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Abstract The bondage number b(G) of a nonempty graph G is the smallest
number of edges whose removal from G results in a graph with domination
number greater than that of G. Denote Pn × Pm the Cartesian product of
two paths Pn and Pm. This paper determines the exact values of b(Pn × P2),
b(Pn × P3), and b(Pn × P4) for n � 2.

Keywords Bondage number, dominating set, domination number, mesh
network
MSC 05C25, 05C40, 05C12, 05C69

1 Introduction

Throughout this paper, for terminologies and notations not defined here, we
refer the reader to [30,31]. A graph G = (V,E) is considered as an undirected
and simple graph, where V = V (G) is the vertex set and E = E(G) is the edge
set.

A nonempty subset D ⊆ V (G) is said to be a dominating set of G if every
vertex in G is either in D or adjacent to a vertex in D. The domination number
γ(G) of G is the minimum cardinality of all dominating sets in G. A dominating
set D is called minimum if |D| = γ(G). The bondage number b(G) of a nonempty
graph G is the minimum number of edges whose removal from G results in a
graph with larger domination number, that is,

b(G) = min{|B| : B ⊆ E(G), γ(G − B) > γ(G)}.
A nonempty subset B ⊆ E(G) is said to be a bondage set of G if γ(G − B) >
γ(G).

The concept of the bondage number was proposed by Fink et al. [8] for
an undirected graph and by Carlson and Develin [4] for a digraph. However,
the first result on bondage numbers was obtained by Bauer et al. [1]. There
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are many research articles on the bondage number for undirected graphs and
digraphs (see, for example, [1–4,7,8,10–18,20,21,23–29,32]). In particular, Hu
and Xu [14] showed that the problem determining bondage number for general
graphs is NP-hard.

Apart from its own theoretical interest, the study on the bondage number
was also motivated by the increasing importance in the design and analysis
of interconnection networks. It is well known that the topological structure
of an interconnection network can be modeled by a connected graph whose
vertices represent sites of the network and whose edges represent physical
communication links. A minimum dominating set in the graph corresponds
to a smallest set of sites selected in the network for some particular uses, such
as placing transmitters. Such a set may not work when some communication
links happen fault. Since the fault is possible in real world (hacking,
experimental error, terrorism, etc.), one needs to consider it. What is the
minimum number of faulty links which will make all minimum dominating sets
of the original network not work any more? Such a minimum number is the
bondage number, which measures the robustness of a network with respect
to link failures, wherever a minimum dominating set is required for some
applications.

Motivated by the above relevance of bondage number, one wants to know
how to compute it for a network. However, this computation is generally
difficult; no efficient algorithm has been proposed yet. Therefore, it is of
significance to develop a technique to determine the bondage numbers for some
special graphs or networks. However, the exact value of the bondage number
has been determined for only a few classes of graphs, such as complete graphs,
paths, cycles, and complete t-partition graphs (see, Fink et al. [8] for the
undirected cases, Huang and Xu [15] and Zhang et al. [32] for the directed
cases), trees (see, Bauer et al. [1], Hartnell and Rall [11], Hartnell et al. [10],
Topp and Vestergaard [29], and Teschner [27]), and de Bruijn and Kautz
digraphs (see, Huang and Xu [15]).

Let Pn and Cn be a path and a cycle of order n, respectively. For the
Cartesian product G1 × G2 of two graphs G1 and G2, Dunbar et al. [7]
determined b(Cn × P2) for n � 3, Sohn et al. [24] determined b(Cn × C3)
for n � 4, Kang et al. [20] determined b(Cn × C4) for n � 4, Huang ang
Xu [18] determined b(C5i ×C5j) for any positive integers i and j, Cao et al. [2]
determined b(Cn ×C5) for n � 5 and n �≡ 3 (mod 5). However, b(Cn ×Cm) for
m � 6 has been not determined yet.

The mesh Pn × Pm is a very famous network, and its domination number
was determined for 1 � m � 6 [5,6,19,22]. Moreover, Gonçalves et al. have
determined the domination numbers of all n×m grid graphs in [9] very recently.
However, its bondage number has not been not determined yet. P1 × Pm is
isomorphic to Pm, and b(Pm) is determined. In this paper, we present the
exact values of b(Pn × P2), b(Pn × P3), and b(Pn × P4) for n � 2.

The rest of the paper is organized as follows. Section 2 presents some useful
results. Section 3 determines b(Pn ×P2), Section 4 determines b(Pn ×P3), and
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Section 5 determines b(Pn ×P4). Some remarks are given in Section 6, in which
we propose a conjecture:

b(Pn × Pm) � 2, m � 5.

2 Preliminary results

Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs. The Cartesian
product of G1 and G2 is an undirected graph, denoted by G1 × G2, where
V (G1×G2) = V1×V2, two distinct vertices x1x2 and y1y2, where x1, y1 ∈ V (G1)
and x2, y2 ∈ V (G2), are linked by an edge in G1 × G2 if and only if either
x1 = y1 and x2y2 ∈ E(G2), such an edge is called a vertical edge, or x2 = y2

and x1y1 ∈ E(G1), such an edge is called a horizontal edge. It is clear, as a
graphic operation, that the Cartesian product satisfies the commutative and
associative law if we identify the isomorphic graphs.

Throughout this paper, the notation Pn denotes a path with the vertex
set {1, 2, . . . , n}. The (n,m)-mesh network, denoted by Gn,m, is defined as the
Cartesian product Pn × Pm, with the vertex set {ui,j | 1 � i � n, 1 � j � m}.

The graph shown in Fig. 1 is the (4, 3)-mesh network G4,3. It is clear, as a
graphic operation, Gn,m

∼= Gm,n.
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Fig. 1 (4, 3)-mesh network G4,3 = P4 × P3

The following notation will be used in this paper. For a positive integer t
with t < n, Gt,m is a subgraph of Gn,m. Denote

Hn−t,m = Gn,m − Gt,m,

that is, Hn−t,m is a subgraph of Gn,m induced by the set of vertices

{ui,j | t + 1 � i � n, 1 � j � m}.

Clearly,
Hn−t,m

∼= Gn−t,m.
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The graph shown in Fig. 1 by heavy lines is a subgraph H2,3 of G4,3, where
n = 4, t = 2 and m = 3.

Note that both G0,m and Hn−n,m are nominal graphs. For convenience
of statements, we allow G0,m and Hn−n,m to appear in this paper. If so, we
specifically consider that their dominating sets are empty.

In Addition, let Yi = {ui,j : j = 1, 2, . . . ,m} for each i = 1, 2, . . . , n, called a
set of vertical vertices of i in Gn,m.

We state some useful results on γ(Gn,m) to be used in this paper.

Lemma 1 [19,22] Let Pn be a path of order n � 1, and Cm be a cycle of order
m � 3. Then

γ(Gn,2) =
⌈n + 1

2

⌉
; γ(Gn,3) = n −

⌊n − 1
4

⌋
;

γ(Gn,4) =

{
n + 1, n = 1, 2, 3, 5, 6 or 9,

n, otherwise;

γ(Cm × C3) = m −
⌊m

4

⌋
.

Lemma 2 Let D be a dominating set of Gn,m. Then

γ(Gi,m) � |D ∩ V (Gi+1,m)|, γ(Hn−i,m) � |D ∩ V (Hn−i+1,m)|

for i = 1, 2, . . . , n − 1 and m � 2.

Proof Since Hn−i,m
∼= Gn−i,m, we only need to prove

γ(Gi,m) � |D ∩ V (Gi+1,m)|.

Let
D′ = D ∩ V (Gi+1,m).

If D′ ∩ Yi+1 = ∅, then D′ is a dominating set of Gi,m, and hence,

γ(Gi,m) � |D′|.

Assume D′ ∩ Yi+1 �= ∅ below. Let

Bi = {j | ui+1,j ∈ D′}.

Then
D′′ = (D′ \ Yi+1) ∪ {ui,j | j ∈ Bi}

is a dominating set of Gi,m and |D′′| � |D′|. Thus, we have

γ(Gi,m) � |D′′| � |D′|.

The lemma follows. �
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3 Bondage number of Gn,2

Theorem 1 b(G2,2) = 3, b(G3,2) = 2, and b(Gn,2) = 1 if n is odd and
b(Gn,2) = 2 if n is even for n � 4.

Proof It is easy to verify that b(G2,2) = 3 and b(G3,2) = 2. In the following,
consider n � 4. When n is odd, we consider the domination number of G =
Gn,2 − u1,1u1,2. Let D be a minimum dominating set of G. If x ∈ D with
dG(x) = 1, then D′ = (D \ {x}) ∪ {y} is also a dominating set, where y is the
only neighbor of x. We can assume that D does not contain u1,1 neither u1,2

but contains u2,1 and u2,2. By Lemma 2,

|D| − 2 = |D ∩ V (Hn−2,2)| � γ(Hn−3,2).

Then by Lemma 1,

|D| � 2 + γ(Hn−3,2) = 2 +
⌈n − 3 + 1

2

⌉
= 1 + γ(Gn,2),

since n is odd, which yields b(Gn,2) = 1.
When n is even, we claim that

γ(Gn,2) = γ(Gn,2 − e), ∀ e ∈ E(Gn,2).

To prove this claim, we first consider that e is a vertical edge, and let
e = uj,1uj,2.

If j is even, then all the vertices ui,1, i ≡ 1 (mod 4), ui,2, i ≡ 3 (mod 4), un,1

if n ≡ 0 (mod 4) or un,2 if n ≡ 2 (mod 4), form a dominating set of Gn,2 − e
with cardinality �n+1

2 �.
If j is odd, then all the vertices ui,1, i ≡ 2 (mod 4), ui,2, i ≡ 0 (mod 4)

and u2,2 form a dominating set of Gn,2 − e with cardinality �n+1
2 �.

Assume now that e is a horizontal edge. Without loss of generality, let
e = uj,1uj+1,1.

If j ≡ 2 or 3 (mod 4), then all the vertices ui,1, i ≡ 1 (mod 4), ui,2, i ≡
3 (mod 4), and un,1 form a dominating set of Gn,2 − e with cardinality �n+1

2 �.
If j ≡ 0 or 1 (mod 4), then all the vertices ui,2, i ≡ 1 (mod 4), ui,1, i ≡

3 (mod 4), and un,1 form a dominating set of Gn,2 − e with cardinality �n+1
2 �.

Therefore, we have b(Gn,2) � 2. Next, we show that b(Gn,2) � 2. Let

e1 = u2,1u3,1, e2 = u2,2u3,2, G′ = Gn,2 − {e1, e2}.
Then G′ consists of two connected components, one is G2,2 and the other is
Hn−2,2. By Lemma 1, we have

γ(G′) = γ(G2,2) + γ(Hn−2,2) = 2 +
⌈n − 2 + 1

2

⌉
= 1 + γ(Gn,2),

which implies b(Gn,2) � 2. Thus, b(Gn,2) = 2.
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4 Bondage number of Gn,3

Proposition 1 [19] A minimum dominating set D of Gn,3 is constructed as
follows:

D =

{
{ui,2 : i ≡ 1 (mod 4)} ∪ {ui,1, ui,3 : i ≡ 3 (mod 4)}, n odd,

{ui,2 : i ≡ 1 (mod 4)} ∪ {ui,1, ui,3 : i ≡ 3 (mod 4)} ∪ {un,2}, n even.

Lemma 3 For each j = 1, 2, 3 and n ≡ 1, 2 or 3 (mod 4), we have

γ(Gn,3 − u1,j) � γ(Gn,3) = n −
⌊n − 1

4

⌋
.

Proof It is easy to verify that the conclusion is true for n = 1, 2, 3. In the
following, assume n � 4. Let G = Gn,3 − u1,j, and let D be a minimum
dominating set of G. We only need to show

|D| � n −
⌊n − 1

4

⌋
.

If (Y1 −u1,j)∩D �= ∅, then D is a dominating set of Cn ×C3. By Lemma 1,

|D| � γ(Cn × C3) = n −
⌊n

4

⌋
= n −

⌊n − 1
4

⌋

since n �≡ 0 (mod 4).
If (Y1 − u1,j) ∩ D = ∅, then |Y2 ∩ D| � 2. By Lemma 2,

|D ∩ V (Hn−2,3)| � γ(Hn−3,3).

By Lemma 1,

|D| � 2 + γ(Hn−3,3) = 2 + n − 3 −
⌊n − 3 − 1

4

⌋
= n −

⌊n − 1
4

⌋
,

as required. �
Lemma 4 For n ≡ 0 (mod 4), we have

γ(Gn,3 − u1,1) � γ(Gn,3) = n −
⌊n − 1

4

⌋

Proof Let D be a minimum dominating set of Gn,3 − u1,1. We only need to
prove

|D| � n −
⌊n − 1

4

⌋
.

It is easy to verify that the assertion is true for n = 4. In the following, we
consider the case n � 8. We consider the following three cases, respectively.
Case 1 u1,2 ∈ D or u2,1 ∈ D.
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In this case, D is also a dominating set of Gn,3, and therefore,

|D| � γ(Gn,3) = n −
⌊n − 1

4

⌋
.

Case 2 u1,2, u2,1 /∈ D and u1,3 ∈ D.
In this case, D \ {u1,3} is a dominating set of Hn−1,3 or Hn−1,3 − u2,3. By

Lemma 3,

|D \ {u1,3}| � n − 1 −
⌊n − 1 − 1

4

⌋
,

and therefore,

|D| � n −
⌊n − 1

4

⌋
.

Case 3 u1,2, u2,1 /∈ D and u1,3 /∈ D.
In this case, u2,2, u2,3 ∈ D. We prove the conclusion by two subcases.

Subcase 3.1 Y3 ∩ D �= ∅.
Then D \ {u2,2, u2,3} is a dominating set of Hn−2,3 or Hn−2,3 − u3,1 or

Hn−2,3 − u3,3. By Lemma 3,

|D \ {u2,2, u2,3}| � n − 2 −
⌊n − 2 − 1

4

⌋
.

Thus,

|D| � n −
⌊n − 1

4

⌋
.

Subcase 3.2 Y3 ∩ D = ∅.
Then u4,1 ∈ D.
If u4,2 ∈ D or u4,3 ∈ D, then D \ {u2,2, u2,3} is a dominating set of Hn−2,3

or Hn−2,3 − u3,2 or Hn−2,3 − u3,3. By Lemma 3,

|D \ {u2,2, u2,3}| � n − 2 −
⌊n − 2 − 1

4

⌋
.

Thus,

|D| � n −
⌊n − 1

4

⌋
.

Next, assume u4,2, u4,3 /∈ D. Then u5,3 ∈ D. If u5,1 ∈ D or u5,2 ∈ D, then
D \ {u2,2, u2,3, u4,1} is a dominating set of Hn−4,3, and hence,

|D \ {u2,2, u2,3, u4,1}| � n − 4 −
⌊n − 4 − 1

4

⌋
.

Thus,

|D| � n −
⌊n − 1

4

⌋
.

If u5,1, u5,2 /∈ D, then D \{u2,2, u2,3, u4,1, u5,3} is a dominating set of Hn−5,3

or Hn−5,3 − u6,3. By Lemma 3,

|D \ {u2,2, u2,3, u4,1, u5,3}| � n − 5 −
⌊n − 5 − 1

4

⌋
.
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Thus,

|D| � n −
⌊n − 1

4

⌋
.

The lemma follows. �
Corollary 1 b(Gn,3) � 2.

Proof By Lemmas 3 and 4, we have

γ(Gn,3 − {u1,1u2,1, u1,1u1,2}) > γ(Gn,3). �

Lemma 5 b(Gn,3) = 1 for n ≡ 1 or 2 (mod 4) and n � 4.

Proof Let D be a minimum dominating set of Gn,3 − u3,1u4,1. We only need
to prove that |D| � 1 + γ(Gn,3) by considering the following three cases,
respectively.
Case 1 u3,2, u3,3 ∈ D.

In this case, |V (G3,3) ∩ D| = 4. By Lemma 2,

|D ∩ V (Hn−3,3)| � γ(Hn−4,3).

By Lemma 1,

|D| � 4 + γ(Hn−4,3) = 4 + n − 4 −
⌊n − 4 − 1

4

⌋
= 1 + γ(Gn,3).

Case 2 Exactly one of u3,2 or u3,3 ∈ D.
In this case, |V (G3,3) ∩D| = 3. Then D′ = D \ V (G3,3) is a dominating set

of Hn−3,3 or Hn−3,3 − u4,2 or Hn−3,3 − u4,3. By Lemma 3,

|D| = 3 + |D′| � 3 + n − 3 −
⌊n − 3 − 1

4

⌋
= n + 1 −

⌊n − 1
4

⌋
= 1 + γ(Gn,3).

Case 3 u3,2, u3,3 /∈ D.
In this case, |V (G3,3) ∩ D| = 2 or |V (G3,3) ∩ D| = 3.
If |V (G3,3) ∩ D| = 3, then D \ V (G3,3) is a dominating set of Hn−3,3. By

Lemma 1,

|D| � 3 + γ(Hn−3,3) = 3 + n − 3 −
⌊n − 3 − 1

4

⌋
= 1 + γ(Gn,3).

If |V (G3,3) ∩ D| = 2, then V (G3,3) ∩ D = {u1,3, u2,1} and D \ V (G3,3) is a
dominating set of Hn−2,3 − u3,1. By Lemma 3 or 4,

|D| � 2 + n − 2 −
⌊n − 2 − 1

4

⌋
= n + 1 −

⌊n − 1
4

⌋
= 1 + γ(Gn,3).

The lemma follows. �
Lemma 6 b(Gn,3) � 2 for n ≡ 0 (mod 4).
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Proof By Proposition 1,

D = {ui,2 : i ≡ 1 (mod 4)} ∪ {ui,1, ui,3 : i ≡ 3 (mod 4)} ∪ {un,2}
is a minimum dominating set, and by the symmetry of Gn,3,

D′ = {ui,2 : i ≡ 0 (mod 4)} ∪ {ui,1, ui,3 : i ≡ 2 (mod 4)} ∪ {u1,2}
is also a minimum dominating set. It is clear that if we delete any vertical
edge in Gn,3 or any horizontal edge ui,1ui+1,1 and ui,3ui+1,3 where i ≡ 0, 1 or
3 (mod 4) or any horizontal edge ui,2ui+1,2 where i ≡ 1, 2 or 3 (mod 4), D or D′
is also a domination set. Next, we consider the domination number of Gn,3 − e,
where e is any other edge.

Let e = ui,1ui+1,1 or e = ui,3ui+1,3 where i ≡ 2 (mod 4), or e = ui,2ui+1,2

where i ≡ 0 (mod 4). Then

D′′ = {ui,1, ui,3 : i ≡ 1 (mod 4)} ∪ {ui,2 : i ≡ 3 (mod 4)} ∪ {un,2}
is a dominating set of G − e with cardinality n − 
n−1

4 �. By Lemma 1,

|D′′| = γ(Gn,3).

From the above discussion, γ(Gn,3 − e) = γ(Gn,3) for any edge e ∈ E(Gn,3).
Thus, b(Gn,3) � 2. �
Lemma 7 b(Gn,3) � 2 for n ≡ 3 (mod 4).

Proof By Proposition 1,

D = {ui,2 : i ≡ 1 (mod 4)} ∪ {ui,1, ui,3 : i ≡ 3 (mod 4)}
is a minimum dominating set, and by the symmetry of Gn,3,

D′ = {ui,2 : i ≡ 3 (mod 4)} ∪ {ui,1, ui,3 : i ≡ 1 (mod 4)}
is also a minimum dominating set. It is clear that if we delete any edge from
Gn,3, D or D′ is also a dominating set. Thus, b(Gn,3) � 2. �

Summing up the above results, we have the following theorem, immediately.

Theorem 2 For n � 3, we have

b(Gn,3) =

{
1, n ≡ 1 or 2 (mod 4),

2, n ≡ 0 or 3 (mod 4).

5 Bondage number of Gn,4

In this section, let A = {1, 2, 3, 5, 6, 9}.
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Lemma 8 Let D be a minimum dominating set of Gn,4. Then

1 � |Y1 ∩ D| � 2, 1 � |Yn ∩ D| � 2, n /∈ A.

Proof By Lemma 1, |D| = n. By the symmetry of Gn,4, we only need to prove
that 1 � |Y1 ∩D| � 2. By contradiction. Suppose |Y1 ∩D| = 0 or |Y1 ∩D| � 3.

If |Y1 ∩ D| = 0, then |Y2 ∩ D| = 4. By Lemma 2,

|D ∩ V (Hn−2,4)| � γ(Hn−3,4).

By Lemma 1,
|D| � 4 + γ(Hn−3,4) � 4 + n − 3 = n + 1,

a contradiction with |D| = n. Thus, |Y1 ∩ D| � 1.
Assume now |Y1 ∩ D| � 3. By Lemma 2,

|D ∩ V (Hn−1,4)| � γ(Hn−2,4).

By Lemma 1,
|D| � 3 + γ(Hn−2,4) � 3 + n − 2 = n + 1,

a contradiction with |D| = n. Thus, |Y1 ∩ D| � 2. �
Lemma 9 Let D be a minimum dominating set of Gn,4. Then |Y1 ∩ D| = 1
and

|Yn ∩ D| = 1, n ∈ {4, 7, 8, 10, 11}.
Proof By the symmetry of Gn,4 and Lemma 8, we only need to prove |Y1∩D| �=
2. Suppose, to the contrary, that there exists a minimum dominating set D of
Gn,4 such that |Y1 ∩ D| = 2.

If n �= 10 then, by Lemma 2,

|D ∩ V (Hn−1,4)| � γ(Hn−2,4).

By Lemma 1,
|D| � 2 + γ(Hn−2,4) � 2 + n − 1 = n + 1,

a contradiction with |D| = n.
Now, assume n = 10. Let D′ = D \ Y1. If Y2 ∩ D �= ∅, then there exists a

vertex u2,j such that D′ ∪ {u2,j} is a dominating set of Hn−1,4. By Lemma 1,

|D| = 2 + |D′| � 2 + γ(G9,4) − 1 = 11,

a contradiction with |D| = 10. Next, we assume that Y2∩D = ∅. Then |Y3∩D| �
2. By Lemma 2,

|D ∩ V (Hn−3,4)| � γ(Hn−4,4).

By Lemma 1,
|D| � 4 + γ(Hn−4,4) = 4 + 7 = 11,

a contradiction with |D| = 10. The lemma follows. �
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Lemma 10 Let D be a minimum dominating set of Gn,4. Then

|Y1 ∩ D| = 1, |Yn ∩ D| = 1, n /∈ A.

Proof By the symmetry of Gn,4 and Lemma 8, we only need to prove |Y1∩D| �=
2. By Lemma 9, the statement is true for n ∈ {4, 7, 8, 10, 11}. We proceed by
induction on n � 12.

Suppose that the assertion is true for any integer k with 10 � k < n.
Suppose, to the contrary, that there exists a minimum dominating set D of
Gn,4 such that |Y1∩D| = 2. If Y2∩D = ∅, then D′ = D \Y1 is a dominating set
of Hn−2,4 and |Y3 ∩D′| � 2. By the induction hypothesis, D′ is not a minimum
dominating set of Hn−2,4, and hence,

|D′| � γ(Hn−2,4) + 1 � n − 1

by Lemma 1. Then
|D| = 2 + |D′| � n + 1,

a contradiction with |D| = n.
If Y2 ∩ D �= ∅, there exists a vertex u2,j such that

D′′ = (D \ Y1) ∪ {u2,j}
is a dominating set of Hn−1,4 and |Y2 ∩ D′′| � 2. By the induction hypothesis,
D′′ is not a minimum dominating set of Hn−1,4, and hence,

|D′′| � γ(Hn−1,4) + 1 � n.

Then
|D| � 2 + |D′′| − 1 � n + 1,

a contradiction with |D| = n. The lemma follows. �
Theorem 3

b(G5,4) = b(G9,4) = 3, b(G6,4) = 2, b(Gn,4) = 1, n /∈ A.

Proof By a careful case analysis, we can deduce that

b(G5,4) = b(G9,4) = 3, b(G6,4) = 2.

Here, we only prove b(Gn,4) = 1 for n /∈ A. Then n � 4. Let D be a minimum
dominating set of Gn,4 − u1,2u1,3. By Lemma 1, we only need to show that
|D| � n + 1. We prove the conclusion by considering the following three cases,
respectively.
Case 1 |Y1 ∩ D| = 0.

In this case, |Y2 ∩ D| = 4. By Lemma 2,

|D ∩ V (Hn−2,4)| � γ(Hn−3,4).
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Thus,
|D| � 4 + γ(Hn−3,4) � n + 1.

Case 2 |Y1 ∩ D| � 2.
In this case, D is a dominating set of Gn,4 with |Y1∩D| � 2. By Lemma 10,

D is not a minimum dominating set of Gn,4, and hence, |D| � n + 1 by Lemma
1.
Case 3 |Y1 ∩ D| = 1.

Without loss of generality, let u1,j0 ∈ D and j0 � 1. Then u2,3, u2,4 ∈ D,
and hence, |Y2 ∩ D| � 2.

Let D′ = D \ {u1,j0}. If j0 = 2, or |Y2 ∩ D| � 3, or j0 = 1 and u31 ∈ D′,
then D′ is a dominating set of Hn−1,4 and let D′′ = D′. Assume now j0 = 1,
u3,1 /∈ D, and Y2 ∩ D = {u2,3, u2,4}. If u3,2 or u3,3 or u3,4 belongs to D, then
D′′ = (D′ \ {u2,3}) ∪ {u2,2} is a dominating set of Hn−1,4 with |Y2 ∩ D′′| � 2.

If n ∈ {4, 7, 10}, then

|D′′| � γ(Hn−1,4) = n

by Lemma 1. If n /∈ {4, 7, 10}, then D′′ is not a minimum dominating set of
Hn−1,4 by Lemma 10. By Lemma 1,

|D′′| � γ(Hn−1,4) + 1 = n.

Thus,
|D| � |D′′| + 1 � n + 1.

In the following, assume j0 = 1, u31 /∈ D, Y2 ∩ D = {u2,3, u2,4}, and
u3,2, u3,3, u3,4 /∈ D. Then u4,1, u4,2 should be in D to dominate u31 and u32, and
D′′′ = D \ {u1,1, u2,3, u2,4} is a dominating set of Hn−3,4 with |Y3 ∩ D′′′| � 2.

If n ∈ {4, 8, 12}, then

|D′′′| � γ(Hn−3,4) = n − 2

by Lemma 1. If n /∈ {4, 8, 12}, then D′′′ is not a minimum dominating set of
Hn−3,4 by Lemma 10. Therefore,

|D′′′| � γ(Hn−3,4) + 1 = n − 2

by Lemma 1. Thus,
|D| � 3 + |D′′′| � n + 1.

The theorem follows. �

6 Remarks

Through determining the bondage number of Gn,m for 2 � m � 4, we find that
if we delete the vertex u1,1, the domination number is invariable. If m increases,
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the effect of u1,1 for the domination number will be smaller and smaller in view
of probability. Therefore, we expect that

γ(Gn,m − u1,1) = γ(Gn,m), m � 5,

and we give the following conjecture.

Conjecture 1 b(Gn,m) � 2 for m � 5.

In our method, determining the bondage number of a graph strongly
depends on the domination number of the graph. Even the exact values of
the domination number of some graphs have been determined, determining its
bondage number is also very difficult. For example, the domination number
of Gn,m for m = 5 or 6 has been determined [5,6], we cannot determined its
bondage number in our method since there are too much cases to consider.
Thus, if we want to determine the bondage number of Gn,m or to solve the
Conjecture 1, we need some new method. It is what we further work on.
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