf; a support vertex of GG is a vertex adjacent with a
leaf of G. Let L(G) and S(G) denote the set of leaves of G and the set of support vertices
of G, respectively. For two sets A, B C V(G), let E(A,B) ={e=2ay |z € A,y € B} and
e(A,B) = |E(A, B)|.

Let G = (V,E) be a graph and f : V — R is a real-valued function on V. The weight
of fisw(f) = ey f(v). For § C V, define f(S) = > g f(v). Then w(f) = f(V).

*The work was supported by NNSF of China and the Fundamental Research Funds for the Central
Universities.
fecorresponding author
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For any v € V, let flv] = f(N]v]) for notation convenience. A function f:V — {-1,1}
is called a signed dominating function (abbreviated by SDF) if f[v] > 1 for all v € V.
The signed domination number of G is v5(G) = min{w(f) | f is a SDF of G}. A ~,(G)-
function is a signed dominating function of G of weight v5(G). Signed domination was first
introduced by Dunbar et al. in [4] and further studied in [1, 3, 6, 7, 9, 14, 10, 11, 12, 13, 15].

The reinforcement number of a graph G is a measurement of the stability of the dom-
ination in G. The reinforcement number of a graph G is the smallest number of edges
which must be added to G to decrease the domination number of G (the classic domination
number of a graph G is the minimum cardinality of a subset D of V(G) such that for each
v € V(G), NvJn D # 0 ). The definition was first introduced by Kok and Mynhardt
[8]. During the past twenty years, the reinforcement number associated with domination
parameters were studied in literatures, for example, Ghoshal et al.[5] defined and studied
the reinforcement number associated with the strong domination number; Gayla et al.[2]
studied the reinforcement number associated with the fractional domination number.

In this paper, we define the signed reinforcement number of a graph G, denoted Rs(G),
to be the minimum cardinality of a set S of edges in the complement graph G¢ of G such
that v5(G + S) < 75(G). A minimum edge set S C E(G°) with 75(G 4+ S) < v(G) is
called a signed reinforcement set of G. Note that the signed reinforcement set of a graph
G maybe doesn’t exist, for example, for K,,, the complete graph on n vertices or Cjy, the
cycle on 4 vertices. So if the signed reinforcement set of a graph G doesn’t exist, we define
Rs(G) =0.

The paper is organized as follows. Section 2 gives some lemmas about signed domination
numbers and signed reinforcement numbers. Sections 3 and 4 determine the exact values
of the signed reinforcement numbers of paths, cycles and wheels. Section 5 gives a sharp
bound of the signed reinforcement number of trees.

2. Lemmas

In this section, we will give some useful lemmas about signed dominating functions of a
graph G. Let K,,, P, and C,, denote a complete graph, a path and a cycle on n vertices,
respectively. The following lemmas are given in [4] and the proof of them can be found
in [4].

Lemma 2.1. [4] A signed dominating function f on a graph G is minimal if and only if
for every vertex v € V with f(v) =1, there exists a vertex u € N[v] with flu] € {1,2}.
Lemma 2.2. [4] If f is a signed dominating function of a graph G, then f(v) =1 for any
v e L(G)US(Q).

Lemma 2.3. [4] Let G be a graph on n vertices. Then vs(G) = n if and only if V(G) =
L(G)US(G).

Lemma 2.4. [4] If G has more than three vertices and mazimum degree A < 3, then
1s(G) = 5.
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The following lemma gives a lower bound for the signed domination number of a graph
G with precisely one vertex with maximum degree four.

Lemma 2.5. Let G be a graph with order n and mazimum degree four. If G has precisely
one vertex with mazimum degree four, then v5(G) > ”T_Q

Proof. Let f be a ~ys-function and let P and M be the reverse images of +1 and -1 under
f. Then |P|+ |M| = n and ~4(G) = |P| — |M].

If M =0, then v4(G) = n > 252
If M # (), we evaluate the number, e(M, P), of edges between P and M in G.

For any v € M, to guarantee f[v] > 1, there exist at least two edges from v to P, which
means that e(M, P) > 2|M|.

On the other hand, for each v € P, to guarantee f[v] > 1, |[N(v) N M| < |N(v) N P].

Hence there are at most L@J edges from v to M. Since G has precisely one vertex with
maximum degree four, e(P,M) < |P| —1+2=|P|+ 1.

Hence, 2|M| < e(M,P) < |P|+ 1. Combine with |P|+ |M| = n, we have [M| < %

and |P| > 21 So, 4,(G) = [P| - |M| > 2 —nil _n2

O

The signed domination numbers of paths, cycles and stars were given in [4].

Lemma 2.6. [4]

1 vs(K1p-1) =n,n > 2;
2. vs(Pn) =n — 2Ln_§2J’ n>2;
3. 7s(Cn) =n —2|5], n > 3.

Lemma 2.7. Let G be a connected graph with |V(G)| > 3. If vs(G) = |V(G)|, then
Rs(G) = 1.

Proof. Since v5(G) = |V(G)|, by Lemma 2.3, V(G) = L(G)US(G). Let f be a ys-function.
Since v5(G) = |V(G)|, f = 1. Since |V(G)| > 3, |L(G)| > 2. Let u,v € L(G) and w be
the support vertex of u. Since f =1, flw] > 3. Then if we replace the value 1 by —1 on u
and adding the edge uv to G, then the reduced function is a SDF of G + wv with weight
[V(G)] — 2 < 75(G). So Rs(G) = 1. O

Lemma 2.8. For any graph G, if v5(G + A) < vs(G) for some set A C E(G°), then
’YS(G + A) < FYS(G) -2

Proof. Let f and g be minimum signed dominating functions of G+ A and G, respectively,
and let f~!(a) and g~!(a) denote the reversed imagines of a under f and g. Since (G +
A) < 7(G), IF1@)] < lg7H(1)] = 1 (equivalently, [f~'(=1)] > [¢g~'(~1)| + 1). Hence
(G +A) =[O =D g W) = g7 (=) = 2= (G) — 2. O
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3. The signed reinforcement numbers of stars, paths and cycles

Since V(Kl,nfl) == L(Kl,nfl) @] S(Kl,nfl), by Lemmas 2.3 and 27, RS(Kl’nfl) =1if
n > 3. Hence, we have the following observation.

Observation 3.1. Let n > 3. Then Ry(Kj 1) = 1.

Theorem 3.2. Forn > 3,

Rs(Pn)—{i: n=2 (mod 3)

otherwise.
Proof. Denote V(P,) = {vi,ve, -+ ,v,}.
If n = 3k or 3k + 1 for some integer k(> 1), then

Vs (Pt + v1v3k) = 7s(Cap) =k < k42 = v5(P3y)

and
Vo(Psp+1 + v103k11) = Vs(Csp41) =k +1 < k4 3 = v5(Pa+1)-

This implies that Rs(P,) = 1 if n # 2(mod3).

If n = 3k 4 2 for some integer k > 1, let G be the graph obtained from P5;,o by adding
two edges v1v3, v3vsk+2. Now, define a function f as follows:

[ -1, i=1 (mod 3)
Flvi) = { 1,  otherwise

It is an easy task to check thatf[v;] = 1 for every ¢ € [1,3k + 2]. So f is a SDF of G.
Hence, 75(G) < f(V(G)) = k < k + 2 = v5(Psg42). Therefore, Ry(Psj42) < 2.

Now we show that Rs(Psgy2) = 2. If there exists some edge e ¢ E(Psi42) such that
Vs(Pak+2 +€) < vs(Psk42), then, by Lemma 2.8, vs(Pagi2 +€) < vs(Psk42) —2 = k. Since
A(Psjt2 +€) < 3, by Lemma 2.4, v5(Pyesa +€) > [252] =k + 1>k > 75(Pyeg2 + €), a
contradiction. 0

Lemma 3.3. Letn >3 andn =0 or 1 (mod 3). Then

0, n=3,4
RS(CR)_{ 3, n>6.

Proof. Denote V(Cy) = {vo,v1, -+ ,vp—1} and E(Cy) = {vvi41]| ¢ = 0,1,--- ,n — 1},
where the ”+” is under modulo n. If n = 3, then C,, = K3 and R4(C,,) = Rs(K3) = 0.
If n = 4, we can check that 75(Ca) = 2 = 75(Ca + v1v3) = 75(Ca + vov2) = 7s(Ca +
{v1vs,v9v2}) and hence Rs(Cy) = 0.
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If n > 6, let G be the graph obtained from C,, by adding three edges viv3, vivs and
v3vs and define a function f: V(G) — {—1,1} by

N | =1, i=240r3jforje[2[F]]
f(vi) = { 1,  otherwise.

It is an easy task to check that f[v;] > 1 for any i € [1,n]. So f is a SDF of G and hence
15(G) < fF(VIG) =n—=2(l5]+1) =n—=2[3] -2 <n-2[F] = 75(Cn) (Lemma 2.6 (3)).
So we have Rs(C,) < 3.

Next we will show that Rs(C),) > 3 and so the result follows. Suppose to the contrary
that there exist two edges e1,e2 ¢ E(Cy,) such that v,(Cp, 4+ {e1,e2}) <n—2|%] = 7(Cp).
By Lemma 2.8, v5(Cy, + {e1,e2}) < v5(Cr) — 2.

If e1, e are independent, then A(C,, +{e1,e2}) < 3. By Lemma 2.4, v5(C), + {e1,e2}) >
(5] =n—2[%] = 75(Cyp), a contradiction.

If e1, e5 have a common end, then C,, 4+ {e1, es} has precisely one vertex with maximum
degree four. By Lemma 2.5, v4(Cy, 4 {e1,e2}) > [%52] > n—2|2] =1 =(Cy) — 1, a
contradiction too. O

Lemma 3.4. Ifn =2 (mod 3) and n > 5, then Rs(C,) = 2.

Proof. Let V(C,,) and E(C,,) be defined the same as in the former proof and let G be the
graph obtained by adding two edges vivs and vsvs. Suppose n = 3k 4+ 2 (k > 1). Define
a function f: V(G) — {—1,1} by

N J =1, i=2o0r3j+1forje[lK]

Flvi) = { 1,  otherwise.

It is an easy task to check that f[v;] > 1 for any ¢ € [1,n]. So f is a SDF of G and
75(G) < f(V(G)) =k < k+2=r~5(Cy). Hence Rs(C),) < 2.

If we can show that Rs(Cy,) > 2, then the result follows. Suppose that there exists some
edge e ¢ E(C,,) such that v5(Cp+e) < v5(Cp,). By Lemma 2.8, v,(Cp+e) < v5(Cp)—2 = k.
Since A(Cp, +e) = 3, 75(Cp, +€) > [5] = k+ 1 by Lemma 2.4, a contradiction with
7vs(Cn, +€) < k. O

From the above two lemmas, we have

Theorem 3.5. Let n > 3. Then

0, n=34
Rs(Cr)=1< 3, n=0o0r1l (mod3) andn>6
2, n=2 (mod 3).
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4. Wheels

A wheel is a graph obtained from a cycle by adding a new vertex such that it is adjacent
with each vertex of the cycle. Let W,, = {w} V C,,_1 denote a wheel obtained from a cycle
Ch—1 and a new vertex w, called the central vertex of W,,. In the following, we denote
V(Cp-1) = {vo,v1," - ,vp—2} and E(W,,) = {wv;,vjvi41,1 = 0,1,--+ ,n — 2}, where the
sum is taken modulo n — 1.

First we determine the signed domination number of W,,.

Lemma 4.1. Forn >4, v(W,) = n—2[2t].

Proof. Since we can extend a SDF of C,,_; to be a SDF of W,, by assigning 1 to the central
vertex w, vs(Wy) < 75(Cp1) + 1 =n—1-2|% | + 1 =n 2|2 |.

In the following, we show that v5(W,) > n —2|2z1]. Let f be a minimum SDF of W,
and let P and M be the set of reverse imagines of 1 and —1 under f, respectively. We
claim that f(w) = 1, equivalently, w € P. If f(w) = —1, to guarantee f[v;] > 1 for any
i=0,---,n—2, f(v;) = 1 since d(v;) = 3. This means that ,(W,) =n—1>n—2[2%1],
a contradiction.

Since flvi] = f(w)+ f(vi—1) + f(vi) + f(vit1) = 1, f(vie1) + f(vi) + f(vig1) = 0. Hence
at most one of three consecutive vertices on C),_; is assigned —1 by f. This implies that
|M| < 3% So ys(Wy) = n — 2| M| > n — 2|31 ]. O

Theorem 4.2.

1. Rs(Wy) =0.

2. If n > 5,
2, n = 1(mod3)
1, otherwise

R = {

Proof. (1) It follows directly from Wy = K4 and Rs(K,,) = 0 for any n > 2.

(2) If n = 3k (k > 2) or n = 3k+2 (k > 1), then, by Lemma 4.1, v4(W,,) = n—2[ 25} | =
k+2. Now, we add an edge vgvy to W,, and define a function g : V(W,, +vove) — {—1, 1}
as follows:

(z) = -1, ifx=wv andi=1,n—2or3j for j€[l,[5] - 2]
g\ = 1,  otherwise

It is an easy task to check that g is a SDF of W,,+vgve. Hence s(W,,+vove) < g(V (W,)) =
n—2[%] =k <k+2=7(Ws). So Rs(W,) = 1.

If n =3k +1 (k> 2), then, by Lemma 4.1, v(Wsy41) = 3k + 1 — 2[ = | = k4 1.
Then we can add two edges vgv2,vovs to W, and define a SDF g of W,, 4+ {vgve, vov4} as
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follows:
(z) = -1, ifz=wv,andi=1,3or 3i — 1 for i € [2,k]
A 1,  otherwise

Hence
Vs(Wakt1 + {vove, vova}) < g(V(Wy)) =3k +1-2(k+1) =k -1 <k +1=s(Wakt1).

So RS(W3k+1) < 2.

In the following, we will prove that Rs(W3,11) > 2. Suppose to the contrary that there
exists an edge e ¢ E(W),,) such that v5(Wsk1 +€) < vs(Wsgy1) = k + 1.

Let ¢ be a minimum SDF of W31 + e and let P and M be the reverse imagines of 1
and —1 under ¢, respectively. Then,

{ |P| 4 |M| =3k + 1
|P| = M| =7s(Wap1 +€) <k

Since |M| and |P| are integers, the equation array implies that

IM| > k+1
|P| < 2k

With a same reason with f(w) = 1 in the proof of Lemma 4.1, ¢(w) = 1. Then
M C V(Cs). Since | M| > k + 1, there are three consecutive vertices v;_1,v;,v;11 on Csy
such that two of them are in M.

If the two members of {v;_1,v;,v;41} N M are consecutive on Csi, without loss of
generality, suppose v;_1,v; € M. Then, to guarantee that ¢[v,—1] > 1, ¢[v;] > 1, d(vi—1) >
4 and d(v;) > 4. This is impossible since v;_1,v; can not be the two ends of the new
adding edge e. Hence we must have v;_1,v,11 € M.

To guarantee ¢[v;] > 1, d(v;) = 4 and ¢(v;) = 1. This means that v; must be an end of
e. Suppose € = v;Uy,. Then ¢(v,,) = 1. Now we compute the number of edges between M
and P — {w} with two methods. Let P’ = P — {w}.

Since, for each x € M, d(z) = 3 and ¢[z] = —1 + ¢(w) + ¢(N(z) \ {w}) > 1, (N (x) \
{w}) > 1. So, there are two edges from z to the vertices in P’, this means e(z, P’) = 2.
Hence e(M, P') = 2|M| > 2(k + 1).

Since, for each x € P — {w,v;,v,}), d(z) = 3 and ¢[z] =1+ 14+ ¢(N(z) \ {w}) > 1,
d(N(z) \ {w}) > —1. Hence there is at most one edge from z to the vertices in M, which
means that e(xz, M) <1 for each z € V(P — {w,v;, v, }). For v; and v,,, there are at most
2 edges from v; or v, to vertices in M. So,

e(P',M) <|P—{w,vi,om}| +4<2k—-3+4=2k+1<2(k+1) <e(M,P),

a contradiction. O
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5. Trees

Lemma 5.1. For any tree T with order n > 3, Rs(T) < 3.

Proof. If v5(T') = n, then Ry(T) =1 < 3 by Lemma 2.7.

Now suppose 75(G) < n. Then T # K ,_;. Hence there exist two leaves uj,v; such
that they have two different support vertices us and wvg, respectively.

If L(T) = {u1,v1}, then T'= P,, and so Rs(T") < 2 by Theorem 3.2.

If L(T) # {u1,v1}, let wy be another leaf of T. Then there is at least one of ug, vy
which is not adjacent with w;. Without loss of generality, assume uswy ¢ E(T). Let f
be a minimum SDF of 7. By Lemma 2.2, f(u;) = f(v;) =1,i = 1,2 and f(w;) = 1. Let
S = {ujvi,uow } if ugve € E(G) and S = {ujv1, ugvg, ugwi } if ugvy ¢ E(G). We can
easily modify f to be a SDF g of T+ S as follows.

-1, T = U
0 ={ 10, TV~ )
Then v5(T + S) < g(V(T + S)) = vs(T) — 2 < 75(T) implies that Rs(T) < 3. O

In fact, the upper bound of the signed reinforcement number of trees given here is not
sharp. In the following, we will give a sharp bound for R4(T).

Lemma 5.2. Let f be a minimum SDF of a tree T'. If there exists a support vertex v with
flv] = 3, then Rs(T) = 1.

Proof. Let u,w be two leaves of T such that at least one of them is adjacent with v in T'.
Then uw is the desired edge to guarantee that (7' + uw) < vs(T). 0

Lemma 5.3. Let f be a minimum SDF of a tree T'. If there exists a support vertex v with
flv] > 2, then Rs(T) < 2.

Proof. If T is a star, then the result is clearly true. Now suppose T is not a star. Then
we can choose two leaves u,w of T such that uv € E(T) and wv ¢ E(T). Hence uw,vw
are two edges to guarantee that v5(7" + {uvw,vw}) < v4(T). So, Rs(T) < 2. O

Lemma 5.4. Let T be a tree obtained from a tree T (|V(T)| > 3) by adding an edge
joining a leaf of T with a leaf of a path Ps. Then Ry(T') < Ry(T).

Proof. Let v be a leaf of T" and let u be its support vertex. Let P3 = x1x9x3 and let T
be a tree obtained from 7'U Ps by adding an edge zsv. It is an easy task to check that
vs(T") = vs(T) 4+ 1. Now suppose Rs(T) = r and S is a set of edges with |S| = r such that
Ys(T' 4+ S) < 7v5(T) — 2 (by Lemma 2.8). By Lemma 5.1, r < 3.

Let f be a minimum SDF of T'+ S. Then f(V(T)) = ~vs(T' + 5).
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If v is not incident with any edge in S, then v is a leaf of T+ S, too. Hence f(v) = f(u)
1. We can easily extend f to be a SDF, say g, of 7" + S by defining g(x1) = g(z2) =
and g(x3) = —1 and g(z) = f(x) for the other vertices. So v5(T" + S) < s(T'+ S) + 1
vs(T) — 2+ 1 = ~,(T") — 2. This implies that Ry(T") < |S] = r = Ry(T).

Now we suppose that v is incident with some edges, denoted vuq,--- ,vus, in S.

If f[v] > 2, then we can extend f to be a SDF of 77+ S the same as the above case and
so the result is valid. So we assume that f[v] =1 in the following.

Case 1. f(v) =
If f(u) = 1, then f(u1) + -+ f(uw) = —1. Let 8" = (S — {vug, -+ ,0ou}) U
{x1uq1, -+ ,x1ur}. Then we can define a SDF g of 7" + S’ as follows:
—1, T =3
g(z) =< 1, T = T1,T9

flz), zeV(T)

!

So (T’ + S < g(V(T" +8") < 4s(T +8) +1 < 4(T) — 1 = 45(T") — 2. This implies
that Re(T") < |S'| = |S| = Rs(T).

If flu) = —1, then f(u1) + -+ + f(u)) = 1. Let 8" = (S — {vug, -+ ,0u}) U
{x1u1, -+ ,x1ur}. We also can define a SDF g of 7" + S’ as follows:

—1, T = X9
g(z) = 1, T =x1,T3

f(z), e V(T)
So Ys(T" +8) < g(V(T' + 8) < 7(T 4+ 8) +1 < 75(T) — 1 = ~4(T") — 2 implies that
Ry(T') < |S'| = || = Ry(T).
Case 2. f(v) = —1.

If f(u) = 1, then f(ui) + -+ + f(w) = 1. Let S = (S — {vuy, - ,vus}) U
{z1u1, -+ ,x1us}. Then we can extend f to be a SDF g of 7" + S’ the same as the
case f(v) =1 and f(u) = —1 and so the result is valid.

) =
If f(u) =—1, then f(ui)+---+ f(u) > 3. Since t <r <3, t =3 and f(u1) = f(uz) =
1.

f(us) = 1. Let S’ (S — {vur}) U{z1u1} and define
—1, T = X9
g(z) =< 1, T =11,23

flx), xeV(T)

Then g is a SDF of T/ + 5" and v,(T" +8") < g(V(T'+5") < vs(T+8) +1 < ~(T) -1 =
vs(T") — 2. This also implies that Ry(T") < || = |S| = Rs(T). O

Theorem 5.5. For any tree T of order n > 2, Rs(T') < 2.
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Proof. We prove the result by induction on the order of T'. Since the result is true for
T = Ky, we assume that n > 3. If n = 3, then, by Theorem 3.2, Rs(T) = 1 and the result
is true. Now assume that n > 4 and the result is true for any tree with order less than n.
Let T be a tree with |V(T')| = n and let f : V(T') — {—1,1} be a minimum SDF of 7.
Then f(V(T)) = ~s(T) and f(v) =1 for any v € L(T) U S(T) by Lemma 2.2.

Let P,, = vivy--- v, be a longest path of T.

If d(vy) > 3, then there are at least two leaves adjacent with ve since P, is a longest
path of T'. Since f(v2) =1, fv2] > 3—1 = 2. By Lemma 5.3, Rs(T") < 2 and so the result
is true. Hence, in the following, we suppose d(ve) = 2.

Case 1. d(v3) > 3.

Case 1.1. If vz is adjacent with a leaf x, then f(z) = f(v3) = 1. So flve] > 3. By
Lemma 5.2, Rs(T') = 1.

Case 1.2. If v3 is not adjacent with any leaf of T', since P,, is a longest path of T, each
neighbor of vs other than vy is a support vertex of T'. Since d(vy) = 2, we can assume
that each component of T'— {v3} not containing vy is isomorphic to Ko. If f(vs) = 1, then
flv2] > 3. By Lemma 5.2, Rs(T") = 1. Now we assume f(v3) = —1.

Let y1y2 be a component of T' — {v3} other than vive with yovs € E(T). Let S =
{v1vs,y1v3}. Define a function g : V(T + S) — {—1,1} as follows:

_]-7 r=1vy,u
g(x) =< 1, T =3
f(x), otherwise

It is an easy task to check that g[x] > 1 for any vertex x € V(T4 .S) and hence g is a SDF
of T+ 5. Sovs(T+8) < g(V(T+ S)) =~s(T) — 2 which implies that Rs(T") < |S| = 2.

Case 2. d(v3) = 2.
Case 2.1. If f(v3) =1, then flvs] > 3 and so Rs(T") = 1 by Lemma 5.2.
Case 2.2. If f(v3) = —1, then, to guarantee f[vs] > 1, f(v4) must be 1.

If d(vs) = 2, then, to guarantee flvg] > 1, f(vs) = 1. Let T" = T — {vy,v2,v3}. By
the inductive hypothesis, RS(T,) < 2. Since {vy,vz,v3} induce a path P3, by Lemma 5.4,
Ry(T) = Ry(T' + P3) < R,(T") < 2.

Now assume that d(vg) > 3.

If vy is a support vertex and w is a leaf adjacent with vy, then f(w) = f(v4) = 1. Let

S = {viv3,wvs}. We can define a SDF g of T'+ S as follows:

—1, T = w, vy
g(z) =< 1, T =3
f(x), otherwise

Sovs(T +S) < g(V(T +S)) =~(T) — 2 implying that Rs(T) < 2.
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If vq is adjacent with a support vertex y such that N(y) — {vs} are leaves of T, then
f(y) = 1. Since f(v4) = 1 and the value of any leaf assigned by f is 1, fly] > 3. By
Lemma 5.2, we have R (T) = 1.

By the above proofs, we can assume that: (i) each component of 7'— {v4} not containing
v is isomorphic to P3 with an end adjacent with vy; (ii) the value of the vertex adjacent
with vy assigned by f is —1. By this assumption, to guarantee f[vg] > 1, there is exactly
one such component, that means d(vs) = 2, contradicts with the assumption d(vs) > 3. O

Remark 5.6. The upper bound Rs(T') < 2 is sharp since R(Psp42) =2,k > 1.
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