Bondage number of mesh networks

Futao HU, Jun-Ming XU

School of Mathematical Sciences, University of Science and Technology of China; Wentsun Wu Key Laboratory of Chinese Academy of Sciences, Hefei 230026, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Abstract The bondage number $b(G)$ of a nonempty graph G is the smallest number of edges whose removal from G results in a graph with domination number greater than that of G. Denote $P_n \times P_m$ the Cartesian product of two paths P_n and P_m. This paper determines the exact values of $b(P_n \times P_2)$, $b(P_n \times P_3)$, and $b(P_n \times P_4)$ for $n \geq 2$.

Keywords Bondage number, dominating set, domination number, mesh network

MSC 05C25, 05C40, 05C12, 05C69

1 Introduction

Throughout this paper, for terminologies and notations not defined here, we refer the reader to [30,31]. A graph $G = (V,E)$ is considered as an undirected and simple graph, where $V = V(G)$ is the vertex set and $E = E(G)$ is the edge set.

A nonempty subset $D \subseteq V(G)$ is said to be a dominating set of G if every vertex in G is either in D or adjacent to a vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of all dominating sets in G. A dominating set D is called minimum if $|D| = \gamma(G)$. The bondage number $b(G)$ of a nonempty graph G is the minimum number of edges whose removal from G results in a graph with larger domination number, that is,

$$b(G) = \min\{|B| : B \subseteq E(G), \gamma(G - B) > \gamma(G)\}.$$

A nonempty subset $B \subseteq E(G)$ is said to be a bondage set of G if $\gamma(G - B) > \gamma(G)$.

The concept of the bondage number was proposed by Fink et al. [8] for an undirected graph and by Carlson and Develin [4] for a digraph. However, the first result on bondage numbers was obtained by Bauer et al. [1]. There
are many research articles on the bondage number for undirected graphs and
digraphs (see, for example, [1–4,7,8,10–18,20,21,23–29,32]). In particular, Hu
and Xu [14] showed that the problem determining bondage number for general
graphs is NP-hard.

Apart from its own theoretical interest, the study on the bondage number
was also motivated by the increasing importance in the design and analysis
of interconnection networks. It is well known that the topological structure
of an interconnection network can be modeled by a connected graph whose
vertices represent sites of the network and whose edges represent physical
communication links. A minimum dominating set in the graph corresponds
to a smallest set of sites selected in the network for some particular uses, such
as placing transmitters. Such a set may not work when some communication
links happen fault. Since the fault is possible in real world (hacking,
experimental error, terrorism, etc.), one needs to consider it. What is the
minimum number of faulty links which will make all minimum dominating sets
of the original network not work any more? Such a minimum number is the
bondage number, which measures the robustness of a network with respect
to link failures, wherever a minimum dominating set is required for some
applications.

Motivated by the above relevance of bondage number, one wants to know
how to compute it for a network. However, this computation is generally
difficult; no efficient algorithm has been proposed yet. Therefore, it is of
significance to develop a technique to determine the bondage numbers for some
special graphs or networks. However, the exact value of the bondage number
has been determined for only a few classes of graphs, such as complete graphs,
paths, cycles, and complete t-partition graphs (see, Fink et al. [8] for the
undirected cases, Huang and Xu [15] and Zhang et al. [32] for the directed
cases), trees (see, Bauer et al. [1], Hartnell and Rall [11], Hartnell et al. [10],
Topp and Vestergaard [29], and Teschner [27]), and de Bruijn and Kautz
digraphs (see, Huang and Xu [15]).

Let P_n and C_n be a path and a cycle of order n, respectively. For the
Cartesian product $G_1 \times G_2$ of two graphs G_1 and G_2, Dunbar et al. [7]
determined $b(C_n \times P_2)$ for $n \geq 3$, Sohn et al. [24] determined $b(C_n \times C_3)$
for $n \geq 4$, Kang et al. [20] determined $b(C_n \times C_4)$ for $n \geq 4$. Huang ang
Xu [18] determined $b(C_{5i} \times C_{5j})$ for any positive integers i and j, Cao et al. [2]
determined $b(C_n \times C_5)$ for $n \geq 5$ and $n \not\equiv 3 \pmod{5}$. However, $b(C_n \times C_m)$ for
$m \geq 6$ has been not determined yet.

The mesh $P_n \times P_m$ is a very famous network, and its domination number
was determined for $1 \leq m \leq 6$ [5,6,19,22]. Moreover, Gonçalves et al. have
determined the domination numbers of all $n \times m$ grid graphs in [9] very recently.
However, its bondage number has not been not determined yet. $P_1 \times P_m$ is
isomorphic to P_m, and $b(P_m)$ is determined. In this paper, we present the
exact values of $b(P_n \times P_2)$, $b(P_n \times P_3)$, and $b(P_n \times P_4)$ for $n \geq 2$.

The rest of the paper is organized as follows. Section 2 presents some useful
results. Section 3 determines $b(P_n \times P_2)$, Section 4 determines $b(P_n \times P_3)$, and
Section 5 determines \(b(P_n \times P_4) \). Some remarks are given in Section 6, in which we propose a conjecture:

\[
b(P_n \times P_m) \leq 2, \quad m \geq 5.
\]

2 Preliminary results

Let \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) be two undirected graphs. The **Cartesian product** of \(G_1 \) and \(G_2 \) is an undirected graph, denoted by \(G_1 \times G_2 \), where \(V(G_1 \times G_2) = V_1 \times V_2 \), two distinct vertices \(x_1x_2 \) and \(y_1y_2 \), where \(x_1, y_1 \in V(G_1) \) and \(x_2, y_2 \in V(G_2) \), are linked by an edge in \(G_1 \times G_2 \) if and only if either \(x_1 = y_1 \) and \(x_2y_2 \in E(G_2) \), such an edge is called a **vertical edge**, or \(x_2 = y_2 \) and \(x_1y_1 \in E(G_1) \), such an edge is called a **horizontal edge**. It is clear, as a graphic operation, that the Cartesian product satisfies the commutative and associative law if we identify the isomorphic graphs.

Throughout this paper, the notation \(P_n \) denotes a path with the vertex set \(\{1, 2, \ldots, n\} \). The \((n, m) \)-mesh network, denoted by \(G_{n,m} \), is defined as the Cartesian product \(P_n \times P_m \), with the vertex set \(\{u_{i,j} \mid 1 \leq i \leq n, 1 \leq j \leq m\} \).

The graph shown in Fig. 1 is the \((4,3)\)-mesh network \(G_{4,3} \). It is clear, as a graphic operation, \(G_{n,m} \cong G_{m,n} \).

![Diagram](image)

Fig. 1 \((4,3)\)-mesh network \(G_{4,3} = P_4 \times P_3 \)

The following notation will be used in this paper. For a positive integer \(t \) with \(t < n \), \(G_{t,m} \) is a subgraph of \(G_{n,m} \). Denote

\[
H_{n-t,m} = G_{n,m} - G_{t,m},
\]

that is, \(H_{n-t,m} \) is a subgraph of \(G_{n,m} \) induced by the set of vertices

\[
\{u_{i,j} \mid t + 1 \leq i \leq n, 1 \leq j \leq m\}.
\]

Clearly,

\[
H_{n-t,m} \cong G_{n-t,m}.
\]
The graph shown in Fig. 1 by heavy lines is a subgraph $H_{2,3}$ of $G_{4,3}$, where $n = 4$, $t = 2$ and $m = 3$.

Note that both $G_{0,m}$ and $H_{n-n,m}$ are nominal graphs. For convenience of statements, we allow $G_{0,m}$ and $H_{n-n,m}$ to appear in this paper. If so, we specifically consider that their dominating sets are empty.

In addition, let $Y_i = \{ u_{i,j} : j = 1, 2, \ldots, m \}$ for each $i = 1, 2, \ldots, n$, called a set of vertical vertices of i in $G_{n,m}$.

We state some useful results on $\gamma(G_{n,m})$ to be used in this paper.

Lemma 1 [19,22] Let P_n be a path of order $n \geq 1$, and C_m be a cycle of order $m \geq 3$.

Then $\gamma(G_{n,2}) = \left\lceil \frac{n+1}{2} \right\rceil$; $\gamma(G_{n,3}) = n - \left\lfloor \frac{n-1}{4} \right\rfloor$;

$\gamma(G_{n,4}) = \begin{cases} n + 1, & n = 1, 2, 3, 5, 6 \text{ or } 9, \\ n, & \text{otherwise}; \end{cases}$

$\gamma(C_m \times C_3) = m - \left\lfloor \frac{m}{4} \right\rfloor$.

Lemma 2 Let D be a dominating set of $G_{n,m}$. Then

$\gamma(G_{i,m}) \leq |D \cap V(G_{i+1,m})|$, $\gamma(H_{n-i,m}) \leq |D \cap V(H_{n-i+1,m})|$

for $i = 1, 2, \ldots, n - 1$ and $m \geq 2$.

Proof Since $H_{n-i,m} \cong G_{n-i,m}$, we only need to prove

$\gamma(G_{i,m}) \leq |D \cap V(G_{i+1,m})|$.

Let $D' = D \cap V(G_{i+1,m})$.

If $D' \cap Y_{i+1} = \emptyset$, then D' is a dominating set of $G_{i,m}$, and hence,

$\gamma(G_{i,m}) \leq |D'|$.

Assume $D' \cap Y_{i+1} \neq \emptyset$ below. Let

$B_i = \{ j \mid u_{i+1,j} \in D' \}$.

Then

$D'' = (D' \setminus Y_{i+1}) \cup \{ u_{i,j} \mid j \in B_i \}$

is a dominating set of $G_{i,m}$ and $|D''| \leq |D'|$. Thus, we have

$\gamma(G_{i,m}) \leq |D''| \leq |D'|$.

The lemma follows. \qed
3 Bondage number of \(G_{n,2} \)

Theorem 1 \(b(G_{2,2}) = 3 \), \(b(G_{3,2}) = 2 \), and \(b(G_{n,2}) = 1 \) if \(n \) is odd and \(b(G_{n,2}) = 2 \) if \(n \) is even for \(n \geq 4 \).

Proof It is easy to verify that \(b(G_{2,2}) = 3 \) and \(b(G_{3,2}) = 2 \). In the following, consider \(n \geq 4 \). When \(n \) is odd, we consider the domination number of \(G = G_{n,2} - u_{1,1}u_{1,2} \). Let \(D \) be a minimum dominating set of \(G \). If \(x \in D \) with \(d_G(x) = 1 \), then \(D' = (D \setminus \{x\}) \cup \{y\} \) is also a dominating set, where \(y \) is the only neighbor of \(x \). We can assume that \(D \) does not contain \(u_{1,1} \) neither \(u_{1,2} \) but contains \(u_{2,1} \) and \(u_{2,2} \). By Lemma 2, \(|D| = |D \cap V(H_{n-2,2})| \geq \gamma(H_{n-3,2}) \).

Then by Lemma 1, \(|D| \geq 2 + \gamma(H_{n-3,2}) = 2 + \left\lceil \frac{n-3+1}{2} \right\rceil = 1 + \gamma(G_{n,2}), \)

since \(n \) is odd, which yields \(b(G_{n,2}) = 1 \).

When \(n \) is even, we claim that \(\gamma(G_{n,2}) = \gamma(G_{n,2} - e), \quad \forall e \in E(G_{n,2}). \)

To prove this claim, we first consider that \(e \) is a vertical edge, and let \(e = u_{i,1}u_{j,2} \).

If \(j \) is even, then all the vertices \(u_{i,1}, \ i \equiv 1 \) (mod 4), \(u_{i,2}, \ i \equiv 3 \) (mod 4), \(u_{n,1} \) if \(n \equiv 0 \) (mod 4) or \(u_{n,2} \) if \(n \equiv 2 \) (mod 4), form a dominating set of \(G_{n,2} - e \) with cardinality \(\left\lceil \frac{n+1}{2} \right\rceil \).

If \(j \) is odd, then all the vertices \(u_{i,1}, \ i \equiv 2 \) (mod 4), \(u_{i,2}, \ i \equiv 0 \) (mod 4) and \(u_{2,2} \) form a dominating set of \(G_{n,2} - e \) with cardinality \(\left\lceil \frac{n+1}{2} \right\rceil \).

Assume now that \(e \) is a horizontal edge. Without loss of generality, let \(e = u_{1,1}u_{j+1,1} \).

If \(j \equiv 2 \) or 3 (mod 4), then all the vertices \(u_{i,1}, \ i \equiv 1 \) (mod 4), \(u_{i,2}, \ i \equiv 3 \) (mod 4), and \(u_{n,1} \) form a dominating set of \(G_{n,2} - e \) with cardinality \(\left\lceil \frac{n+2}{2} \right\rceil \).

If \(j \equiv 0 \) or 1 (mod 4), then all the vertices \(u_{i,2}, \ i \equiv 1 \) (mod 4), \(u_{i,1}, \ i \equiv 3 \) (mod 4), and \(u_{n,1} \) form a dominating set of \(G_{n,2} - e \) with cardinality \(\left\lceil \frac{n+2}{2} \right\rceil \).

Therefore, we have \(b(G_{n,2}) \geq 2 \). Next, we show that \(b(G_{n,2}) \leq 2 \). Let \(e_1 = u_{2,1}u_{3,1}, \quad e_2 = u_{2,2}u_{3,2}, \quad G' = G_{n,2} - \{e_1,e_2\} \).

Then \(G' \) consists of two connected components, one is \(G_{2,2} \) and the other is \(H_{n-2,2} \). By Lemma 1, we have \(\gamma(G') = \gamma(G_{2,2}) + \gamma(H_{n-2,2}) = 2 + \left\lceil \frac{n-2+1}{2} \right\rceil = 1 + \gamma(G_{n,2}), \)

which implies \(b(G_{n,2}) \leq 2 \). Thus, \(b(G_{n,2}) = 2 \).
4 Bondage number of $G_{n,3}$

Proposition 1 [19] A minimum dominating set D of $G_{n,3}$ is constructed as follows:

$$D = \begin{cases} \{ u_{i,2} : i \equiv 1 \, (\text{mod} \, 4) \} \cup \{ u_{i,1}, u_{i,3} : i \equiv 3 \, (\text{mod} \, 4) \}, & \text{n odd,} \\ \{ u_{i,2} : i \equiv 1 \, (\text{mod} \, 4) \} \cup \{ u_{i,1}, u_{i,3} : i \equiv 3 \, (\text{mod} \, 4) \} \cup \{ u_{n,2} \}, & \text{n even.} \end{cases}$$

Lemma 3 For each $j = 1, 2, 3$ and $n \equiv 1, 2$ or $3 \, (\text{mod} \, 4)$, we have

$$\gamma(G_{n,3} - u_{1,j}) \geq \gamma(G_{n,3}) = n - \left\lfloor \frac{n-1}{4} \right\rfloor.$$

Proof It is easy to verify that the conclusion is true for $n = 1, 2, 3$. In the following, assume $n \geq 4$. Let $G = G_{n,3} - u_{1,j}$, and let D be a minimum dominating set of G. We only need to show

$$|D| \geq n - \left\lfloor \frac{n-1}{4} \right\rfloor.$$

If $(Y_1 - u_{1,j}) \cap D \neq \emptyset$, then D is a dominating set of $C_n \times C_3$. By Lemma 1,

$$|D| \geq \gamma(C_n \times C_3) = n - \left\lfloor \frac{n}{4} \right\rfloor = n - \left\lfloor \frac{n-1}{4} \right\rfloor$$

since $n \not\equiv 0 \, (\text{mod} \, 4)$.

If $(Y_1 - u_{1,j}) \cap D = \emptyset$, then $|Y_2 \cap D| \geq 2$. By Lemma 2,

$$|D \cap V(H_{n-3,3})| \geq \gamma(H_{n-3,3}).$$

By Lemma 1,

$$|D| \geq 2 + \gamma(H_{n-3,3}) = 2 + n - 3 - \left\lfloor \frac{n-3-1}{4} \right\rfloor = n - \left\lfloor \frac{n-1}{4} \right\rfloor,$$

as required. \qed

Lemma 4 For $n \equiv 0 \, (\text{mod} \, 4)$, we have

$$\gamma(G_{n,3} - u_{1,1}) \geq \gamma(G_{n,3}) = n - \left\lfloor \frac{n-1}{4} \right\rfloor.$$

Proof Let D be a minimum dominating set of $G_{n,3} - u_{1,1}$. We only need to prove

$$|D| \geq n - \left\lfloor \frac{n-1}{4} \right\rfloor.$$

It is easy to verify that the assertion is true for $n = 4$. In the following, we consider the case $n \geq 8$. We consider the following three cases, respectively.

Case 1 $u_{1,2} \in D$ or $u_{2,1} \in D$.

In this case, D is also a dominating set of $G_{n,3}$, and therefore,
\[
|D| \geq \gamma(G_{n,3}) = n - \left\lfloor \frac{n - 1}{4} \right\rfloor.
\]

Case 2 $u_{1,2}, u_{2,1} \notin D$ and $u_{1,3} \in D$.

In this case, $D \setminus \{u_{1,3}\}$ is a dominating set of $H_{n-1,3}$ or $H_{n-1,3} - u_{2,3}$. By Lemma 3,
\[
|D \setminus \{u_{1,3}\}| \geq n - 1 - \left\lfloor \frac{n - 1 - 1}{4} \right\rfloor,
\]
and therefore,
\[
|D| \geq n - \left\lfloor \frac{n - 1}{4} \right\rfloor.
\]

Case 3 $u_{1,2}, u_{2,1} \notin D$ and $u_{1,3} \notin D$.

In this case, $u_{2,2}, u_{2,3} \in D$. We prove the conclusion by two subcases.

Subcase 3.1 $Y_3 \cap D \neq \emptyset$.

Then $D \setminus \{u_{2,2}, u_{2,3}\}$ is a dominating set of $H_{n-2,3}$ or $H_{n-2,3} - u_{3,1}$ or $H_{n-2,3} - u_{3,3}$. By Lemma 3,
\[
|D \setminus \{u_{2,2}, u_{2,3}\}| \geq n - 2 - \left\lfloor \frac{n - 2 - 1}{4} \right\rfloor.
\]
Thus,
\[
|D| \geq n - \left\lfloor \frac{n - 1}{4} \right\rfloor.
\]

Subcase 3.2 $Y_3 \cap D = \emptyset$.

If $u_{4,1} \in D$.

Then $u_{2,2} \notin D$ or $u_{4,3} \in D$, then $D \setminus \{u_{2,2}, u_{2,3}\}$ is a dominating set of $H_{n-2,3}$ or $H_{n-2,3} - u_{3,2}$ or $H_{n-2,3} - u_{3,3}$. By Lemma 3,
\[
|D \setminus \{u_{2,2}, u_{2,3}\}| \geq n - 2 - \left\lfloor \frac{n - 2 - 1}{4} \right\rfloor.
\]
Thus,
\[
|D| \geq n - \left\lfloor \frac{n - 1}{4} \right\rfloor.
\]

Next, assume $u_{4,2}, u_{4,3} \notin D$. Then $u_{5,3} \in D$. If $u_{5,1} \in D$ or $u_{5,2} \in D$, then $D \setminus \{u_{2,2}, u_{2,3}, u_{4,1}\}$ is a dominating set of $H_{n-4,3}$, and hence,
\[
|D \setminus \{u_{2,2}, u_{2,3}, u_{4,1}\}| \geq n - 4 - \left\lfloor \frac{n - 4 - 1}{4} \right\rfloor.
\]
Thus,
\[
|D| \geq n - \left\lfloor \frac{n - 1}{4} \right\rfloor.
\]

If $u_{5,1}, u_{5,2} \notin D$, then $D \setminus \{u_{2,2}, u_{2,3}, u_{4,1}, u_{5,3}\}$ is a dominating set of $H_{n-5,3}$ or $H_{n-5,3} - u_{6,3}$. By Lemma 3,
\[
|D \setminus \{u_{2,2}, u_{2,3}, u_{4,1}, u_{5,3}\}| \geq n - 5 - \left\lfloor \frac{n - 5 - 1}{4} \right\rfloor.
\]
Thus,

\[|D| \geq n - \left\lfloor \frac{n - 1}{4} \right\rfloor. \]

The lemma follows. \(\square\)

Corollary 1 \(b(G_{n,3}) \leq 2.\)

Proof By Lemmas 3 and 4, we have

\[\gamma(G_{n,3} - \{u_{1,1}u_{2,1}, u_{1,1}u_{1,2}\}) > \gamma(G_{n,3}). \]

\(\square\)

Lemma 5 \(b(G_{n,3}) = 1 \text{ for } n \equiv 1 \text{ or } 2 \pmod{4} \text{ and } n \geq 4.\)

Proof Let \(D\) be a minimum dominating set of \(G_{n,3} - u_{3,1}u_{4,1}\). We only need to prove that \(|D| \geq 1 + \gamma(G_{n,3})\) by considering the following three cases, respectively.

Case 1 \(u_{3,2}, u_{3,3} \in D.\)

In this case, \(|V(G_{3,3}) \cap D| = 4.\) By Lemma 2,

\[|D \cap V(H_{n-3,3})| \geq \gamma(H_{n-4,3}). \]

By Lemma 1,

\[|D| \geq 4 + \gamma(H_{n-4,3}) = 4 + n - 4 - \left\lfloor \frac{n - 4 - 1}{4} \right\rfloor = 1 + \gamma(G_{n,3}). \]

Case 2 Exactly one of \(u_{3,2}\) or \(u_{3,3} \in D.\)

In this case, \(|V(G_{3,3}) \cap D| = 3.\) Then \(D' = D \setminus V(G_{3,3})\) is a dominating set of \(H_{n-3,3}\) or \(H_{n-3,3} - u_{4,2}\) or \(H_{n-3,3} - u_{4,3}.\) By Lemma 3,

\[|D| = 3 + |D'| \geq 3 + n - 3 - \left\lfloor \frac{n - 3 - 1}{4} \right\rfloor = n + 1 - \left\lfloor \frac{n - 1}{4} \right\rfloor = 1 + \gamma(G_{n,3}). \]

Case 3 \(u_{3,2}, u_{3,3} \notin D.\)

In this case, \(|V(G_{3,3}) \cap D| = 2\) or \(|V(G_{3,3}) \cap D| = 3.\)

If \(|V(G_{3,3}) \cap D| = 3,\) then \(D \setminus V(G_{3,3})\) is a dominating set of \(H_{n-3,3}.\) By Lemma 1,

\[|D| \geq 3 + \gamma(H_{n-3,3}) = 3 + n - 3 - \left\lfloor \frac{n - 3 - 1}{4} \right\rfloor = 1 + \gamma(G_{n,3}). \]

If \(|V(G_{3,3}) \cap D| = 2,\) then \(V(G_{3,3}) \cap D = \{u_{1,3}, u_{2,1}\}\) and \(D \setminus V(G_{3,3})\) is a dominating set of \(H_{n-2,3} - u_{3,1}.\) By Lemma 3 or 4,

\[|D| \geq 2 + n - 2 - \left\lfloor \frac{n - 2 - 1}{4} \right\rfloor = n + 1 - \left\lfloor \frac{n - 1}{4} \right\rfloor = 1 + \gamma(G_{n,3}). \]

The lemma follows. \(\square\)

Lemma 6 \(b(G_{n,3}) \geq 2 \text{ for } n \equiv 0 \pmod{4}.\)
Bondage number of mesh networks

Proof By Proposition 1,

\[D = \{ u_{i,2} : i \equiv 1 \pmod{4} \} \cup \{ u_{i,1}, u_{i,3} : i \equiv 3 \pmod{4} \} \cup \{ u_{n,2} \} \]

is a minimum dominating set, and by the symmetry of \(G_{n,3} \),

\[D' = \{ u_{i,2} : i \equiv 0 \pmod{4} \} \cup \{ u_{i,1}, u_{i,3} : i \equiv 2 \pmod{4} \} \cup \{ u_{1,2} \} \]

is also a minimum dominating set. It is clear that if we delete any vertical edge in \(G_{n,3} \) or any horizontal edge \(u_{i,1}u_{i+1,1} \) and \(u_{i,3}u_{i+1,3} \) where \(i \equiv 0, 1 \) or 3 (mod 4) or any horizontal edge \(u_{i,2}u_{i+1,2} \) where \(i \equiv 1, 2 \) or 3 (mod 4), \(D \) or \(D' \) is also a dominating set. Next, we consider the domination number of \(G_{n,3} - e \), where \(e \) is any other edge.

Let \(e = u_{i,1}u_{i+1,1} \) or \(e = u_{i,3}u_{i+1,3} \) where \(i \equiv 2 \pmod{4} \), or \(e = u_{i,2}u_{i+1,2} \) where \(i \equiv 0 \pmod{4} \). Then

\[D'' = \{ u_{i,1}, u_{i,3} : i \equiv 1 \pmod{4} \} \cup \{ u_{i,2} : i \equiv 3 \pmod{4} \} \cup \{ u_{n,2} \} \]

is a dominating set of \(G - e \) with cardinality \(n - \lfloor \frac{n-1}{4} \rfloor \). By Lemma 1,

\[|D''| = \gamma(G_{n,3}) \]

From the above discussion, \(\gamma(G_{n,3} - e) = \gamma(G_{n,3}) \) for any edge \(e \in E(G_{n,3}) \). Thus, \(b(G_{n,3}) \geq 2 \).

Lemma 7 \(b(G_{n,3}) \geq 2 \) for \(n \equiv 3 \pmod{4} \).

Proof By Proposition 1,

\[D = \{ u_{i,2} : i \equiv 1 \pmod{4} \} \cup \{ u_{i,1}, u_{i,3} : i \equiv 3 \pmod{4} \} \]

is a minimum dominating set, and by the symmetry of \(G_{n,3} \),

\[D' = \{ u_{i,2} : i \equiv 3 \pmod{4} \} \cup \{ u_{i,1}, u_{i,3} : i \equiv 1 \pmod{4} \} \]

is also a minimum dominating set. It is clear that if we delete any edge from \(G_{n,3} \), \(D \) or \(D' \) is also a dominating set. Thus, \(b(G_{n,3}) \geq 2 \).

Summing up the above results, we have the following theorem, immediately.

Theorem 2 For \(n \geq 3 \), we have

\[b(G_{n,3}) = \begin{cases} 1 & n \equiv 1 \text{ or } 2 \pmod{4}, \\ 2 & n \equiv 0 \text{ or } 3 \pmod{4}. \end{cases} \]

5 Bondage number of \(G_{n,4} \)

In this section, let \(A = \{1, 2, 3, 5, 6, 9\} \).
Lemma 8 Let D be a minimum dominating set of $G_{n,4}$. Then

$$1 \leq |Y_1 \cap D| \leq 2, \quad 1 \leq |Y_n \cap D| \leq 2, \quad n \notin A.$$

Proof By Lemma 1, $|D| = n$. By the symmetry of $G_{n,4}$, we only need to prove that $1 \leq |Y_1 \cap D| \leq 2$. By contradiction. Suppose $|Y_1 \cap D| = 0$ or $|Y_1 \cap D| \geq 3$.

If $|Y_1 \cap D| = 0$, then $|Y_2 \cap D| = 4$. By Lemma 2,

$$|D \cap V(H_{n-2,4})| \geq \gamma(H_{n-3,4}).$$

By Lemma 1,

$$|D| \geq 4 + \gamma(H_{n-3,4}) \geq 4 + n - 3 = n + 1,$$

a contradiction with $|D| = n$. Thus, $|Y_1 \cap D| \geq 1$.

Assume now $|Y_1 \cap D| \geq 3$. By Lemma 2,

$$|D \cap V(H_{n-1,4})| \geq \gamma(H_{n-2,4}).$$

By Lemma 1,

$$|D| \geq 3 + \gamma(H_{n-2,4}) \geq 3 + n - 2 = n + 1,$$

a contradiction with $|D| = n$. Thus, $|Y_1 \cap D| \leq 2$. \hfill \Box

Lemma 9 Let D be a minimum dominating set of $G_{n,4}$. Then $|Y_1 \cap D| = 1$ and

$$|Y_n \cap D| = 1, \quad n \in \{4, 7, 8, 10, 11\}.$$

Proof By the symmetry of $G_{n,4}$ and Lemma 8, we only need to prove $|Y_1 \cap D| \neq 2$. Suppose, to the contrary, that there exists a minimum dominating set D of $G_{n,4}$ such that $|Y_1 \cap D| = 2$.

If $n \neq 10$ then, by Lemma 2,

$$|D \cap V(H_{n-1,4})| \geq \gamma(H_{n-2,4}).$$

By Lemma 1,

$$|D| \geq 2 + \gamma(H_{n-2,4}) \geq 2 + n - 1 = n + 1,$$

a contradiction with $|D| = n$.

Now, assume $n = 10$. Let $D' = D \setminus Y_1$. If $Y_2 \cap D \neq \emptyset$, then there exists a vertex $u_{2,j}$ such that $D' \cup \{u_{2,j}\}$ is a dominating set of $H_{n-1,4}$. By Lemma 1,

$$|D| = 2 + |D'| \geq 2 + \gamma(G_{9,4}) - 1 = 11,$$

a contradiction with $|D| = 10$. Next, we assume that $Y_2 \cap D = \emptyset$. Then $|Y_3 \cap D| \geq 2$. By Lemma 2,

$$|D \cap V(H_{n-3,4})| \geq \gamma(H_{n-4,4}).$$

By Lemma 1,

$$|D| \geq 4 + \gamma(H_{n-4,4}) = 4 + 7 = 11,$$

a contradiction with $|D| = 10$. The lemma follows. \hfill \Box
Lemma 10 Let D be a minimum dominating set of $G_{n,4}$. Then

$$|Y_1 \cap D| = 1, \quad |Y_n \cap D| = 1, \quad n \notin A.$$

Proof By the symmetry of $G_{n,4}$ and Lemma 8, we only need to prove $|Y_1 \cap D| \neq 2$. By Lemma 9, the statement is true for $n \in \{4, 7, 8, 10, 11\}$. We proceed by induction on $n \geq 12$.

Suppose that the assertion is true for any integer k with $10 \leq k < n$. Suppose, to the contrary, that there exists a minimum dominating set D of $G_{n,4}$ such that $|Y_1 \cap D| = 2$. If $Y_2 \cap D = \emptyset$, then $D' = D \setminus Y_1$ is a dominating set of $H_{n-2,4}$ and $|Y_3 \cap D'| \geq 2$. By the induction hypothesis, D' is not a minimum dominating set of $H_{n-2,4}$, and hence,

$$|D'| \geq \gamma(H_{n-2,4}) + 1 \geq n - 1$$

by Lemma 1. Then

$$|D| = 2 + |D'| \geq n + 1,$$

a contradiction with $|D| = n$.

If $Y_2 \cap D \neq \emptyset$, there exists a vertex $u_{2,j}$ such that

$$D'' = (D \setminus Y_1) \cup \{u_{2,j}\}$$

is a dominating set of $H_{n-1,4}$ and $|Y_2 \cap D''| \geq 2$. By the induction hypothesis, D'' is not a minimum dominating set of $H_{n-1,4}$, and hence,

$$|D''| \geq \gamma(H_{n-1,4}) + 1 \geq n.$$

Then

$$|D| \geq 2 + |D''| - 1 \geq n + 1,$$

a contradiction with $|D| = n$. The lemma follows. \square

Theorem 3

$$b(G_{5,4}) = b(G_{9,4}) = 3, \quad b(G_{6,4}) = 2, \quad b(G_{n,4}) = 1, \quad n \notin A.$$

Proof By a careful case analysis, we can deduce that

$$b(G_{5,4}) = b(G_{9,4}) = 3, \quad b(G_{6,4}) = 2.$$

Here, we only prove $b(G_{n,4}) = 1$ for $n \notin A$. Then $n \geq 4$. Let D be a minimum dominating set of $G_{n,4} - u_{1,2}u_{1,3}$. By Lemma 1, we only need to show that $|D| \geq n + 1$. We prove the conclusion by considering the following three cases, respectively.

Case 1 $|Y_1 \cap D| = 0$.

In this case, $|Y_2 \cap D| = 4$. By Lemma 2,

$$|D \cap V(H_{n-2,4})| \geq \gamma(H_{n-3,4}).$$
Thus,
\[|D| \geq 4 + \gamma(H_{n-3,4}) \geq n + 1. \]

Case 2 \(|Y_1 \cap D| \geq 2. \)

In this case, \(D \) is a dominating set of \(G_{n,4} \) with \(|Y_1 \cap D| \geq 2. \) By Lemma 10, \(D \) is not a minimum dominating set of \(G_{n,4} \), and hence, \(|D| \geq n + 1 \) by Lemma 1.

Case 3 \(|Y_1 \cap D| = 1. \)

Without loss of generality, let \(u_{1,j_0} \in D \) and \(j_0 \leq 1. \) Then \(u_{2,3}, u_{2,4} \in D \), and hence, \(|Y_2 \cap D| \geq 2. \)

Let \(D' = D \setminus \{u_{1,j_0}\} \). If \(j_0 = 2 \), or \(|Y_2 \cap D| \geq 3 \), or \(j_0 = 1 \) and \(u_{31} \in D' \), then \(D' \) is a dominating set of \(H_{n-1,4} \) and let \(D'' = D'. \) Assume now \(j_0 = 1 \), \(u_{3,1} \notin D \), and \(Y_2 \cap D = \{u_{2,3}, u_{2,4}\} \). If \(u_{3,2} \) or \(u_{3,3} \) or \(u_{3,4} \) belongs to \(D \), then \(D'' = (D' \setminus \{u_{2,3}\}) \cup \{u_{2,2}\} \) is a dominating set of \(H_{n-1,4} \) with \(|Y_2 \cap D''| \geq 2. \)

If \(n \in \{4, 7, 10\} \), then

\[|D''| \geq \gamma(H_{n-1,4}) = n \]

by Lemma 1. If \(n \notin \{4, 7, 10\} \), then \(D'' \) is not a minimum dominating set of \(H_{n-1,4} \) by Lemma 10. By Lemma 1,

\[|D''| \geq \gamma(H_{n-1,4}) + 1 = n. \]

Thus,

\[|D| \geq |D''| + 1 \geq n + 1. \]

In the following, assume \(j_0 = 1 \), \(u_{31} \notin D \), \(Y_2 \cap D = \{u_{2,3}, u_{2,4}\} \), and \(u_{3,2}, u_{3,3}, u_{3,4} \notin D \). Then \(u_{4,1}, u_{4,2} \) should be in \(D \) to dominate \(u_{31} \) and \(u_{32} \), and \(D''' = D \setminus \{u_{1,1}, u_{2,3}, u_{2,4}\} \) is a dominating set of \(H_{n-3,4} \) with \(|Y_3 \cap D'''| \geq 2. \)

If \(n \in \{4, 8, 12\} \), then

\[|D'''| \geq \gamma(H_{n-3,4}) = n - 2 \]

by Lemma 1. If \(n \notin \{4, 8, 12\} \), then \(D''' \) is not a minimum dominating set of \(H_{n-3,4} \) by Lemma 10. Therefore,

\[|D'''| \geq \gamma(H_{n-3,4}) + 1 = n - 2 \]

by Lemma 1. Thus,

\[|D| \geq 3 + |D'''| \geq n + 1. \]

The theorem follows. \(\square \)

6 Remarks

Through determining the bondage number of \(G_{n,m} \) for \(2 \leq m \leq 4 \), we find that if we delete the vertex \(u_{1,1} \), the domination number is invariable. If \(m \) increases,
the effect of $u_{1,1}$ for the domination number will be smaller and smaller in view of probability. Therefore, we expect that

$$\gamma(G_{n,m} - u_{1,1}) = \gamma(G_{n,m}), \quad m \geq 5,$$

and we give the following conjecture.

Conjecture 1 $b(G_{n,m}) \leq 2$ for $m \geq 5$.

In our method, determining the bondage number of a graph strongly depends on the domination number of the graph. Even the exact values of the domination number of some graphs have been determined, determining its bondage number is also very difficult. For example, the domination number of $G_{n,m}$ for $m = 5$ or 6 has been determined [5,6], we cannot determined its bondage number in our method since there are too much cases to consider. Thus, if we want to determine the bondage number of $G_{n,m}$ or to solve the Conjecture 1, we need some new method. It is what we further work on.

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11071233).

References

5. Chang T Y, Clark W E. The domination numbers of the $5 \times n$ and $6 \times n$ grid graphs. J Graph Theory, 1993, 17: 81–107
11. Hartnell B L, Rall D F. A characterization of trees in which no edge is essential to the domination number. Ars Combin, 1992, 33: 65–76
26. Teschner U. The bondage number of a graph G can be much greater than $\Delta(G)$. Ars Combin, 1996, 43: 81–87
29. Topp J, Vestergaard P D. α_k and γ_k-stable graphs. Discrete Math, 2000, 212: 149–160