

Mathematical Sciences Letters

An International Journal

@ 2012 NSP Natural Sciences Publishing Cor.

Generalized Measures of Edge Fault Tolerance in (n, k)-star Graphs

Xiang-Jun Li and Jun-Ming Xu

School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China Email: <u>franklxj@mail.ustc.edu.cn</u>, <u>xujm@ustc.edu.cn</u>

Received 02 Jan. 2012; Accepted 24 April 2012

Abstract: This paper considers a kind of generalized measure $\lambda_s^{(h)}$ of fault tolerance in the (n, k)-star graph $S_{n,k}$ for $2 \leq k \leq n-1$ and $0 \leq h \leq n-k$, and determines $\lambda_s^{(h)}(S_{n,k}) = \min\{(n-h-1)(h+1), (n-k+1)(k-1)\}$, which implies that at least $\min\{(n-k+1)(k-1), (n-h-1)(h+1)\}$ edges of $S_{n,k}$ have to remove to get a disconnected graph that contains no vertices of degree less than h. This result shows that the (n, k)-star graph is robust when it is used to model the topological structure of a large-scale parallel processing system.

Keywords: Combinatorics, fault-tolerant analysis, (n, k)-star graphs, edge-connectivity, h-super edge-connectivity

I. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph G = (V, E), where V is the set of processors and E is the set of communication links in the network. The connectivity $\lambda(G)$ of a graph G is an important measurement for fault-tolerance of the network, and the larger $\lambda(G)$ is, the more reliable the network is.

A subset of vertices B of a connected graph G is called an *edge-cut* if G - B is disconnected. The *edge connectivity* $\lambda(G)$ of G is defined as the minimum cardinality over all edge-cuts of G. Because λ has many shortcomings, one proposes the concept of the h-super edge connectivity of G, which can measure fault tolerance of an interconnection network more accurately than the classical connectivity λ .

A subset of vertices B of a connected graph G is called an *h*-super edge-cut, or *h*-edge-cut for short, if G - B is disconnected and has the minimum degree at least h. The *h*-super edge-connectivity of G, denoted by $\lambda_s^{(h)}(G)$, is defined as the minimum cardinality over all h-edge-cuts of G. It is clear that, if $\lambda_s^{(h)}(G)$ exists, then

$$\lambda(G) = \lambda_s^{(0)}(G) \leqslant \lambda_s^{(1)}(G) \leqslant \lambda_s^{(2)}(G) \leqslant \dots \leqslant \lambda_s^{(h-1)}(G) \leqslant \lambda_s^{(h)}(G).$$

For any graph G and integer h, determining $\lambda_s^{(h)}(G)$ is quite difficult. In fact, the existence of $\lambda_s^{(h)}(G)$ is an open problem so far when $h \ge 1$. Some results have been obtained on $\lambda_s^{(h)}(G)$ for particular classes of graphs and small h's (see Section 16.7 in [5]).

This paper is concerned about $\lambda_s^{(h)}$ for the (n, k)-star graph $S_{n,k}$. For the *h*-super connectivity, several authors have done some work. For k = n - 1, $S_{n,n-1}$ is isomorphic to a star graph S_n . Akers and Krishnamurthy [1] determined $\lambda(S_n) = n - 1$ for $n \ge 2$ and $\lambda_s^{(1)}(S_n) = 2n - 4$ for $n \ge 3$. In this paper, we show the following result.

Theorem: If $2 \leq k \leq n - 1$ and $0 \leq h \leq n - k$, then

Li and Xu: Generalized Measures of Edge Fault Tolerance in (n,k)-star Graphs

$$\lambda_s^{(h)}(S_{n,k}) = \begin{cases} (n-h-1)(h+1) & \text{for } h \leq k-2 \text{ and } h \leq \frac{n}{2} - 1, \\ (n-k+1)(k-1) & \text{otherwise.} \end{cases}$$

This result implies that at least $\min\{(n-k+1)(k-1), (n-h-1)(h+1)\}$ edges of $S_{n,k}$ have to remove to get a disconnected graph that contains no vertices of degree less than h. The proof of this result is in Section 3. In Section 2, we recall the structure of $S_{n,k}$ and some lemmas used in our proofs.

II. Definitions and Lemmas

For integers n and k with $1 \leq k \leq n-1$, let $I_n = \{1, 2, ..., n\}$ and $P(n, k) = \{p_1 p_2 \dots p_k : p_i \in I_n, p_i \neq p_j, 1 \leq i \neq j \leq k\}$, the set of k-permutations on I_n . Clearly, |P(n, k)| = n!/(n-k)!.

Definition 2.1: The (n, k)-star graph $S_{n,k}$ is a graph with vertex-set P(n, k). The adjacency is defined as follows: a vertex $p = p_1 p_2 \dots p_i \dots p_k$ is adjacent to a vertex

(a) $p_i p_2 \cdots p_{i-1} p_1 p_{i+1} \cdots p_k$, where $2 \leq i \leq k$ (swap p_1 with p_i).

(b) $\alpha p_2 p_3 \cdots p_k$, where $\alpha \in I_n \setminus \{p_i : 1 \leq i \leq k\}$ (replace p_1 by α).

The vertices of type (a) are referred to as *swap-neighbors* of p and the edges between them are referred to as *swap-edge* or *i-edges*. The vertices of type (b) are referred to as *unswap-neighbors* of p and the edges between them are referred to as *unswap-edges*. Clearly, every vertex in $S_{n,k}$ has k - 1 swap-neighbors and n - k unswap-neighbors. Usually, if $x = p_1 p_2 \dots p_k$ is a vertex in $S_{n,k}$, we call p_i the *i-th bit* for each $i \in I_k$.

The (n, k)-star graph $S_{n,k}$ is proposed by Chiang and Chen [4]. Some nice properties of $S_{n,k}$ are compiled by Cheng and Lipman (see Theorem 1 in [2]).

Lemma 2.2: $S_{n,k}$ is (n-1)-regular (n-1)-connected.

Lemma 2.3: For any $\alpha = p_1 p_2 \cdots p_{k-1} \in P(n, k-1)$ $(k \ge 2)$, let $V_{\alpha} = \{p\alpha : p \in I_n \setminus \{p_i : i \in I_{k-1}\}\}$. Then the subgraph of $S_{n,k}$ induced by V_{α} is a complete graph of order n - k + 1, denoted by K_{n-k+1}^{α} .

Let $S_{n-1,k-1}^{t:i}$ denote the subgraph of $S_{n,k}$ induced by vertices with the *t*-th bit *i* for $2 \le t \le k$. The following lemma is a slight modification of the result of Chiang and Chen [4].

Lemma 2.4: For a fixed integer t with $2 \le t \le k$, $S_{n,k}$ can be decomposed into n subgraphs $S_{n-1,k-1}^{l;i}$, which is isomorphic to $S_{n-1,k-1}$, for each $i \in I_n$. Moreover, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1,k-1}^{l;i}$ and $S_{n-1,k-1}^{l;j}$ for any $i, j \in I_n$ with $i \ne j$.

Since $S_{n,1} \cong K_n$, we only consider the case of $k \ge 2$ in the following discussion.

Lemma 2.5: If $2 \leq k \leq n-1$ and $0 \leq h \leq n-k$, then

$$\lambda_{s}^{(h)}(S_{n,k}) \leqslant \begin{cases} (n-h-1)(h+1) & for \ h \leqslant \frac{n}{2} - 1, \\ (n-k+1)(k-1) & otherwise. \end{cases}$$

Proof: By our hypothesis of $2 \le k \le n-1$, for any $\alpha \in P(n, k-1)$, we can choose a subset $X \subseteq V(K_{n-k+1}^{\alpha})$ such that |X| = h + 1. Then the subgraph of K_{n-k+1}^{α} induced by X is a complete graph K_{h+1} . Let B be the set of incident edges with and not within X. Since $S_{n,k}$ is (n-1)-regular and K_{h+1} is h-regular, we have that

$$|B| = (n - h - 1)(h + 1).$$

Clearly, B is an edge-cut of $S_{n,k}$. Let x be any vertex in $S_{n,k} - X$, and d(x) denote the number of edges incident with x in $S_{n,k} - X$. In order to prove that B is an h-edge-cut, we only need to show $d(x) \ge h$. Note that X is contained in $S_{n-1,k-1}^i$ and edges between $S_{n-1,k-1}^i$ and $S_{n-1,k-1}^j$ are independent for any $i, j \in I_n$ with $i \ne j$ by

134

Lemma 2.4. If x is in $S_{n-1,k-1}^i - K_{n-k+1}^\alpha$ or is in $S_{n-1,k-1}^j$ with $i \neq j$, then $d(x) \ge n-2 \ge n-k \ge h$. For $x \in V(K_{n-k+1}^\alpha - X)$, if exists, then $d(x) = n-1 - |X| = n-h-2 \ge h$ for $h \le \frac{n}{2} - 1$. Therefore, B is an h-edge-cut of $S_{n,k}$, and so

$$\lambda_s^{(h)}(S_{n,k}) \leqslant |B| = (n-h-1)(h+1) \text{ for } h \leqslant \frac{n}{2} - 1.$$

For $h \ge \frac{n}{2}$, we choose $X = V(K_{n-k+1}^{\alpha})$. Then |B| = (n-k+1)(k-1). For any x in $S_{n-1,k-1}^{i} - X$ or $S_{n-1,k-1}^{j}$ with $i \ne j$, we have $d(x) \ge n-2 \ge n-k \ge h$. Thus, B is an h-edge-cut of $S_{n,k}$, and so

$$\lambda_s^{(h)}(S_{n,k}) \leqslant |B| = (n-k+1)(k-1) \text{ for } h \geqslant \frac{n}{2}$$

The lemma follows.

Corollary 2.6: $\lambda_s^{(h)}(S_{n,2}) = n - 1$ for $0 \le h \le n - 2$.

Proof: On the one hand, $\lambda_s^{(h)}(S_{n,2}) \leq n-1$ by Lemma 2.5 when k = 2. On the other hand, $\lambda_s^{(h)}(S_{n,2}) \geq \lambda(S_{n,2}) = n-1$ by Lemma 2.2.

The following lemma shows the relations between (n - h - 1)(h + 1) and (n - k + 1)(k - 1).

Lemma 2.7: For $2 \leq k \leq n-1, 0 \leq h \leq n-k$, let

$$\psi(h,k) = \min\{(n-h-1)(h+1), (n-k+1)(k-1)\}.$$

If $h \leq \frac{n}{2} - 1$, then

$$\psi(h,k) = \begin{cases} (n-h-1)(h+1) & \text{if } 0 \leq h \leq k-2; \\ (n-k+1)(k-1) & \text{if } h \geqslant k-1. \end{cases}$$

Proof: Let f(x) = (n - x) x, then $\psi(h, k) = \min\{f(h + 1), f(k - 1)\}$. It can be easily checked that f(x) is a convex function on the interval [0, n], the maximum value is reached at $x = \frac{n}{2}$. Thus, f(x) is an increasing function on the interval $[0, \frac{n}{2}]$.

If $0 \le h \le k-2$, then $h+1 \le k-1$. Since $h \le n-k$, $h+1 \le n-k+1$ and $\min\{k-1, n-k+1\} \le \frac{n}{2}$. Thus, when $h \le \frac{n}{2} - 1$, $f(h+1) \le f(k-1) = f(n-k+1)$, and so $\psi(h,k) = f(h+1) = (n-h-1)(h+1)$.

If $h \ge k-1$, then $k-1 < h+1 \le \frac{n}{2}$, f(k-1) < f(h+1), so $\psi(n,k) = f(k-1) = (n-k+1)(k-1)$.

The lemma follows.

To state and prove our main results, we need some notations. Let B be a minimum h-edge-cut of $S_{n,k}$. Clearly, $S_{n,k} - B$ has exactly two connected components. Let X and Y be two vertex-set of two connected components of $S_{n,k} - B$. For a fixed $t \in I_k \setminus \{1\}$ and any $i \in I_n$, let

$$\begin{aligned} X_i &= X \cap V(S_{n-1,k-1}^{t:i}), \\ Y_i &= Y \cap V(S_{n-1,k-1}^{t:i}), \\ B_i &= B \cap E(S_{n-1,k-1}^{t:i}) \text{ and } \\ B_{ij} &= B \cap E(S_{n-1,k-1}^{t:i}, S_{n-1,k-1}^{t:j}), \end{aligned}$$

and let

$$J = \{i \in I_n : X_i \neq \emptyset\},\$$

$$J' = \{i \in J : Y_i \neq \emptyset\} \text{ and }$$

$$T = \{i \in I_n : Y_i \neq \emptyset\}.$$

Lemma 2.8: Let B be a minimum h-edge-cut of $S_{n,k}$ and X be the vertex-set of a connected component of $S_{n,k} - B$. If $3 \le k \le n-1$ and $1 \le h \le n-k$ then, for any $t \in I_k \setminus \{1\}$,

(a) B_i is an (h-1)-edge-cut of $S_{n-1,k-1}^{l:i}$ for any $i \in J'$,

(b) $\lambda_s^{(h)}(S_{n,k}) \ge |J'| \ \lambda_s^{(h-1)}(S_{n-1,k-1}).$

Proof. (a) By the definition of J', B_i is an edge-cut of $S_{n-1,k-1}^{t,i}$ for any $i \in J'$. For any vertex x in $S_{n-1,k-1}^{t,i} - B_i$, since x has degree at least h in $S_{n,k} - S$ and has exactly one neighbor outsider $S_{n-1,k-1}^{t,i}$, x has degree at least h - 1 in $S_{n,k}^{t,i} - B_i$. This fact shows that B_i is an (h - 1)-edge-cut of $S_{n-1,k-1}^{t,i}$ for any $i \in J'$.

(b) By the assertion (a), we have $|B_i| \ge \lambda_s^{(h-1)}(S_{n-1,k-1})$, and so

$$\lambda_s^{(h)}(S_{n,k}) = |B| \ge \sum_{i \in J'} |B_i| \ge |J'|\lambda_s^{(h-1)}(S_{n-1,k-1}).$$

The lemma follows.

III. Proof of Theorem

By Lemma 2.5 and Lemma 2.7, we only need to prove that, for $2 \le k \le n-1$ and $0 \le h \le n-k$,

$$\lambda_s^{(h)}(S_{n,k}) \ge \begin{cases} (n-h-1)(h+1) & \text{for } h \le k-2 \text{ and } h \le \frac{n}{2}-1, \\ (n-k+1)(k-1) & \text{otherwise.} \end{cases}$$

Let $\omega(h,k) = \max\{(n-h-1)(h+1), (n-k+1)(k-1)\}.$

We proceed by induction on $k \ge 2$ and $h \ge 0$. The inequality is true for k = 2 and any h with $0 \le h \le n-2$ by Corollary 2.6. The inequality is also true for h = 0 and any k with $2 \le k \le n-1$ since $\lambda_s^{(0)}(S_{n,k}) = \lambda(S_{n,k}) = n-1$. Assume the induction hypothesis for k-1 with $k \ge 3$ and for h-1 with $h \ge 1$, that is,

$$\lambda_s^{(h-1)}(S_{n-1,k-1}) \ge \begin{cases} (n-h)h & \text{for } h \le k-3 \text{ and } h \le \frac{n-1}{2}, \\ (n-k+2)(k-2) & \text{otherwise.} \end{cases}$$

Let B be a minimum h-edge-cut of $S_{n,k}$ and X be the vertex-set of a minimum connected component of $S_{n,k} - B$. By Lemma 2.5, we have

$$|B| \leqslant \omega(h,k). \tag{1}$$

Use notations defined in Section II. Choose $t \in I_k \setminus \{1\}$ such that |J| is as large as possible. For each $i \in I_n$, we write $S_{n-1,k-1}^i$ for $S_{n-1,k-1}^{l:i}$ for short.

We first show |J| = 1. Suppose to the contrary $|J| \ge 2$. We will deduce contradictions by considering three cases depending on |J'| = 0, |J'| = 1 or $|J'| \ge 2$.

Case 1.
$$|J'| = 0.$$

In this case, $X_i \neq \emptyset$ and $Y_i = \emptyset$ for each $i \in J$, that is, $J \cap T = \emptyset$. By $|J| \ge 2$ and the minimality of $X, |T| \ge 2$. Assume $\{i_1, i_2\} \subseteq J$ and $\{i_3, i_4\} \in T$. By Lemma 2.4, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1,k-1}^{i_1}$ (resp. $S_{n-1,k-1}^{i_2}$) and $S_{n-1,k-1}^{i_3}$ (resp. $S_{n-1,k-1}^{i_4}$), all of which are contained in B. Since $J \cap T = \emptyset$, we have that

$$|B| \ge 4 \frac{(n-2)!}{(n-k)!}$$

For k = 3,

$$|B| \ge 4 \frac{(n-2)!}{(n-k)!} \ge 4(n-2) > 2(n-2)$$

Combining Lemma 2.5 with Lemma 2.7 yields $|B| \leq \lambda_s^{(h)}(S_{n,3}) \leq 2(n-2)$, a contradiction. For $k \geq 4$, it is easy to check that

$$\begin{split} |B| & \geqslant 4 \ \frac{(n-2)!}{(n-k)!} \geqslant 4(n-2)(n-3) = (2n-4)(2n-6) \\ & > \max\{(n-h-1)(h+1), (n-k+1)(k-1)\} \\ & = \omega(h,k), \end{split}$$

which contradicts the inequality (1).

Case 2. |J'| = 1.

Without loss of generality, assume $J' = \{1\}$. By Lemma 2.8 (a), B_1 is an (h-1)-edge-cut of $S_{n-1,k-1}^1$. By $|J| \ge 2$, there exists an $i \in J - J'$ such that $X_i = V(S_{n-1,k-1}^i)$. By the minimality of X, there exists some $j \in T - J'$ such that $Y_j = V(S_{n-1,k-1}^j)$. By Lemma 2.4, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1,k-1}^i$ and $S_{n-1,k-1}^j$, thus $|B_{ij}| = \frac{(n-2)!}{(n-k)!} \ge n-2$. We consider the following two cases.

If $\lambda_s^{(h-1)}(S_{n-1,k-1}) \geqslant (n-h)h$, then

$$|B| \ge |B_1| + |B_{ij}| \ge (n-h)h + (n-2) > (n-h-1)h + (n-h-1) = (n-h-1)(h+1),$$

If $\lambda_s^{(h-1)}(S_{n-1,k-1}) \ge (n-k+2)(k-2)$, then $|B| \ge |B_1| + |B_{ij}|$ $\ge (n-k+2)(k-2) + (n-2)$

$$> (n - k + 1)(k - 2) + (n - k + 1) = (n - k + 1)(k - 1).$$

Therefore, we have $|B| > \omega(h, k)$, which contradicts the inequality (1).

Case 3. $|J'| \ge 2$.

By Lemma 2.8 (b), if $\lambda_s^{(h-1)}(S_{n-1,k-1}) \geqslant (n-h)h$ then

$$|B| \ge |J'|\lambda_s^{(h-1)}(S_{n-1,k-1}) \ge 2(n-h)h \ge (n-h)h + (n-h) > (n-h-1)(h+1),$$

if $\lambda_s^{(h-1)}(S_{n-1,k-1}) \geqslant (n-k+2)(k-2)$ then

$$|B| \ge |J'|\lambda_s^{(n-1)}(S_{n-1,k-1}) \ge 2(n-k+2)(k-2) \ge (n-k+2)(k-2) + (n-k+2) > (n-k+1)(k-1).$$

Therefore, we have $|B| > \omega(h, k)$, which contradicts the inequality (1).

Thus, we have |J| = 1. By the choice of t, the *i*-th bits of all vertices in X are same for each i = 2, 3, ..., k, and so X is a complete graph. Thus, we have that

$$\lambda_s^{(n)}(S_{n,k}) = |B| = (n - |X|)|X|$$

Since $h + 1 \leq |X| \leq n - k + 1$ and f(x) = (n - x)x is a convex function on the interval [0, n], we have that

$$\lambda_s^{(h)}(S_{n,k}) = |B| = (n - |X|)|X| \ge \psi(h,k),$$

where $\psi(h, k)$ is defined in Lemma 2.7.

If $h \leq \frac{n}{2} - 1$, using Lemma 2.7, we have

$$\lambda_s^{(h)}(S_{n,k}) \geqslant \psi(h,k) = \begin{cases} (n-h-1)(h+1) & \text{if } 0 \leqslant h \leqslant k-2; \\ (n-k+1)(k-1) & \text{if } h \geqslant k-1. \end{cases}$$

If $h \ge \frac{n}{2}$, then $X = V(K_{n-k+1})$. Otherwise, there exists some $x \in V(K_{n-k+1} - X)$ such that

$$h \leqslant d(x) = n - 1 - |X| \leqslant n - h - 2,$$

which implies $h \leq \frac{n}{2} - 1$, a contradiction. Therefore, we have |X| = n - k + 1, and

$$\lambda_s^{(h)}(S_{n,k}) = |B| = (n - |X|)|X| = (n - k + 1)(k - 1) \text{ for } h \ge \frac{n}{2}.$$

By the induction principle, the theorem follows.

As we have known, when k = n - 1, $S_{n,n-1}$ is isomorphic to the star graph S_n . Akers and Krishnamurthy [1] determined $\lambda(S_n)$ and $\lambda_s^{(1)}(S_n)$, which can be obtained from our result by setting k = n - 1 and h = 0, 1, respectively.

Corollary: $\lambda(S_n) = n - 1$ for $n \ge 2$ and $\lambda_s^{(1)}(S_n) = 2n - 4$ for $n \ge 3$.

Acknowledgements: The authors acknowledge support from NNSF of China (No.11071233).

References

- S. B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks. IEEE Trans. Computers, 38 (4) (1989), 555-566.
- [2] E. Cheng and M. J. Lipman, Unidirectional (n, k)-star graphs. Journal Interconnection Networks, 3(1-2) (2002), 19-34.
- [3] E. Cheng and M. J. Lipman, Increasing the connectivity of the star graphs. Networks, 40(3) (2002), 165-169.
- [4] W.-K. Chiang and R.-J. Chen, The (n, k)-star graphs: A generalized star graph. Information Processing Letters, 56 (1995), 259-264.
- [5] J.-M. Xu, Combinatoral Theory in Networks (in Chinese). Academic Press, Beijing, 2007.