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Abstract

Let G be a graph with vertex set V (G). A function f : V (G) → {−1, 1} is a signed

dominating function of G if, for each vertex of G, the sum of the values of its neighbors

and itself is positive. The signed domination number of a graph G, denoted γs(G), is the

minimum value of
∑

v∈V (G) f(v) over all the signed dominating functions f of G. The signed

reinforcement number of G, denoted Rs(G), is defined to be the minimum cardinality |S| of

a set S of edges such that γs(G + S) < γs(G). In this paper, we initialize the study of signed

reinforcement number and determine the exact values of Rs(G) for several classes of graphs.

Keywords: Signed domination, signed reinforcement number.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G). The
open neighborhood, the closed neighborhood and the degree of v ∈ V (G) are defined by
NG(v) = {u ∈ V (G) | uv ∈ E(G)}, NG[v] = NG(v)∪{v} and dG(v) = |NG(v)|, respectively.
For S ⊆ V (G), NG(S) is defined to be the union of the open neighborhoods NG(v) for all
v ∈ S and NG[S] = NG(S) ∪ S. Let ∆(G) denote the maximum degree of a graph G. A
vertex of degree one in G is called a leaf; a support vertex of G is a vertex adjacent with a
leaf of G. Let L(G) and S(G) denote the set of leaves of G and the set of support vertices
of G, respectively. For two sets A,B ⊆ V (G), let E(A,B) = {e = xy | x ∈ A, y ∈ B} and
e(A,B) = |E(A,B)|.

Let G = (V,E) be a graph and f : V → R is a real-valued function on V . The weight
of f is ω(f) =

∑
v∈V f(v). For S ⊆ V , define f(S) =

∑
v∈S f(v). Then ω(f) = f(V ).

∗The work was supported by NNSF of China and the Fundamental Research Funds for the Central
Universities.

†corresponding author
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For any v ∈ V , let f [v] = f(N [v]) for notation convenience. A function f : V → {−1, 1}
is called a signed dominating function (abbreviated by SDF) if f [v] ≥ 1 for all v ∈ V .
The signed domination number of G is γs(G) = min{ω(f) | f is a SDF of G}. A γs(G)-
function is a signed dominating function of G of weight γs(G). Signed domination was first
introduced by Dunbar et al. in [4] and further studied in [1, 3, 6, 7, 9, 14, 10, 11, 12, 13, 15].

The reinforcement number of a graph G is a measurement of the stability of the dom-
ination in G. The reinforcement number of a graph G is the smallest number of edges
which must be added to G to decrease the domination number of G (the classic domination
number of a graph G is the minimum cardinality of a subset D of V (G) such that for each
v ∈ V (G), N [v] ∩ D �= ∅ ). The definition was first introduced by Kok and Mynhardt
[8]. During the past twenty years, the reinforcement number associated with domination
parameters were studied in literatures, for example, Ghoshal et al.[5] defined and studied
the reinforcement number associated with the strong domination number; Gayla et al.[2]
studied the reinforcement number associated with the fractional domination number.

In this paper, we define the signed reinforcement number of a graph G, denoted Rs(G),
to be the minimum cardinality of a set S of edges in the complement graph Gc of G such
that γs(G + S) < γs(G). A minimum edge set S ⊆ E(Gc) with γs(G + S) < γs(G) is
called a signed reinforcement set of G. Note that the signed reinforcement set of a graph
G maybe doesn’t exist, for example, for Kn, the complete graph on n vertices or C4, the
cycle on 4 vertices. So if the signed reinforcement set of a graph G doesn’t exist, we define
Rs(G) = 0.

The paper is organized as follows. Section 2 gives some lemmas about signed domination
numbers and signed reinforcement numbers. Sections 3 and 4 determine the exact values
of the signed reinforcement numbers of paths, cycles and wheels. Section 5 gives a sharp
bound of the signed reinforcement number of trees.

2. Lemmas

In this section, we will give some useful lemmas about signed dominating functions of a
graph G. Let Kn, Pn and Cn denote a complete graph, a path and a cycle on n vertices,
respectively. The following lemmas are given in [4] and the proof of them can be found
in [4].

Lemma 2.1. [4] A signed dominating function f on a graph G is minimal if and only if
for every vertex v ∈ V with f(v) = 1, there exists a vertex u ∈ N [v] with f [u] ∈ {1, 2}.
Lemma 2.2. [4] If f is a signed dominating function of a graph G, then f(v) = 1 for any
v ∈ L(G) ∪ S(G).

Lemma 2.3. [4] Let G be a graph on n vertices. Then γs(G) = n if and only if V (G) =
L(G) ∪ S(G).

Lemma 2.4. [4] If G has more than three vertices and maximum degree ∆ ≤ 3, then
γs(G) ≥ n

3 .
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The following lemma gives a lower bound for the signed domination number of a graph
G with precisely one vertex with maximum degree four.

Lemma 2.5. Let G be a graph with order n and maximum degree four. If G has precisely
one vertex with maximum degree four, then γs(G) ≥ n−2

3 .

Proof. Let f be a γs-function and let P and M be the reverse images of +1 and -1 under
f . Then |P | + |M | = n and γs(G) = |P | − |M |.

If M = ∅, then γs(G) = n > n−2
3 .

If M �= ∅, we evaluate the number, e(M,P ), of edges between P and M in G.

For any v ∈ M , to guarantee f [v] ≥ 1, there exist at least two edges from v to P , which
means that e(M,P ) ≥ 2|M |.

On the other hand, for each v ∈ P , to guarantee f [v] ≥ 1, |N(v) ∩ M | ≤ |N(v) ∩ P |.
Hence there are at most �d(v)

2 � edges from v to M . Since G has precisely one vertex with
maximum degree four, e(P,M) ≤ |P | − 1 + 2 = |P | + 1.

Hence, 2|M | ≤ e(M,P ) ≤ |P | + 1. Combine with |P | + |M | = n, we have |M | ≤ n+1
3

and |P | ≥ 2n−1
3 . So, γs(G) = |P | − |M | ≥ 2n−1

3 − n+1
3 = n−2

3 .

The signed domination numbers of paths, cycles and stars were given in [4].

Lemma 2.6. [4]

1. γs(K1,n−1) = n, n ≥ 2;

2. γs(Pn) = n − 2�n−2
3 �, n ≥ 2;

3. γs(Cn) = n − 2�n
3 �, n ≥ 3.

Lemma 2.7. Let G be a connected graph with |V (G)| ≥ 3. If γs(G) = |V (G)|, then
Rs(G) = 1.

Proof. Since γs(G) = |V (G)|, by Lemma 2.3, V (G) = L(G)∪S(G). Let f be a γs-function.
Since γs(G) = |V (G)|, f ≡ 1. Since |V (G)| ≥ 3, |L(G)| ≥ 2. Let u, v ∈ L(G) and w be
the support vertex of u. Since f ≡ 1, f [w] ≥ 3. Then if we replace the value 1 by −1 on u
and adding the edge uv to G, then the reduced function is a SDF of G + uv with weight
|V (G)| − 2 < γs(G). So Rs(G) = 1.

Lemma 2.8. For any graph G, if γs(G + A) < γs(G) for some set A ⊆ E(Gc), then
γs(G + A) ≤ γs(G) − 2.

Proof. Let f and g be minimum signed dominating functions of G+A and G, respectively,
and let f−1(a) and g−1(a) denote the reversed imagines of a under f and g. Since γs(G +
A) < γs(G), |f−1(1)| ≤ |g−1(1)| − 1 (equivalently, |f−1(−1)| ≥ |g−1(−1)| + 1). Hence
γs(G + A) = |f−1(1)| − |f−1(−1)| ≤ |g−1(1)| − |g−1(−1)| − 2 = γs(G) − 2.
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3. The signed reinforcement numbers of stars, paths and cycles

Since V (K1,n−1) = L(K1,n−1) ∪ S(K1,n−1), by Lemmas 2.3 and 2.7, Rs(K1,n−1) = 1 if
n ≥ 3. Hence, we have the following observation.

Observation 3.1. Let n ≥ 3. Then Rs(K1,n−1) = 1.

Theorem 3.2. For n ≥ 3,

Rs(Pn) =
{

2, n ≡ 2 (mod 3)
1, otherwise.

Proof. Denote V (Pn) = {v1, v2, · · · , vn}.
If n = 3k or 3k + 1 for some integer k(≥ 1), then

γs(P3k + v1v3k) = γs(C3k) = k < k + 2 = γs(P3k)

and
γs(P3k+1 + v1v3k+1) = γs(C3k+1) = k + 1 < k + 3 = γs(P3k+1).

This implies that Rs(Pn) = 1 if n �= 2(mod3).

If n = 3k +2 for some integer k ≥ 1, let G be the graph obtained from P3k+2 by adding
two edges v1v3, v3v3k+2. Now, define a function f as follows:

f(vi) =
{ −1, i ≡ 1 (mod 3)

1, otherwise

It is an easy task to check thatf [vi] = 1 for every i ∈ [1, 3k + 2]. So f is a SDF of G.
Hence, γs(G) ≤ f(V (G)) = k < k + 2 = γs(P3k+2). Therefore, Rs(P3k+2) ≤ 2.

Now we show that Rs(P3k+2) = 2. If there exists some edge e /∈ E(P3k+2) such that
γs(P3k+2 + e) < γs(P3k+2), then, by Lemma 2.8, γs(P3k+2 + e) ≤ γs(P3k+2)− 2 = k. Since
∆(P3k+2 + e) ≤ 3, by Lemma 2.4, γs(P3k+2 + e) ≥ �3k+2

3 � = k + 1 > k ≥ γs(P3k+2 + e), a
contradiction.

Lemma 3.3. Let n ≥ 3 and n ≡ 0 or 1 (mod 3). Then

Rs(Cn) =
{

0, n = 3, 4
3, n ≥ 6.

Proof. Denote V (Cn) = {v0, v1, · · · , vn−1} and E(Cn) = {vivi+1| i = 0, 1, · · · , n − 1},
where the ”+” is under modulo n. If n = 3, then Cn = K3 and Rs(Cn) = Rs(K3) = 0.
If n = 4, we can check that γs(C4) = 2 = γs(C4 + v1v3) = γs(C4 + v0v2) = γs(C4 +
{v1v3, v0v2}) and hence Rs(C4) = 0.
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If n ≥ 6, let G be the graph obtained from Cn by adding three edges v1v3, v1v5 and
v3v5 and define a function f : V (G) → {−1, 1} by

f(vi) =
{ −1, i = 2, 4 or 3j for j ∈ [2, �n

3 �]
1, otherwise.

It is an easy task to check that f [vi] ≥ 1 for any i ∈ [1, n]. So f is a SDF of G and hence
γs(G) ≤ f(V (G)) = n− 2(�n

3 �+ 1) = n− 2�n
3 �− 2 < n− 2�n

3 � = γs(Cn) (Lemma 2.6 (3)).
So we have Rs(Cn) ≤ 3.

Next we will show that Rs(Cn) ≥ 3 and so the result follows. Suppose to the contrary
that there exist two edges e1,e2 /∈ E(Cn) such that γs(Cn +{e1, e2}) < n−2�n

3 � = γs(Cn).
By Lemma 2.8, γs(Cn + {e1, e2}) ≤ γs(Cn) − 2.

If e1, e2 are independent, then ∆(Cn +{e1, e2}) ≤ 3. By Lemma 2.4, γs(Cn +{e1, e2}) ≥
�n

3 � = n − 2�n
3 � = γs(Cn), a contradiction.

If e1, e2 have a common end, then Cn +{e1, e2} has precisely one vertex with maximum
degree four. By Lemma 2.5, γs(Cn + {e1, e2}) ≥ �n−2

3 � ≥ n − 2�n
3 � − 1 = γs(Cn) − 1, a

contradiction too.

Lemma 3.4. If n ≡ 2 (mod 3) and n ≥ 5, then Rs(Cn) = 2.

Proof. Let V (Cn) and E(Cn) be defined the same as in the former proof and let G be the
graph obtained by adding two edges v1v3 and v3v5. Suppose n = 3k + 2 (k ≥ 1). Define
a function f : V (G) → {−1, 1} by

f(vi) =
{ −1, i = 2 or 3j + 1 for j ∈ [1, k]

1, otherwise.

It is an easy task to check that f [vi] ≥ 1 for any i ∈ [1, n]. So f is a SDF of G and
γs(G) ≤ f(V (G)) = k < k + 2 = γs(Cn). Hence Rs(Cn) ≤ 2.

If we can show that Rs(Cn) ≥ 2, then the result follows. Suppose that there exists some
edge e /∈ E(Cn) such that γs(Cn+e) < γs(Cn). By Lemma 2.8, γs(Cn+e) ≤ γs(Cn)−2 = k.
Since ∆(Cn + e) = 3, γs(Cn + e) ≥ �n

3 � = k + 1 by Lemma 2.4, a contradiction with
γs(Cn + e) ≤ k.

From the above two lemmas, we have

Theorem 3.5. Let n ≥ 3. Then

Rs(Cn) =

⎧⎨
⎩

0, n = 3, 4
3, n ≡ 0 or 1 (mod 3) and n ≥ 6
2, n ≡ 2 (mod 3).
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4. Wheels

A wheel is a graph obtained from a cycle by adding a new vertex such that it is adjacent
with each vertex of the cycle. Let Wn = {w}∨Cn−1 denote a wheel obtained from a cycle
Cn−1 and a new vertex w, called the central vertex of Wn. In the following, we denote
V (Cn−1) = {v0, v1, · · · , vn−2} and E(Wn) = {wvi, vivi+1, i = 0, 1, · · · , n − 2}, where the
sum is taken modulo n − 1.

First we determine the signed domination number of Wn.

Lemma 4.1. For n ≥ 4, γs(Wn) = n − 2�n−1
3 �.

Proof. Since we can extend a SDF of Cn−1 to be a SDF of Wn by assigning 1 to the central
vertex w, γs(Wn) ≤ γs(Cn−1) + 1 = n − 1 − 2�n−1

3 � + 1 = n − 2�n−1
3 �.

In the following, we show that γs(Wn) ≥ n − 2�n−1
3 �. Let f be a minimum SDF of Wn

and let P and M be the set of reverse imagines of 1 and −1 under f , respectively. We
claim that f(w) = 1, equivalently, w ∈ P . If f(w) = −1, to guarantee f [vi] ≥ 1 for any
i = 0, · · · , n−2, f(vi) = 1 since d(vi) = 3. This means that γs(Wn) = n−1 > n−2�n−1

3 �,
a contradiction.

Since f [vi] = f(w)+f(vi−1)+f(vi)+f(vi+1) ≥ 1, f(vi−1)+f(vi)+f(vi+1) ≥ 0. Hence
at most one of three consecutive vertices on Cn−1 is assigned −1 by f . This implies that
|M | ≤ n−1

3 . So γs(Wn) = n − 2|M | ≥ n − 2�n−1
3 �.

Theorem 4.2.

1. Rs(W4) = 0.

2. If n ≥ 5,

Rs(Wn) =
{

2, n = 1(mod3)
1, otherwise

.

Proof. (1) It follows directly from W4 = K4 and Rs(Kn) = 0 for any n ≥ 2.

(2) If n = 3k (k ≥ 2) or n = 3k+2 (k ≥ 1), then, by Lemma 4.1, γs(Wn) = n−2�n−1
3 � =

k +2. Now, we add an edge v0v2 to Wn and define a function g : V (Wn + v0v2) → {−1, 1}
as follows:

g(x) =
{ −1, if x = vi and i = 1, n − 2 or 3j for j ∈ [1, �n

3 � − 2]
1, otherwise

.

It is an easy task to check that g is a SDF of Wn+v0v2. Hence γs(Wn+v0v2) ≤ g(V (Wn)) =
n − 2�n

3 � = k < k + 2 = γs(W3k). So Rs(Wn) = 1.

If n = 3k + 1 (k ≥ 2), then, by Lemma 4.1, γs(W3k+1) = 3k + 1 − 2�3k+1−1
3 � = k + 1.

Then we can add two edges v0v2, v2v4 to Wn and define a SDF g of Wn + {v0v2, v2v4} as
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follows:

g(x) =
{ −1, if x = vi and i = 1, 3 or 3i − 1 for i ∈ [2, k]

1, otherwise
.

Hence

γs(W3k+1 + {v0v2, v2v4}) ≤ g(V (Wn)) = 3k + 1 − 2(k + 1) = k − 1 < k + 1 = γs(W3k+1).

So Rs(W3k+1) ≤ 2.

In the following, we will prove that Rs(W3k+1) ≥ 2. Suppose to the contrary that there
exists an edge e /∈ E(Wn) such that γs(W3k+1 + e) < γs(W3k+1) = k + 1.

Let φ be a minimum SDF of W3k+1 + e and let P and M be the reverse imagines of 1
and −1 under φ, respectively. Then,

{ |P | + |M | = 3k + 1
|P | − |M | = γs(W3k+1 + e) ≤ k

.

Since |M | and |P | are integers, the equation array implies that

{ |M | ≥ k + 1
|P | ≤ 2k

.

With a same reason with f(w) = 1 in the proof of Lemma 4.1, φ(w) = 1. Then
M ⊆ V (C3k). Since |M | ≥ k + 1, there are three consecutive vertices vi−1, vi, vi+1 on C3k

such that two of them are in M .

If the two members of {vi−1, vi, vi+1} ∩ M are consecutive on C3k, without loss of
generality, suppose vi−1, vi ∈ M . Then, to guarantee that φ[vi−1] ≥ 1, φ[vi] ≥ 1, d(vi−1) ≥
4 and d(vi) ≥ 4. This is impossible since vi−1, vi can not be the two ends of the new
adding edge e. Hence we must have vi−1, vi+1 ∈ M .

To guarantee φ[vi] ≥ 1, d(vi) = 4 and φ(vi) = 1. This means that vi must be an end of
e. Suppose e = vivm. Then φ(vm) = 1. Now we compute the number of edges between M
and P − {w} with two methods. Let P ′ = P − {w}.

Since, for each x ∈ M, d(x) = 3 and φ[x] = −1 + φ(w) + φ(N(x) \ {w}) ≥ 1, φ(N(x) \
{w}) ≥ 1. So, there are two edges from x to the vertices in P ′, this means e(x, P ′) = 2.
Hence e(M,P ′) = 2|M | ≥ 2(k + 1).

Since, for each x ∈ P − {w, vi, vm}), d(x) = 3 and φ[x] = 1 + 1 + φ(N(x) \ {w}) ≥ 1,
φ(N(x) \ {w}) ≥ −1. Hence there is at most one edge from x to the vertices in M, which
means that e(x,M) ≤ 1 for each x ∈ V (P −{w, vi, vm}). For vi and vm, there are at most
2 edges from vi or vm to vertices in M. So,

e(P ′,M) ≤ |P − {w, vi, vm}| + 4 ≤ 2k − 3 + 4 = 2k + 1 < 2(k + 1) ≤ e(M,P ′),

a contradiction.
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5. Trees

Lemma 5.1. For any tree T with order n ≥ 3, Rs(T ) ≤ 3.

Proof. If γs(T ) = n, then Rs(T ) = 1 < 3 by Lemma 2.7.

Now suppose γs(G) < n. Then T �= K1,n−1. Hence there exist two leaves u1, v1 such
that they have two different support vertices u2 and v2, respectively.

If L(T ) = {u1, v1}, then T = Pn and so Rs(T ) ≤ 2 by Theorem 3.2.

If L(T ) �= {u1, v1}, let w1 be another leaf of T . Then there is at least one of u2, v2

which is not adjacent with w1. Without loss of generality, assume u2w1 /∈ E(T ). Let f
be a minimum SDF of T . By Lemma 2.2, f(ui) = f(vi) = 1, i = 1, 2 and f(w1) = 1. Let
S = {u1v1, u2w1} if u2v2 ∈ E(G) and S = {u1v1, u2v2, u2w1} if u2v2 /∈ E(G). We can
easily modify f to be a SDF g of T + S as follows.

g(x) =
{ −1, x = u1

f(x), x ∈ V (T ) − {u1} .

Then γs(T + S) ≤ g(V (T + S)) = γs(T ) − 2 < γs(T ) implies that Rs(T ) ≤ 3.

In fact, the upper bound of the signed reinforcement number of trees given here is not
sharp. In the following, we will give a sharp bound for Rs(T ).

Lemma 5.2. Let f be a minimum SDF of a tree T . If there exists a support vertex v with
f [v] ≥ 3, then Rs(T ) = 1.

Proof. Let u,w be two leaves of T such that at least one of them is adjacent with v in T .
Then uw is the desired edge to guarantee that γs(T + uw) < γs(T ).

Lemma 5.3. Let f be a minimum SDF of a tree T . If there exists a support vertex v with
f [v] ≥ 2, then Rs(T ) ≤ 2.

Proof. If T is a star, then the result is clearly true. Now suppose T is not a star. Then
we can choose two leaves u,w of T such that uv ∈ E(T ) and wv /∈ E(T ). Hence uw, vw
are two edges to guarantee that γs(T + {uw, vw}) < γs(T ). So, Rs(T ) ≤ 2.

Lemma 5.4. Let T
′

be a tree obtained from a tree T (|V (T )| ≥ 3) by adding an edge
joining a leaf of T with a leaf of a path P3. Then Rs(T

′
) ≤ Rs(T ).

Proof. Let v be a leaf of T and let u be its support vertex. Let P3 = x1x2x3 and let T
′

be a tree obtained from T ∪ P3 by adding an edge x3v. It is an easy task to check that
γs(T ′) = γs(T )+1. Now suppose Rs(T ) = r and S is a set of edges with |S| = r such that
γs(T + S) ≤ γs(T ) − 2 (by Lemma 2.8). By Lemma 5.1, r ≤ 3.

Let f be a minimum SDF of T + S. Then f(V (T )) = γs(T + S).
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If v is not incident with any edge in S, then v is a leaf of T +S, too. Hence f(v) = f(u) =
1. We can easily extend f to be a SDF, say g, of T ′ + S by defining g(x1) = g(x2) = 1
and g(x3) = −1 and g(x) = f(x) for the other vertices. So γs(T ′ + S) ≤ γs(T + S) + 1 ≤
γs(T ) − 2 + 1 = γs(T ′) − 2. This implies that Rs(T

′
) ≤ |S| = r = Rs(T ).

Now we suppose that v is incident with some edges, denoted vu1, · · · , vut, in S.

If f [v] ≥ 2, then we can extend f to be a SDF of T ′ +S the same as the above case and
so the result is valid. So we assume that f [v] = 1 in the following.

Case 1. f(v) = 1.

If f(u) = 1, then f(u1) + · · · + f(ut) = −1. Let S′ = (S − {vu1, · · · , vut}) ∪
{x1u1, · · · , x1ut}. Then we can define a SDF g of T ′ + S′ as follows:

g(x) =

⎧⎨
⎩

−1, x = x3

1, x = x1, x2

f(x), x ∈ V (T )
.

So γs(T
′
+ S

′
) ≤ g(V (T

′
+ S

′
)) ≤ γs(T + S) + 1 ≤ γs(T ) − 1 = γs(T ′) − 2. This implies

that Rs(T
′
) ≤ |S′| = |S| = Rs(T ).

If f(u) = −1, then f(u1) + · · · + f(ut) = 1. Let S′ = (S − {vu1, · · · , vut}) ∪
{x1u1, · · · , x1ut}. We also can define a SDF g of T ′ + S′ as follows:

g(x) =

⎧⎨
⎩

−1, x = x2

1, x = x1, x3

f(x), x ∈ V (T )
.

So γs(T
′
+ S

′
) ≤ g(V (T

′
+ S

′
)) ≤ γs(T + S) + 1 ≤ γs(T ) − 1 = γs(T ′) − 2 implies that

Rs(T
′
) ≤ |S′| = |S| = Rs(T ).

Case 2. f(v) = −1.

If f(u) = 1, then f(u1) + · · · + f(ut) = 1. Let S′ = (S − {vu1, · · · , vut}) ∪
{x1u1, · · · , x1ut}. Then we can extend f to be a SDF g of T ′ + S′ the same as the
case f(v) = 1 and f(u) = −1 and so the result is valid.

If f(u) = −1, then f(u1) + · · ·+ f(ut) ≥ 3. Since t ≤ r ≤ 3, t = 3 and f(u1) = f(u2) =
f(u3) = 1. Let S′ = (S − {vu1}) ∪ {x1u1} and define

g(x) =

⎧⎨
⎩

−1, x = x2

1, x = x1, x3

f(x), x ∈ V (T )
.

Then g is a SDF of T ′ +S′ and γs(T
′
+S

′
) ≤ g(V (T

′
+S

′
)) ≤ γs(T +S)+1 ≤ γs(T )−1 =

γs(T ′) − 2. This also implies that Rs(T
′
) ≤ |S′| = |S| = Rs(T ).

Theorem 5.5. For any tree T of order n ≥ 2, Rs(T ) ≤ 2.
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Proof. We prove the result by induction on the order of T . Since the result is true for
T = K2, we assume that n ≥ 3. If n = 3, then, by Theorem 3.2, Rs(T ) = 1 and the result
is true. Now assume that n ≥ 4 and the result is true for any tree with order less than n.
Let T be a tree with |V (T )| = n and let f : V (T ) → {−1, 1} be a minimum SDF of T .
Then f(V (T )) = γs(T ) and f(v) = 1 for any v ∈ L(T ) ∪ S(T ) by Lemma 2.2.

Let Pm = v1v2 · · · vm be a longest path of T .

If d(v2) ≥ 3, then there are at least two leaves adjacent with v2 since Pm is a longest
path of T . Since f(v2) = 1, f [v2] ≥ 3− 1 = 2. By Lemma 5.3, Rs(T ) ≤ 2 and so the result
is true. Hence, in the following, we suppose d(v2) = 2.

Case 1. d(v3) ≥ 3.

Case 1.1. If v3 is adjacent with a leaf x, then f(x) = f(v3) = 1. So f [v2] ≥ 3. By
Lemma 5.2, Rs(T ) = 1.

Case 1.2. If v3 is not adjacent with any leaf of T , since Pm is a longest path of T , each
neighbor of v3 other than v4 is a support vertex of T . Since d(v2) = 2, we can assume
that each component of T −{v3} not containing v4 is isomorphic to K2. If f(v3) = 1, then
f [v2] ≥ 3. By Lemma 5.2, Rs(T ) = 1. Now we assume f(v3) = −1.

Let y1y2 be a component of T − {v3} other than v1v2 with y2v3 ∈ E(T ). Let S =
{v1v3, y1v3}. Define a function g : V (T + S) → {−1, 1} as follows:

g(x) =

⎧⎨
⎩

−1, x = y1, v1

1, x = v3

f(x), otherwise
.

It is an easy task to check that g[x] ≥ 1 for any vertex x ∈ V (T +S) and hence g is a SDF
of T + S. So γs(T + S) ≤ g(V (T + S)) = γs(T ) − 2 which implies that Rs(T ) ≤ |S| = 2.

Case 2. d(v3) = 2.

Case 2.1. If f(v3) = 1, then f [v2] ≥ 3 and so Rs(T ) = 1 by Lemma 5.2.

Case 2.2. If f(v3) = −1, then, to guarantee f [v3] ≥ 1, f(v4) must be 1.

If d(v4) = 2, then, to guarantee f [v4] ≥ 1, f(v5) = 1. Let T
′

= T − {v1, v2, v3}. By
the inductive hypothesis, Rs(T

′
) ≤ 2. Since {v1, v2, v3} induce a path P3, by Lemma 5.4,

Rs(T ) = Rs(T
′
+ P3) ≤ Rs(T

′
) ≤ 2.

Now assume that d(v4) ≥ 3.

If v4 is a support vertex and w is a leaf adjacent with v4, then f(w) = f(v4) = 1. Let
S = {v1v3, wv3}. We can define a SDF g of T + S as follows:

g(x) =

⎧⎨
⎩

−1, x = w, v1

1, x = v3

f(x), otherwise
.

So γs(T + S) ≤ g(V (T + S)) = γs(T ) − 2 implying that Rs(T ) ≤ 2.
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If v4 is adjacent with a support vertex y such that N(y) − {v4} are leaves of T , then
f(y) = 1. Since f(v4) = 1 and the value of any leaf assigned by f is 1, f [y] ≥ 3. By
Lemma 5.2, we have Rs(T ) = 1.

By the above proofs, we can assume that: (i) each component of T −{v4} not containing
v5 is isomorphic to P3 with an end adjacent with v4; (ii) the value of the vertex adjacent
with v4 assigned by f is −1. By this assumption, to guarantee f [v4] ≥ 1, there is exactly
one such component, that means d(v4) = 2, contradicts with the assumption d(v4) ≥ 3.

Remark 5.6. The upper bound Rs(T ) ≤ 2 is sharp since R(P3k+2) = 2, k ≥ 1.

References

[1] W. Chen and E. Song, Lower bounds on several versions of signed domination number,
Discrete Math., 308(10) (2008), 1837-1846.

[2] G. S. Domke and R. C. Laskar, The bondage and reinforcement number of γf for
some graphs, Discrete Math., 167/168 (1997), 249-259.

[3] J. E. Dunbar, T. W. Haynes, U. Teschner and L. Volkmann, Bondage, insensitivity,
and reinforcement, In: T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Editors,
Domination in Graphs: Advanced Topics, Marcel Dekker, New York (1998), pp. 471-
489.

[4] J. E. Dunbar, S. T. Hedetniemi, M. A. Henning and P. J. Slater, Signed domination
in graphs, Graph Theory, Combinatorics, and Applications, John Wiley&Sons, Inc. 1
(1995), 311-322.

[5] J. Ghoshal, R. C. Laskar, D. Pillon and C. Wallils, Strong bondage and strong rein-
forcement numbers of graphs, Congr. Numer., 108 (1995), 33-42.

[6] R. Hass and T. B. Wexler, Signed domination numbers of a graph and its complement,
Discrete Math., 283(1-3) (2004), 87-92.

[7] J. Huang, J. Wang and J.-M. Xu, Reinforcement numbers of digraphs, Discrete Appl.
Math., 157(8) (2009),1938-1946.

[8] J. Kok and C. M. Mynhardt, Reinforcement in graphs, Congr. Numer., 79 (1990),
225-231.

[9] X. Lu, Total signed domination numbers of graphs, Int. J. Pure Appl. Math., 29(3)
(2006), 281-288



70 Signed reinforcement numbers of certain graphs

[10] X. Lu, A lower bound on the total signed domination numbers of graphs, Sci. China
Ser.A , 50(8) (2007), 1157-1162.

[11] S. M. Sheikholeslami, Forcing signed domination number of graphs, Matematicki Ves-
nic, 59 (2007), 171-179.

[12] M. Y. Sohn, J. Lee and Y. S. Kwon, Lower bounds of signed domination number of
a graph, Bull. Korean Math. Soc., 41(1) (2004),181-188.

[13] H. Tang and Y. Chen, Upper signed domination number, Discrete Math., 308(15)
(2008), 3416-3419.

[14] B. Zelinka, Signed domination number of directed graphs, Czechoslovak Math. J.,
55(130) (2005),479-482.

[15] Z. Zhang, B. Xu, Y. Li and L. Liu, A note on the lower bounds of signed domination
number of a graph, Discrete Math., 195 (1999), 295-298.


