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Abstract: This paper considers a kind of generalized measure  of fault tolerance in the -star graph  for 

 and , and determines , 

which implies that at least  edges of  have to remove to get a 

disconnected graph that contains no vertices of degree less than . This result shows that the -star graph is robust when it is 

used to model the topological structure of a large-scale parallel processing system.  
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I. Introduction  

It is well known that interconnection networks play an important role in parallel computing/communication systems. 

An interconnection network can be modeled by a graph , where  is the set of processors and  is the 

set of communication links in the network. The connectivity  of a graph  is an important measurement for 

fault-tolerance of the network, and the larger  is, the more reliable the network is. 

A subset of vertices  of a connected graph  is called an edge-cut if  is disconnected. The edge connectivity 

 of  is defined as the minimum cardinality over all edge-cuts of . Because  has many shortcomings, one 

proposes the concept of the -super edge connectivity of , which can measure fault tolerance of an interconnection 

network more accurately than the classical connectivity . 

A subset of vertices  of a connected graph  is called an -super edge-cut, or -edge-cut for short, if  is 

disconnected and has the minimum degree at least . The -super edge-connectivity of , denoted by , is 

defined as the minimum cardinality over all -edge-cuts of . It is clear that, if  exists, then 

 

For any graph  and integer , determining is quite difficult. In fact, the existence of  is an open 

problem so far when . Some results have been obtained on  for particular classes of graphs and small 

's (see Section 16.7 in [5]).  

This paper is concerned about  for the -star graph . For the -super connectivity, several authors have 

done some work. For , is isomorphic to a star graph . Akers and Krishnamurthy [1] determined 

 for  and  for . In this paper, we show the following result. 

 Theorem:  If  and , then 
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This result implies that at least  edges of  have to remove to get a 

disconnected graph that contains no vertices of degree less than . The proof of this result is in Section 3. In Section 

2, we recall the structure of  and some lemmas used in our proofs. 

 

II. Definitions and Lemmas 

For integers  and with , let  and , 

, the set of -permutations on . Clearly,  .  

Definition 2.1: The -star graph  is a graph with vertex-set . The adjacency is defined as follows: a 

vertex  is adjacent to a vertex 

(a) , where  (swap  with ). 

(b) , where  (replace  by ). 

The vertices of type (a) are referred to as swap-neighbors of  and the edges between them are referred to as swap-

edge or -edges. The vertices of type (b) are referred to as unswap-neighbors of  and the edges between them are 

referred to as unswap-edges. Clearly, every vertex in  has  swap-neighbors and  unswap-neighbors. 

Usually, if  is a vertex in , we call  the -th bit for each .  

The -star graph  is proposed by Chiang and Chen [4]. Some nice properties of  are compiled by Cheng 

and Lipman (see Theorem 1 in [2]).  

Lemma 2.2:  is -regular -connected. 

Lemma 2.3: For any  , let . Then 

the subgraph of  induced by  is a complete graph of order , denoted by . 

Let  denote the subgraph of  induced by vertices with the -th bit  for . The following 

lemma is a slight modification of the result of Chiang and Chen [4]. 

Lemma 2.4: For a fixed integer  with ,  can be decomposed into  subgraphs , which is 

isomorphic to , for each . Moreover, there are  independent swap-edges between  
and  for any  with . 

Since , we only consider the case of  in the following discussion. 

Lemma 2.5:  If  and , then  

 

Proof: By our hypothesis of , for any , we can choose a subset  

such that . Then the subgraph of  induced by  is a complete graph . Let  be the set of 

incident edges with and not within . Since  is -regular and  is -regular, we have that 

 

 

Clearly,  is an edge-cut of .  Let  be any vertex in , and  denote the number of edges incident 

with  in . In order to prove that  is an -edge-cut, we only need to show . Note that  is 

contained in  and edges between  and  are independent for any  with  by 
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Lemma 2.4. If  is in  or is in  with , then . For 

, if exists, then  for . Therefore,  is an -

edge-cut of , and so  

 

For , we choose . Then . For any  in  or 

 with , we have . Thus,  is an -edge-cut of , and so 

 

The lemma follows. 

Corollary 2.6:  for . 

Proof: On the one hand,  by Lemma 2.5 when . On the other hand,  

 by Lemma 2.2. 

The following lemma shows the relations between  and . 

Lemma 2.7:  For , let   

 

If , then    

 

Proof: Let , then . It can be easily checked that  is a 

convex function on the interval , the maximum value is reached at . Thus,  is an increasing function 

on the interval . 

If , then . Since ,  and . 

Thus, when , , and so . 

If , then , , so . 

The lemma follows. 

To state and prove our main results, we need some notations. Let  be a minimum -edge-cut of . Clearly, 

 has exactly two connected components. Let  and  be two vertex-set of two connected components of 

. For a fixed  and any , let 

 

and let 

 

Lemma 2.8:  Let  be a minimum -edge-cut of  and  be the vertex-set of a connected component of 

. If  and  then, for any , 

 (a)  is an -edge-cut of  for any , 
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(b) . 

Proof. (a) By the definition of   is an edge-cut of for any . For any vertex  in , 

since  has degree at least  in  and has exactly one neighbor outsider ,  has degree at least 

 in . This fact shows that  is an -edge-cut of  for any . 

(b) By the assertion (a), we have , and so  

 

The lemma follows. 

 

III. Proof of Theorem 

By Lemma 2.5 and Lemma 2.7, we only need to prove that, for  and , 

 

Let . 

We proceed by induction on  and . The inequality is true for  and any  with  

by Corollary 2.6. The inequality is also true for  and any  with  since  
. Assume the induction hypothesis for  with  and for  with , that is, 

 

Let  be a minimum -edge-cut of  and  be the vertex-set of a minimum connected component of . 

By Lemma 2.5, we have 

 

Use notations defined in Section II. Choose  such that  is as large as possible. For each , we 

write  for  for short. 

We first show . Suppose to the contrary . We will deduce contradictions by considering three 

cases depending on ,  or . 

Case 1.  .  

In this case,  and  for each , that is, . By  and the minimality of , . 

Assume  and . By Lemma 2.4, there are  independent swap-edges between  

(resp. ) and  (resp. ), all of which are contained in . Since , we have that 

 

For , 

 

Combining Lemma 2.5 with Lemma 2.7 yields , a contradiction. For , it is easy 

to check that 
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which contradicts the inequality (1). 

Case 2.   . 

Without loss of generality, assume . By Lemma 2.8 (a),  is an -edge-cut of . By , 

there exists an  such that . By the minimality of , there exists some  such 

that .  By Lemma 2.4, there are  independent swap-edges between  and , 

thus . We consider the following two cases. 

If , then   

 

If , then 

 

Therefore, we have , which contradicts the inequality (1). 

Case 3.  . 

By Lemma 2.8 (b), if  then 

 

if  then 

 

Therefore, we have , which contradicts the inequality (1). 

Thus, we have . By the choice of , the -th bits of all vertices in  are same for each , and so 

 is a complete graph. Thus, we have that 

 

 

Since  and  is a convex function on the interval , we have that 

 

where  is defined in Lemma 2.7. 

If , using Lemma 2.7, we have 
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If  , then . Otherwise, there exists some  such that 

  

which implies , a contradiction. Therefore, we have , and 

 

By the induction principle, the theorem follows. 

As we have known, when ,  is isomorphic to the star graph . Akers and Krishnamurthy [1] 

determined  and , which can be obtained from our result by setting  and , 

respectively. 

Corollary:  for  and  for . 
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