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a b s t r a c t

The total domination number of a graph G without isolated vertices is the minimum
number of vertices that dominate all vertices in G. The total bondage number bt(G) of G is
theminimumnumber of edges whose removal enlarges the total domination number. This
paper considers grid graphs. An (n,m)-grid graph Gn,m is defined as the cartesian product
of two paths Pn and Pm. This paper determines the exact values of bt(Gn,2) and bt(Gn,3), and
establishes some upper bounds of bt(Gn,4).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

For notation and graph-theoretical terminology not defined here we follow [28]. Specifically, let G = (V , E) be an
undirected graph without loops and multi-edges, where V = V (G) is the vertex-set and E = E(G) is the edge-set, which
is a subset of {xy | xy is an unordered pair of V }. A graph G is nonempty if E(G) ≠ ∅. Two vertices x and y are adjacent if
xy ∈ E(G). For a vertex x, we call the vertices adjacent to it the neighbors of x. We use Pn and Cn to denote a path and a cycle
of order n throughout this paper.

A subset D ⊆ V (G) is called a dominating set of G if every vertex not in D has at least one neighbor in D. The domination
number of G, denoted by γ (G), is the minimum cardinality of a dominating set.

The concept of domination is so an important and classic conception that it has become one of the most widely studied
topics in graph theory, and also is frequently used to study properties of interconnection networks. The early results on this
subject have been, in detail, surveyed in the two excellent domination books by Haynes et al. [12,11]. In the recent decade, a
large number of research papers on domination as well as related topics appear in many scientific journals because of their
applications in many fields such as networks, wireless communication and so on.

A dominating set D of a graph G without isolated vertices is said to be total if every vertex in G has at least one neighbor
in D. The minimum cardinality of a total dominating set is called the total domination number of G, denoted by γt(G). It is
clear that γ (G) 6 γt(G) 6 2γ (G) for any graph Gwithout isolated vertices.

The concept of total domination in graphs was introduced by Cockayne et al. [2] in 1980. The total domination in graphs
has been extensively studied in the literature. In 2009, Henning [14] gave a survey of selected recent results on this topic.

In 1990, Fink et al. [4] introduced the bondage number as a parameter for measuring the vulnerability of the
interconnection network under link failure. The minimum dominating set of sites plays an important role in the network
for it dominates the whole network with the minimum cost. So we must consider whether its function remains good under
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Fig. 1. A (4, 3)-grid graph G4,3 = P4 × P3 .

attack. Suppose that someone such as a saboteur does not knowwhich sites in the network take part in the dominating role,
but does know that the set of these special sites corresponds to a minimum dominating set in the related graph. Then how
many links does he have to attack so that the cost cannot remain the same in order to dominate the whole network? That
minimum number of links is just the bondage number.

A subset B of E(G) is called a bondage set of G if its removal from G results in a graphwith larger domination number than
γ (G). The bondage number b(G) of a nonempty graph G is the minimum number of edges in a bondage set of G. Since the
domination number of every spanning subgraph of a nonempty graph G is at least as great as γ (G), the bondage number of
a nonempty graph is well defined. Many results on this topic are obtained in the literature. The exact values of the bondage
numbers for some graphs are determined, for example, a complete graph, a path, a cycle, a complete t-partite graph [4],
a tree [8,26,27,7], for the Cartesian product of two cycles C4 × Cn [20] and C3 × Cn [24], and for other graphs [16,18,19].
Some upper bounds of the bondage numbers for graphs are established; see, for example, [3,4,9,10,17,19,23,26] for general
graphs, [1,5,21] for planar graphs. In particular, very recently, Hu and Xu [15] have showed that the problem of determining
bondage number for general graphs is NP-hard.

Following Fink et al., Kulli and Patwari [22] proposed the concept of the total bondage number for a graph. A subset B
of E(G) is called a total bondage set of G if its removal from G results in a graph with larger total domination number than
γt(G). The total bondage number bt(G) of a nonempty graph G is the minimum number of edges in a total bondage set of
G. If bt(G) does not exist, for example a star graph K1,n, we define bt(G) = ∞. Kulli and Patwari [22] calculated the exact
values of bt(G) for some standard graphs such as a cycle Cn and a path Pn for n > 4, a complete bipartite graph Km,n and a
complete Kn. Sridharan et al. [25] showed that for any positive integer k there exists a tree T with bt(T ) = k. These authors
also established the upper bounds of bt(G) for a graph G in terms of its order. To the knowledge of the authors, no much
research work on the total bondage number were reported in the literature except for the above-mentioned. However, Hu
and Xu [15] also showed that the problem of determining total bondage number for general graphs is NP-hard.

An (n,m)-grid graph Gn,m is the Cartesian product Pn × Pm of two paths Pn and Pm. In this paper, we consider bt(Gn,m).
Since G1,m ∼= Pm, we assume n ≥ 2 under our discussion. In 2002, Gravier [6] determined γt(Gn,m) for any m ∈ {1, 2, 3, 4}.
In this paper, we obtain the following results.

bt(Gn,2) =

1 if n ≡ 0 (mod 3),
2 if n ≡ 2 (mod 3),
3 if n ≡ 1 (mod 3);

bt(Gn,3) = 1; bt(G6,4) = 2, and

bt(Gn,4)


= 1 if n ≡ 1 (mod 5) and n ≠ 6;
= 2 if n ≡ 4 (mod 5);
≤ 3 if n ≡ 2 (mod 5);
≤ 4 if n ≡ 0, 3 (mod 5).

The proofs of these results are in Sections 3–5, respectively. In Section 2, we give three preliminary results, which are
used in our proofs.

2. Preliminary results

Throughout this paper, we assume that a path Pn has the vertex-set V (Pn) = {1, . . . , n}. An (n,m)-grid graph Gn,m is
defined as the Cartesian product Gn,m = Pn ×Pm with vertex-set V (Gn,m) = {xij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} and two vertices xij
and xi′j ′ being linked by an edge if and only if either i = i′ ∈ V (Pn) and jj ′ ∈ E(Pm), such an edge is called a vertical edge, or
j = j ′ ∈ V (Pm) and ii′ ∈ E(Pn), such an edge is called a horizontal edge. The graph shown in Fig. 1 is a (4, 3)-grid graph G4,3.
It is clear, as a graphic operation, that the Cartesian product satisfies commutative associative law if identify isomorphic
graphs, that is, Gn,m ∼= Gm,n.

The following notations continually appear in our proofs. For a given integer t with t < n,Gt,m is a subgraph of Gn,m.
We use the notation Hn−t,m to denote Gn,m − Gt,m, that is, Hn−t,m is a subgraph of Gn,m induced by the set of vertices
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{xij | t + 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Clearly, Hn−t,m ∼= Gn−t,m. For example, the graph shown in Fig. 1 by heavy lines is a
subgraph H2,3 of G4,3, where n = 4, t = 2 andm = 3.

Note that both G0,m and Hn−n,m are nominal graphs. For convenience of statements, we allow G0,m and Hn−n,m to appear
in our proofs. In this case, we always make their total dominating sets empty.

In addition, let Yi = {xij | 1 ≤ j ≤ m} for 1 ≤ i ≤ n, called a set of vertical vertices in Gn,m.
We state some useful results on γt(Gn,m), which are used in our proofs.

Lemma 2.1. Let n be a positive integer. Then
γt(Gn,2) = 2⌊ n+2

3 ⌋ for n ≥ 1;
γt(G1,3) = 2 and γt(Gn,3) = n for n ≥ 2;

γt(Gn,4) =

⌊
6n + 8

5
⌋ if n ≡ 1, 2, 4 (mod 5),

⌊
6n + 8

5
⌋ + 1 otherwise

for n ≥ 4 [6].

For n ≥ 3, γt(Pn) = γt(Cn) = ⌊
n+2
4 ⌋ + ⌊

n+3
4 ⌋ [13].

Lemma 2.2. Let D be a total dominating set of Gn,m. Then γt(Gi,m) ≤ |D ∩ V (Gi+1,m)| for 1 ≤ i ≤ n − 1 and m ≥ 2.

Proof. Let D′
= D ∩ V (Gi+1,m). If D′

∩ Yi+1 = ∅, then D′ is a total dominating set of Gi,m, and hence γt(Gi,m) ≤ |D′
|. Assume

D′
∩ Yi+1 ≠ ∅ below and let A = {j | xi+1,j ∈ D′, j = 1, 2, . . . ,m}.
Assume i = 1. If m = 2, then |D ∩ V (G2,2)| ≥ 2 = γt(G1,2) is obvious. Suppose m ≥ 3 below. Consider the graph

G = G1,m + x11x1m. Then G ∼= Cm and D′′
= (D′

\ Y2) ∪ {x1(j−1) | j ∈ A} (x10 is replaced by x1n in the case j = 1) is a total
dominating set of G and |D′′

| ≤ |D′
|. By Lemma 2.1, γt(G1,m) = γt(G) ≤ |D′′

| ≤ |D′
|.

Now, assume i ≥ 2. Then D′′′
= (D′

\ Yi+1) ∪ {x(i−1)j | j ∈ A} is a total dominating set of Gi,m and |D′′′
| ≤ |D′

|. Thus, we
have γt(Gi,m) ≤ |D′′′

| ≤ |D′
|, and so the lemma follows. �

Lemma 2.3 (Kulli and Patwari [22]). For a path Pn with n > 4,

bt(Pn) =


2 if n ≡ 2 (mod 4);
1 otherwise.

Since G1,m ∼= Pm and Gn,1 ∼= Pn, by Lemma 2.3, we assume that if one of n andm is 1, then the other is at least 4 when we
consider the existence of bt(Gn,m).

3. The total bondage number of Gn,2

In this section, we determine the exact value of bt(Gn,2) for n ≥ 2. Since the computation of bt(Gn,2) strongly depends
on the value of γt(Gn,2) in Lemma 2.1, our proof consists of several lemmas according to the value of nmodulo 3.

Lemma 3.1. bt(Gn,2) ≤ 2 for n ≢ 1 (mod 3).

Proof. By Lemma 2.1, we have

γt(Gn−1,2) = γt(Gn,2) if n ≢ 1 (mod 3). (3.1)

Let B = {x(n−1)1xn1, x(n−1)2xn2} ⊂ E(Gn,2), and H = Gn,2 − B. By (3.1), we have

γt(H) = 2 + γt(Gn−1,2) ≥ 1 + γt(Gn,2),

which implies that bt(Gn,2) ≤ |B| = 2. �

Lemma 3.2. If n ≡ 1 (mod 3), then γt(Gn,2 − xnj) = γt(Gn,2) − 1 for each j = 1, 2.

Proof. Without loss of generality, we only consider the case j = 1. By the hypothesis, n ≥ 4. It can be directly check that
the lemma holds for n = 4. Assume n ≥ 7 below. Let D be a minimum total dominating set of Gn,2 − xn1. We need to show
|D| = γt(Gn,2) − 1.

We consider a subgraph Gn−4,2 and letD′ be aminimum total dominating set of Gn−4,2. By Lemma 2.1, |D′
| = 2⌊ n−4+2

3 ⌋ =

2⌊ n−2
3 ⌋. Clearly, D′

∪ {x(n−1)2, x(n−2)2, x(n−3)2} is a total dominating set of Gn,2 − xn1. Since n ≡ 1 (mod 3), we have
2⌊ n+4

3 ⌋ = 2⌊ n+2
3 ⌋ = γt(Gn,2) by Lemma 2.1. It follows that

|D| ≤ |D′
| + 3 = 2


n − 2
3


+ 3

= 2

n + 4
3


− 1 = 2


n + 2
3


− 1

= γt(Gn,2) − 1,
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Fig. 2. Two subgraphs Gi−1,2 and Hn−(i+1),2 of Gn,2 .

that is,

|D| ≤ γt(Gn,2) − 1. (3.2)

We now prove that |D| ≥ γt(Gn,2) − 1. If one of x(n−1)1 and xn2 belongs to D, then D is a total dominating set of Gn,2.
By (3.2), we can deduce a contradiction as follows. γt(Gn,2) ≤ |D| ≤ γt(Gn,2) − 1. It follows that neither of x(n−1)1 and xn2
belongs to D. Since D is a total dominating set of Gn,2 −xn1, the vertex x(n−1)2 must be in D to dominate xn2. Thus D∪{x(n−1)1}

is a total dominating set of Gn,2, and so

|D| = |D ∪ {x(n−1)1}| − 1 ≥ γt(Gn,2) − 1.

The lemma follows. �

Lemma 3.3. bt(Gn,2) = 1 for n ≡ 0 (mod 3).

Proof. We only need to show

γt(Gn,2 − x(n−1)1xn1) ≥ γt(Gn,2) + 1. (3.3)

Let H = Gn,2 − x(n−1)1xn1 and D be a minimum total dominating set of H . Then the vertex xn2 must be in D otherwise D
cannot dominate the vertex xn1 in H . Moreover, D is either a total dominating set of Gn+1,2 if xn1 is in D or a total dominating
set of Gn+1,2 − x(n+1)1 if xn1 is not in D. Since n ≡ 0 (mod 3), we have n + 1 ≡ 1 (mod 3) and ⌊

n
3⌋ = ⌊

n+2
3 ⌋. By Lemmas 2.1

and 3.2, we have

γt(H) = |D| ≥ γt(Gn+1,2) − 1 = 2

n + 1 + 2

3


− 1 = 2

n
3


+ 1

= 2

n + 2
3


+ 1 = γt(Gn,2) + 1.

The lemma follows. �

Lemma 3.4. bt(Gn,2) = 2 for n ≡ 2 (mod 3).

Proof. To prove the lemma, we only need to show bt(Gn,2) ≥ 2 by Lemma 3.1. To this end, we only need to show
γt(Gn,2 − e) = γt(Gn,2) for any edge e in Gn,2. Let e be any edge in Gn,2. We only need to prove that γt(Gn,2 − e) ≤ γt(Gn,2)
since γt(Gn,2) ≤ γt(Gn,2 − e) clearly. We attain this aim by constructing a total dominating set D of Gn,2 − e such that
|D| = 2

 n+2
3


, which means |D| = γt(Gn,2) by Lemma 2.1.

We consider two cases according as that e is vertical or horizontal, respectively.
Suppose that e is a vertical edge e = xi1xi2, where 1 ≤ i ≤ n. Let

D =


{xkj | k ≡ 1 (mod 3), j = 1, 2} if i ≡ 2 (mod 3);
{xkj | k ≡ 2 (mod 3), j = 1, 2} otherwise.

Then D is a total dominating set of Gn,2 − e and |D| = 2
 n+2

3


.

Suppose now that e is a horizontal edge, maybe e = xi1x(i+1)1 or e = xi2x(i+1)2, where 1 ≤ i ≤ n − 1. Without loss of
generality, set e = xi1x(i+1)1. We consider two subcases to construct D, respectively.

Assume i ≢ 1 (mod 3). Let

D =


{xkj | k ≡ 2 (mod 3), j = 1, 2} if i ≡ 0 (mod 3);
{xkj | k ≡ 1 (mod 3), j = 1, 2} if i ≡ 2 (mod 3).

Then D is a total dominating set of Gn,2 − e and |D| = 2⌊ n+2
3 ⌋.

Assume now i ≡ 1 (mod 3). We consider Gi−1,2 and Hn−(i+1),2 (see Fig. 2). Let D′ and D′′ be minimum total dominating
sets of Gi−1,2 and Hn−(i+1),2, respectively. Then D = D′

∪ D′′
∪ {xi2, x(i+1)2} is a total dominating set of Gn,2 − e. Note D′

= ∅
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if i = 1 and D′′
= ∅ if i = n − 1. Thus, by Lemma 2.1,

|D| = |D′
| + |D′′

| + 2

= 2

i − 1 + 2

3


+ 2


n − i − 1 + 2

3


+ 2

= 2

n + 2
3


.

The lemma follows. �

Lemma 3.5. bt(Gn,2) = 3 for n ≡ 1 (mod 3).

Proof. Since n ≡ 1 (mod 3), n − 1 ≡ 0 (mod 3). By (3.3), for the edge e0 = x(n−2)1x(n−1)1, we have

γt(Gn−1,2 − e0) ≥ γt(Gn−1,2) + 1. (3.4)

Choose other two edges e1, e2 in Gn,2, where e1 = x(n−1)1xn1 and e2 = x(n−1)2xn2. Let H = Gn,2 − {e0, e1, e2}. Then
H = (Gn−1,2 − e0) +Hn−(n−1),2 and any total dominating set of H must contain vertices xn1 and xn2. By (3.4) and Lemma 2.1,
we have

γt(H) = γt(Gn−1,2 − e0) + 2
≥ γt(Gn−1,2) + 1 + 2

= 2

n − 1 + 2

3


+ 3

= 2

n + 4
3


+ 1 = 2


n + 2
3


+ 1

= γt(Gn,2) + 1,

which implies bt(Gn,2) ≤ 3.
Now we prove bt(Gn,2) ≥ 3. To the end, let e1 and e2 be any two edges in Gn,2, and H = Gn,2 − {e1, e2}. We only need to

prove γt(H) ≤ γt(Gn,2). We consider three cases, respectively.

Case 1 Both e1 and e2 are vertical edges.
Let e1 = xi1xi2, e2 = xj1xj2, i < j, and let

D =


{xkl | k ≡ 1 (mod 3), l = 1, 2} if i, j ≢ 1 (mod 3);
{xkl | k ≡ 2 (mod 3), l = 1, 2} ∪ {x(n−1)1, x(n−1)2} if i, j ≢ 2 (mod 3);
{xkl | k ≡ 0 (mod 3), l = 1, 2} ∪ {x21, x22} otherwise.

ThenD is a total dominating set ofH and γt(H) ≤ |D| = 2
 n+2

3


. By Lemma 2.1, |D| = γt(Gn,2). Thus, for two vertical

edges e1 and e2, we have

γt(H) = γt(Gn,2 − {e1, e2}) ≤ γt(Gn,2). (3.5)

Case 2 One of e1 and e2 is horizontal and the other is vertical.
Without loss of generality, suppose that e1 is horizontal and e2 is vertical, and let e1 = xi1x(i+1)1 and e2 =

xj1xj2, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ n. We will prove γt(H) ≤ γt(Gn,2).
Consider Gi,2 and Hn−i,2. Then both Gi,2 and Hn−i,2 do not contain the edge e1. There are several subcases.

If i ≡ 2 (mod 3), then n − i ≡ 2 (mod 3) since n ≡ 1 (mod 3). By Lemma 3.4, bt(Gi,2) = 2 = bt(Hn−i,2), which
implies γt(Gi,2) = γt(Gi,2 − e2) if e2 is in Gi,2, and γt(Hn−i,2) = γt(Hn−i,2 − e2) if e2 is in Hn−i,2. No matter which case
arises, by Lemma 2.1, we have

γt(H) ≤ γt(Gi,2) + γt(Hn−i,2)

= 2

i + 2
3


+ 2


n − i + 2

3


≤ 2


n + 2
3


= γt(Gn,2). (3.6)

If i ≡ 1 (mod 3) and j ≤ i, then e2 is in Gi,2. By (3.5), γt(Gi,2 − e2) ≤ γt(Gi,2). Thus, the inequalities (3.6) hold.
If i ≡ 0 (mod 3) and j ≥ i + 1, then n − i ≡ 1 (mod 3) and e2 is in Hn−i,2. Since Hn−i,2 ∼= Gn−i,2, by (3.5), we have

γt(Hn−i,2 − e2) ≤ γt(Hn−i,2). Thus, the inequalities (3.6) hold.
The remainder is the case either i ≡ 1 (mod 3) and j ≥ i+ 1 or i ≡ 0 (mod 3) and j ≤ i. Since f : xst → x(n−s+1)t

for s = 1, 2, . . . , n is an automorphism of Gn,m, the two edges e1 and e2 can be considered as x(n−i)1x(n−i+1)1 and
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x(n−j+1)1x(n−j+1)2, respectively. Then the two cases are the same since n − i ≡ 0 (mod 3) and n − j + 1 ≤ n − i. We
only consider the latter case, that is, i ≡ 0 (mod 3) and j ≤ i.
If j = i, let D = {xkl | k ≡ 2 (mod 3), l = 1, 2} ∪ {xn1, xn2}, then D is a total dominating set of H , and so,

γt(H) ≤ |D| = 2

n + 2
3


= γt(Gn,2).

We now assume j < i. Consider Gi−1,2 and Hn−(i+1),2. Let D′ be a minimum total dominating set of Gi−1,2 − e2,
and D′′ be a minimum total dominating set of Hn−(i+1),2. Then D = D′

∪ D′′
∪ {xi2, x(i+1)2} is a total dominating set

of H . Since i − 1 ≡ 2 (mod 3), γt(Gi−1,2) = γt(Gi−1,2 − e2) by Lemma 3.4. Hn−(i+1),2 contains neither e1 nor e2. By
Lemma 2.1, we have

γt(H) ≤ |D| = |D′
| + |D′′

| + 2
≤ 2 + γt(Gi−1,2) + γt(Hn−(i+1),2)

= 2 + 2

i + 1
3


+ 2


n − i + 1

3


= 2


n + 2
3


= γt(Gn,2).

Case 3 Both e1 and e2 are horizontal edges.
Without loss of generality, let e1 = xi1x(i+1)1 and e2 = xkjx(k+1)j are two distinct horizontal edges,where 1 ≤ j ≤ 2

and i ≤ k < n, and j = 2 if i = k. To prove γt(H) ≤ γt(Gn,2), we consider three subcases, respectively.
Subcase 3.1 k = i.

In this subcase, e2 = xi2x(i+1)2,H is disconnected and has exactly two connected componentsGi,2 and
Hn−i,2. Since both Gi,2 and Hn−i,2 contain neither of e1 and e2, we have γt(H) = γt(Gi,2) + γt(Hn−i,2) =

γt(Gn,2) by Lemma 2.1.
Subcase 3.2 k = i + 1.

In this subcase, Gi,2 and Hn−i−1,2 contain neither e1 nor e2.
If i ≡ 0 or 1 (mod 3), let D′ be a minimum total dominating set of Gi−1,2, and D′′ be a minimum total

dominating set of Hn−i−1,2, then D = D′
∪ D′′

∪ {xi2, x(i+1)2} is a total dominating set of H . Note D′
= ∅

if i = 1. By Lemma 2.1, we have
γt(H) ≤ |D| ≤ 2 + γt(Gi−1,2) + γt(Hn−i−1,2)

= 2 + 2

i + 1
3


+ 2


n − i + 1

3


= 2


n + 2
3


= γt(Gn,2).

If i ≡ 2 (mod 3), let D′ be a minimum total dominating set of Gi−2,2, and D′′ be a minimum total
dominating set of Hn−i−2,2, then D = D′

∪ D′′
∪ {x(i−1)p, xip, x(i+1)p, x(i+2)p}, where p = 3 − j, is a total

dominating set of H . Note that D′
= ∅ if i = 2 and D′′

= ∅ if i = n − 2. By Lemma 2.1, we have
γt(H) ≤ |D| ≤ 4 + γt(Gi−2,2) + γt(Hn−i−2,2)

= 4 + 2

i
3


+ 2


n − i
3


= 2


n + 2
3


= γt(Gn,2).

Subcase 3.3 k > i + 1.
In this case, e2 is in Hn−i,2.

If i ≡ 2 (mod 3), then n − i ≡ 2 (mod 3) as n ≡ 1 (mod 3). Thus, bt(Hn−i,2) = 2 by Lemma 3.4,
which implies γt(Hn−i,2 − e2) = γt(Hn−i,2). If i ≡ 0 (mod 3), then n − i ≡ 1 (mod 3). Subcase 3.1
shows that γt(Gn,2 − {e′

1, e
′

2}) = γt(Gn,2) for two horizontal edges e′

1 = xl1x(l+1)1 and e′

2 = xl2x(l+1)2
for any l = 1, 2, . . . , n − 1 in Gn,2 when n ≡ 1 (mod 3). Since e2 is a horizontal edge in Hn−i,2 and
Hn−i,2 ∼= Gn−i,2, we immediately have γt(Hn−i,2 − e2) = γt(Hn−i,2). Thus, when i ≢ 1 (mod 3), we have

γt(H) ≤ γt(Gi,2) + γt(Hn−i,2 − e2)
= γt(Gi,2) + γt(Hn−i,2)

= γt(Gn,2).
If k ≢ 0 (mod 3) then, by replacing Gk,2 and Hn−k,2 by Hn−i,2 and Gi,2, respectively, we still have

γt(H) ≤ γt(Gk,2 − e1) + γt(Hn−k,2)

= γt(Gk,2) + γt(Hn−k,2)

= γt(Gn,2).
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Now, we assume i ≡ 1 (mod 3) and k ≡ 0 (mod 3). We consider three subgraphs Gi−1,2,Hn−(k+1),2
and Hk−1−(i+1),2.

Let D′ be a minimum total dominating set of Gi−1,2,D′′ be a minimum total dominating set of
Hn−(k+1),2, and D′′′ be a minimum total dominating set of Hk−1−(i+1),2. Then D = D′

∪ D′′
∪ D′′′

∪

{xi2, x(i+1)2, xkp, x(k+1)p}, where p = 3 − j, is a total dominating set of H . Note D′
= ∅ if i = 1,D′′

= ∅ if
k = n − 1 and D′′′

= ∅ if k = i + 2. By Lemma 2.1, we have
γt(H) ≤ |D| ≤ 4 + γt(Gi−1,2) + γt(Hn−k−1,2) + γt(Hk−i−2,2)

= 4 + 2

i + 1
3


+ 2


n − k − 1 + 2

3


+ 2


k − i − 2 + 2

3


= 4 + 2


n − 4
3


= 2


n + 2
3


= γt(Gn,2).

Summing up all cases, we prove the lemma. �

According to the above lemmas, we can state our results in this section as follows.

Theorem 3.1. For any integer n ≥ 2,

bt(Gn,2) =

1 if n ≡ 0 (mod 3),
2 if n ≡ 2 (mod 3),
3 if n ≡ 1 (mod 3).

4. The total bondage number of Gn,3

In this section, we will determine bt(Gn,3) = 1 for n ≥ 2. In this case, Yi = {xij | 1 ≤ j ≤ 3} for 1 ≤ i ≤ n.

Lemma 4.1. Let D be a minimum total dominating set of Gn,3. Then |D ∩ Y1| ≤ 2 and |D ∩ Yn| ≤ 2.

Proof. Without loss of generality, we only show |D ∩ Yn| ≤ 2. By contradiction, suppose that there exists a minimum
total dominating set D of Gn,3 such that |D ∩ Yn| = 3. Then D is still a total dominating set of Gn+1,3. By Lemma 2.1,
n = γt(Gn,3) = |D| = γt(Gn+1,3) = n + 1, a contradiction. Therefore, |D ∩ Yn| ≤ 2. �

Lemma 4.2. Let D be a total dominating set of Gn,3. If at least one of xn1 and xn3 is in D, then |D| ≥ n + 1.

Proof. Let D be a total dominating set of Gn,3.
We first consider that both xn1 and xn3 are in D. If xn2 ∈ D, then |D ∩ Yn| = 3. By Lemma 4.1, D is not a minimum total

dominating set of Gn,3. Thus, by Lemma 2.1, we have |D| ≥ γt(Gn,3) + 1 = n + 1.
Assume xn2 ∉ D below. Since xn2 is not in D, both x(n−1)1 and x(n−1)3 must be in D. Let D′

= (D \ {xn1, xn3}) ∪ {x(n−1)2}.
Then D′ is still a total dominating set of Gn,3, and |D′

| < |D|. By Lemma 2.1, |D| ≥ |D′
| + 1 ≥ γt(Gn,3) + 1 = n + 1.

We now consider that only one of xn1 and xn3 is in D. Without loss of generality, we can assume xn1 ∈ D and xn3 ∉ D. We
prove |D| ≥ n + 1 by induction on the first subscript n ≥ 2 of Gn,3.

It is clear that |D| ≥ 3 for n = 2. Suppose |D| ≥ k + 1 for any integer k < n. We prove that |D| ≥ n + 1 for n ≥ 3.
We can assume that |D ∩ Yi| ≤ 2 for each i = 2, 3, . . . , n − 1 since if |D ∩ Yi| = 3 for some i with 2 ≤ i ≤ n − 1, then
(D \ {xi1, xi3}) ∪ {x(i−1)2, x(i+1)2} is still a total dominating set of Gn,3 with the cardinality at most |D|.

If xi2 ∉ D for each i = 2, 3, . . . , n−1, then each vertex u inD\{xn1} can totally dominate atmost three vertices since u has
at most three neighbors, and xn1 can totally dominate only two vertices. Thus, D can totally dominate at most 2+ 3(|D|− 1)
vertices. On the other hand, D can totally dominate all 3n vertices. From the two facts, we can deduce 3n ≤ 2 + 3(|D| − 1),
which yields |D| ≥ n + 1.

Now assume xi2 ∈ D for some i with 2 ≤ i ≤ n − 1. Let i0 be the largest index such that xi02 ∈ D for 2 ≤ i0 ≤ n − 1. If
xn2 ∈ D and i0 = n − 1, then D \ {xn1} is still a total dominating set of Gn,3. Thus, |D| ≥ γt(Gn,3) + 1 = n + 1 by Lemma 2.1.
We assume i0 ≠ n − 1 if xn2 ∈ D in the following discussion. There are two cases.

Case 1 D ∩ Yi0 = {xi02}.
In this case, since x(i0+1)2 ∉ D by the maximality of i0, x(i0−1)2 ∈ D. Let D1 = D ∩ V (Gi0,3). Then D1 is a total

dominating set of Gi0,3.
If D ∩ Yi0−1 = {x(i0−1)2}, then D2 = D ∩ V (Hn−(i0−2),3) is a total dominating set of Hn−(i0−2),3, and |D1 ∩ D2| =

|{x(i0−1)2, xi02}| = 2 (see Fig. 3). Since Hn−(i0−2),3 ∼= Gn−(i0−2),3 and D2 satisfies the condition in the lemma (i.e.,
xn1 ∈ D2), by the induction hypothesis |D2| ≥ (n − i0 + 2) + 1 = n − i0 + 3. By Lemma 2.1, |D1| ≥ i0. Thus,

|D| ≥ |D1| + |D2| − 2 ≥ i0 + n − i0 + 3 − 2 = n + 1.
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Fig. 3. Two subgraphs Gi0,3 and Hn−(i0−2),3 of Gn,3 .

If |D ∩ Yi0−1| = 2, then D3 = D ∩ V (Hn−(i0−2),3) is a total dominating set of Hn−(i0−2),3. Let D4 = D ∩ V (Gi0−1, 3).
Then |D4∩D3| = 2. Since both ofD3 andD4 satisfy the condition in the lemma, by the induction hypothesis, |D4| ≥ i0
and |D3| ≥ n − (i0 − 2) + 1. Thus,

|D| ≥ |D4| + |D3| − 2 ≥ i0 + n − i0 + 3 − 2 = n + 1.
Case 2 If |D∩Yi0 | = 2, then D5 = D∩V (Gi0,3) is a total dominating set of Gi0,3,D6 = D∩V (Hn−(i0−1),3) is a total dominating

set of Hn−(i0−1),3 and |D5 ∩ D6| = 2. Since both D4 and D5 satisfy the condition in the lemma, by the induction
hypothesis, |D5| ≥ i0 + 1 and |D6| ≥ n − i0 + 1 + 1 = n − i0 + 2. Thus,

|D| ≥ |D5| + |D6| − 2 ≥ i0 + 1 + n − i0 + 2 − 2 = n + 1.

The proof of the lemma is complete. �

Theorem 4.1. bt(Gn,3) = 1 for n ≥ 2.

Proof. Let H = Gn,3 − x(n−1)2xn2 and D be a minimum total dominating set of H . Whether xn2 is in D or not, at least one of
two vertices xn1 and xn3 is in D. Note that D is also a total dominating set for Gn, 3. By Lemma 4.2, |D| ≥ n + 1. Combining
this fact with Lemma 2.1, we have γt(H) = |D| ≥ n + 1 = γt(Gn,3) + 1. Therefore, bt(Gn,3) = 1. �

5. The total bondage number of Gn,4

In this section, we determine the exact value of bt(Gn,4) for n ≡ 1, 4 (mod 5), and establish the upper bounds of bt(Gn,4)
for n ≡ 0, 2, 3 (mod 5).

Lemma 5.1. bt(G6,4) = 2, bt(Gn,4) = 1 for n ≥ 7 and n ≡ 1 (mod 5).

Proof. It is easy to check that B = {x51x61, x52x62} is a total bondage set of G6,4 and γt(G6,4 − e) = γt(G6,4) for any edge e in
G6,4. Thus bt(G6,4) = 2. Assume n ≥ 7 below.

Let D be a minimum total dominating set of Gn,4 − xn2xn3. It is easy to see that |D ∩ (Yn−1 ∪ Yn)| ≥ 4. Thus, |D| ≥

4 + |D ∩ V (Gn−2,4)|. When n ≥ 7, n − 3 ≡ 3 (mod 5) and n − 3 ≥ 4. By Lemma 2.1, we have γt(Gn−3,4) = ⌊
6(n−3)+8

5 ⌋ + 1.
Thus, by Lemma 2.2, we have

|D ∩ V (Gn−2,4)| ≥ γt(Gn−3,4)

=


6(n − 3) + 8

5


+ 1 =


6n + 8

5


− 2

and, hence,

γt(Gn,4 − xn2xn3) = |D| ≥ 2 +


6n + 8

5


> γt(Gn,4).

Therefore, bt(Gn,4) = 1. �

To determine bt(Gn,4) for n ≡ 4 (mod 5), we state two simple observations; see Fig. 4 for n = 9.

Proposition 5.1. For n ≡ 4 (mod 5), both

D = {xi2, xi3, x(i+2)1, x(i+3)1, x(i+2)4, x(i+3)4 : i ≡ 1 (mod 5), 1 ≤ i ≤ n − 3} and
D′

= {xi2, xi3, x(i−3)1, x(i−2)1, x(i−3)4, x((i−2))4 : i ≡ 4 (mod 5), 4 ≤ i ≤ n}

are minimum total dominating sets of Gn,4.
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Fig. 4. Two minimum total dominating sets (bold vertices) of G9,4 defined in Propositions 5.1 and 5.2, respectively.

Proposition 5.2. For n ≡ 4 (mod 5), both

D = {xi1, xi2, x(i+3)1, x(i+3)2, x(i+1)4, x(i+2)4 | i ≡ 1 (mod 10), 1 ≤ i ≤ n − 3}
∪{xj3, xj4, x(j+3)3, x(j+3)4, x(j+1)1, x(j+2)1 | j ≡ 6 (mod 10), 1 ≤ j ≤ n − 3} and

D′
= {xi3, xi4, x(i+3)3, x(i+3)4, x(i+1)1, x(i+2)1 | i ≡ 1 (mod 10), 1 ≤ i ≤ n − 3}

∪{xj1, xj2, x(j+3)1, x(j+3)2, x(j+1)4, x(j+2)4 | j ≡ 6 (mod 10), 1 ≤ j ≤ n − 3}

are minimum total dominating sets of Gn,4.

Lemma 5.2. bt(Gn,4) = 2 for n ≡ 4 (mod 5).

Proof. It is easy to check that B = {x12x13, x42x43} is a total bondage set of G4,4 and γt(G4,4 − e) = γt(G4,4) for any edge e in
G4,4. Thus bt(G4,4) = 2. Assume n ≥ 9 below.

For any edge e ∈ E(Gn,4), it is easy to verify that D or D′ defined in Proposition 5.1 or Proposition 5.2 is also a minimum
total dominating set of Gn,4 − e. Thus, bt(Gn,4) ≥ 2. We now prove that bt(Gn,4) ≤ 2.

Let H = Gn,4 − x(n−1)1xn1 − x(n−1)2xn2 and let S be a minimum total dominating set of H . Then the vertex xn2 must be in
S, and at least one of xn1 and xn3 must be in S in H , that is, |Yn ∩ S| ≥ 2.

If |Yn ∩ S| ≥ 3 then |S| ≥ |S ∩ V (Gn−1,4)| + 3. By Lemmas 2.2 and 2.1,, we have

|S ∩ V (Gn−1,4)| ≥ γt(Gn−2,4)

=


6(n − 2) + 8

5


=


6n + 8

5


− 2

and, hence,

γt(H) = |S| ≥ γt(Gn−2,4) + 3 ≥ 1 +


6n + 8

5


> γt(Gn,4).

If |Yn ∩ S| = 2, then Yn ∩ S can totally dominate at most one vertex in Gn−1,4, that is, x(n−1)3 if so. Thus, (S ∩ V (Gn−1,4)) ∪

{x(n−1)2} is a total dominating set of Gn−1,4, which implies |S| ≥ |(S ∩ V (Gn−1,4)) ∪ {x(n−1)2}| + 1 ≥ γt(Gn−1,4) + 1. By
Lemma 2.1, we have

γt(H) = |S| ≥ γt(Gn−1,4) + 1 > γt(Gn,4).

Therefore, bt(Gn,4) ≤ 2. �

Lemma 5.3. bt(G4,2) = 3, bt(Gn,4) ≤ 3 for n ≥ 7 and n ≡ 2 (mod 5).

Proof. bt(G4,2) = 3 by Theorem 3.1. It is easy to check that B = {x61x71, x62x72, x72x73} is a total bondage set of G7,4. Thus
bt(G7,4) ≤ 3. Assume n ≥ 12 below.

Let H = Gn,4 − x(n−1)1xn1 − x(n−1)2xn2 − xn2xn3 and let S be a minimum total dominating set of H . Since xn1xn2 is an
isolated edge in H , both xn1 and xn2 must be in S. To dominate the three vertices x(n−1)1, xn3 and xn4, we need at least three
other vertices in S. In other words, |(Yn−2 ∪ Yn−1 ∪ Yn) ∩ S| ≥ 5. Thus,

|S| ≥ 5 + |S ∩ V (Gn−3,4)|. (5.1)

By Lemmas 2.2 and 2.1, when n ≥ 8 and n ≡ 2 (mod 5), we have

|S ∩ V (Gn−3,4)| ≥ γt(Gn−4,4)

=


6(n − 4) + 8

5


+ 1 =


6n + 8

5


− 4,

that is,

|S ∩ V (Gn−3,4)| ≥


6n + 8

5


− 4. (5.2)
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It follows from (5.1), (5.2) and Lemma 2.1 that

γt(H) = |S| ≥ 1 +


6n + 8

5


> γt(Gn,4).

Therefore, bt(Gn,4) ≤ 3. �

Lemma 5.4. bt(Gn,4) ≤ 4 for n ≡ 0, 3 (mod 5).

Proof. It is easy to check that B = {x(n−3)1x(n−2)1, x(n−1)1xn1, x(n−1)2xn2, xn2xn3} is a total bondage set of Gn,4 for n = 5, 8.
Thus bt(Gn,4) ≤ 4. Assume n ≥ 10 below.

Let H = Gn,4 − x(n−5)1x(n−4)1 − x(n−5)2x(n−4)2 − x(n−5)3x(n−4)3 − x(n−5)4x(n−4)4 and let S be a minimum total dominating
set of H . Then H consists of two grid subgraphs Gn−5,4 and H5,4, and so

|S| = γt(Gn−5,4) + γt(H5,4). (5.3)

Since n − 5 ≡ 0, 3 (mod 5) and 5 ≡ 0 (mod 5), by Lemma 2.1, we have

γt(Gn−5,4) + γt(H5,4) =


6(n − 5) + 8

5


+ 1 + 8

=


6n + 8

5


+ 3 > γt(Gn,4). (5.4)

Combining (5.3) with (5.4), we have

γt(H) = γt(Gn−5,4) + γt(H5,4) > γt(Gn,4).

Therefore, bt(Gn,4) ≤ 4. �

Summing up the above lemmas, we can state our result, in this section, as follows.

Theorem 5.1. For any integer n ≥ 1, bt(G6,4) = 2, and

bt(Gn,4)


= 1 if n ≡ 1 (mod 5) and n ≠ 6;
= 2 if n ≡ 4 (mod 5);
≤ 3 if n ≡ 2 (mod 5);
≤ 4 if n ≡ 0, 3 (mod 5).

6. Concluding remarks

In this paper, we investigate the total bondage number bt(Gn,m) of an (n,m)-grid graph Gn,m for 2 ≤ m ≤ 4, completely
determine the exact values of bt(Gn,2) and bt(Gn,3). We also partially determine the exact values of bt(Gn,4), and establishes
the upper bounds of bt(Gn,4) for otherwise. We have attempted to decrease the two upper bounds given in Theorem 5.1 for
n ≡ 2 (mod 5) and n ≡ 0, 3 (mod 5) or to prove that they are tight when n is large enough, but not succeeded. Noting
the two upper bounds are tight for some small n’s, we guess that the two upper bounds are tight for n ≥ 7. To prove this
conjecture, it may be necessary to find a newmethod since, according to our way, the removal of any three edges results in
many complicated cases. We also have tried to discuss bt(Gn,m) for general n andm, but it strongly depends on the value of
γt(Gn,m), which has not been determined as yet. Thus, it may also be necessary to determine the value of γt(Gn,m) for general
n and m. These questions are our further work.
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