Generalized Measures of Edge Fault Tolerance in (n, k)-star Graphs

Xiang-Jun Li and Jun-Ming Xu
School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, China
Email: franklxj@ mail.ustc.edu.cn, xujm@ustc.edu.cn

Received 02 Jan. 2012; Accepted 24 April 2012

Abstract

This paper considers a kind of generalized measure $\lambda_{s}^{(h)}$ of fault tolerance in the (n, k)-star graph $S_{n, k}$ for $2 \leqslant k \leqslant n-1$ and $0 \leqslant h \leqslant n-k$, and determines $\lambda_{s}^{(h)}\left(S_{n, k}\right)=\min \{(n-h-1)(h+1),(n-k+1)(k-1)\}$, which implies that at least $\min \{(n-k+1)(k-1),(n-h-1)(h+1)\}$ edges of $S_{n, k}$ have to remove to get a disconnected graph that contains no vertices of degree less than h. This result shows that the (n, k)-star graph is robust when it is used to model the topological structure of a large-scale parallel processing system.

Keywords: Combinatorics, fault-tolerant analysis, (n, k)-star graphs, edge-connectivity, h-super edge-connectivity

I. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems. An interconnection network can be modeled by a graph $G=(V, E)$, where V is the set of processors and E is the set of communication links in the network. The connectivity $\lambda(G)$ of a graph G is an important measurement for fault-tolerance of the network, and the larger $\lambda(G)$ is, the more reliable the network is.

A subset of vertices B of a connected graph G is called an edge-cut if $G-B$ is disconnected. The edge connectivity $\lambda(G)$ of G is defined as the minimum cardinality over all edge-cuts of G. Because λ has many shortcomings, one proposes the concept of the h-super edge connectivity of G, which can measure fault tolerance of an interconnection network more accurately than the classical connectivity λ.

A subset of vertices B of a connected graph G is called an h-super edge-cut, or h-edge-cut for short, if $G-B$ is disconnected and has the minimum degree at least h. The h-super edge-connectivity of G, denoted by $\lambda_{s}^{(h)}(G)$, is defined as the minimum cardinality over all h-edge-cuts of G. It is clear that, if $\lambda_{s}^{(h)}(G)$ exists, then

$$
\lambda(G)=\lambda_{s}^{(0)}(G) \leqslant \lambda_{s}^{(1)}(G) \leqslant \lambda_{s}^{(2)}(G) \leqslant \cdots \leqslant \lambda_{s}^{(h-1)}(G) \leqslant \lambda_{s}^{(h)}(G)
$$

For any graph G and integer h, determining $\lambda_{s}^{(h)}(G)$ is quite difficult. In fact, the existence of $\lambda_{s}^{(h)}(G)$ is an open problem so far when $h \geqslant 1$. Some results have been obtained on $\lambda_{s}^{(h)}(G)$ for particular classes of graphs and small h 's (see Section 16.7 in [5]).

This paper is concerned about $\lambda_{s}^{(h)}$ for the (n, k)-star graph $S_{n, k}$. For the h-super connectivity, several authors have done some work. For $k=n-1, S_{n, n-1}$ is isomorphic to a star graph S_{n}. Akers and Krishnamurthy [1] determined $\lambda\left(S_{n}\right)=n-1$ for $n \geqslant 2$ and $\lambda_{s}^{(1)}\left(S_{n}\right)=2 n-4$ for $n \geqslant 3$. In this paper, we show the following result.

Theorem: If $2 \leqslant k \leqslant n-1$ and $0 \leqslant h \leqslant n-k$, then

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right)= \begin{cases}(n-h-1)(h+1) & \text { for } h \leqslant k-2 \text { and } h \leqslant \frac{n}{2}-1, \\ (n-k+1)(k-1) & \text { otherwise. }\end{cases}
$$

This result implies that at least $\min \{(n-k+1)(k-1),(n-h-1)(h+1)\}$ edges of $S_{n, k}$ have to remove to get a disconnected graph that contains no vertices of degree less than h. The proof of this result is in Section 3. In Section 2 , we recall the structure of $S_{n, k}$ and some lemmas used in our proofs.

II. Definitions and Lemmas

For integers n and k with $1 \leqslant k \leqslant n-1$, let $I_{n}=\{1,2, \ldots, n\}$ and $P(n, k)=\left\{p_{1} p_{2} \ldots p_{k}: p_{i} \in I_{n}, p_{i} \neq p_{j}\right.$, $1 \leqslant i \neq j \leqslant k\}$, the set of k-permutations on I_{n}. Clearly, $|P(n, k)|=n!/(n-k)!$.

Definition 2.1: The (n, k)-star graph $S_{n, k}$ is a graph with vertex-set $P(n, k)$. The adjacency is defined as follows: a vertex $p=p_{1} p_{2} \ldots p_{i} \ldots p_{k}$ is adjacent to a vertex
(a) $p_{i} p_{2} \cdots p_{i-1} p_{1} p_{i+1} \cdots p_{k}$, where $2 \leqslant i \leqslant k\left(\operatorname{swap} p_{1}\right.$ with $\left.p_{i}\right)$.
(b) $\alpha p_{2} p_{3} \cdots p_{k}$, where $\alpha \in I_{n} \backslash\left\{p_{i}: 1 \leqslant i \leqslant k\right\}$ (replace p_{1} by α).

The vertices of type (a) are referred to as swap-neighbors of p and the edges between them are referred to as swapedge or i-edges. The vertices of type (b) are referred to as unswap-neighbors of p and the edges between them are referred to as unswap-edges. Clearly, every vertex in $S_{n, k}$ has $k-1$ swap-neighbors and $n-k$ unswap-neighbors. Usually, if $x=p_{1} p_{2} \ldots p_{k}$ is a vertex in $S_{n, k}$, we call p_{i} the i-th bit for each $i \in I_{k}$.

The (n, k)-star graph $S_{n, k}$ is proposed by Chiang and Chen [4]. Some nice properties of $S_{n, k}$ are compiled by Cheng and Lipman (see Theorem 1 in [2]).

Lemma 2.2: $S_{n, k}$ is $(n-1)$-regular $(n-1)$-connected.
Lemma 2.3: For any $\alpha=p_{1} p_{2} \cdots p_{k-1} \in P(n, k-1)(k \geqslant 2)$, let $V_{\alpha}=\left\{p \alpha: p \in I_{n} \backslash\left\{p_{i}: i \in I_{k-1}\right\}\right\}$. Then the subgraph of $S_{n, k}$ induced by V_{α} is a complete graph of order $n-k+1$, denoted by K_{n-k+1}^{α}.
Let $S_{n-1, k-1}^{t: i}$ denote the subgraph of $S_{n, k}$ induced by vertices with the t-th bit i for $2 \leqslant t \leqslant k$. The following lemma is a slight modification of the result of Chiang and Chen [4].

Lemma 2.4: For a fixed integer t with $2 \leqslant t \leqslant k, S_{n, k}$ can be decomposed into n subgraphs $S_{n-1, k-1}^{t: i}$, which is isomorphic to $S_{n-1, k-1}$, for each $i \in I_{n}$. Moreover, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1, k-1}^{l: i}$ and $S_{n-1, k-1}^{t: j}$ for any $i, j \in I_{n}$ with $i \neq j$.
Since $S_{n, 1} \cong K_{n}$, we only consider the case of $k \geqslant 2$ in the following discussion.
Lemma 2.5: If $2 \leqslant k \leqslant n-1$ and $0 \leqslant h \leqslant n-k$, then

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \leqslant \begin{cases}(n-h-1)(h+1) & \text { for } h \leqslant \frac{n}{2}-1, \\ (n-k+1)(k-1) & \text { otherwise } .\end{cases}
$$

Proof: By our hypothesis of $2 \leqslant k \leqslant n-1$, for any $\alpha \in P(n, k-1)$, we can choose a subset $X \subseteq V\left(K_{n-k+1}^{\alpha}\right)$ such that $|X|=h+1$. Then the subgraph of K_{n-k+1}^{α} induced by X is a complete graph K_{h+1}. Let B be the set of incident edges with and not within X. Since $S_{n, k}$ is $(n-1)$-regular and K_{h+1} is h-regular, we have that

$$
|B|=(n-h-1)(h+1) .
$$

Clearly, B is an edge-cut of $S_{n, k}$. Let x be any vertex in $S_{n, k}-X$, and $d(x)$ denote the number of edges incident with x in $S_{n, k}-X$. In order to prove that B is an h-edge-cut, we only need to show $d(x) \geqslant h$. Note that X is contained in $S_{n-1, k-1}^{i}$ and edges between $S_{n-1, k-1}^{i}$ and $S_{n-1, k-1}^{j}$ are independent for any $i, j \in I_{n}$ with $i \neq j$ by

Lemma 2.4. If x is in $S_{n-1, k-1}^{i}-K_{n-k+1}^{\alpha}$ or is in $S_{n-1, k-1}^{j}$ with $i \neq j$, then $d(x) \geqslant n-2 \geqslant n-k \geqslant h$. For $x \in V\left(K_{n-k+1}^{\alpha}-X\right)$, if exists, then $d(x)=n-1-|X|=n-h-2 \geqslant h$ for $h \leqslant \frac{n}{2}-1$. Therefore, B is an h -edge-cut of $S_{n, k}$, and so

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \leqslant|B|=(n-h-1)(h+1) \text { for } h \leqslant \frac{n}{2}-1
$$

For $h \geqslant \frac{n}{2}$, we choose $X=V\left(K_{n-k+1}^{\alpha}\right)$. Then $|B|=(n-k+1)(k-1)$. For any x in $S_{n-1, k-1}^{i}-X$ or $S_{n-1, k-1}^{j}$ with $i \neq j$, we have $d(x) \geqslant n-2 \geqslant n-k \geqslant h$. Thus, B is an h-edge-cut of $S_{n, k}$, and so

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \leqslant|B|=(n-k+1)(k-1) \text { for } h \geqslant \frac{n}{2}
$$

The lemma follows.
Corollary 2.6: $\lambda_{s}^{(h)}\left(S_{n, 2}\right)=n-1$ for $0 \leqslant h \leqslant n-2$.
Proof: On the one hand, $\lambda_{s}^{(h)}\left(S_{n, 2}\right) \leqslant n-1$ by Lemma 2.5 when $k=2$. On the other hand, $\lambda_{s}^{(h)}\left(S_{n, 2}\right) \geq \lambda\left(S_{n, 2}\right)$ $=n-1$ by Lemma 2.2.

The following lemma shows the relations between $(n-h-1)(h+1)$ and $(n-k+1)(k-1)$.
Lemma 2.7: For $2 \leqslant k \leqslant n-1,0 \leqslant h \leqslant n-k$, let

$$
\psi(h, k)=\min \{(n-h-1)(h+1),(n-k+1)(k-1)\} .
$$

If $h \leqslant \frac{n}{2}-1$, then

$$
\psi(h, k)=\left\{\begin{array}{cl}
(n-h-1)(h+1) & \text { if } 0 \leqslant h \leqslant k-2 \\
(n-k+1)(k-1) & \text { if } h \geqslant k-1
\end{array}\right.
$$

Proof: Let $f(x)=(n-x) x$, then $\psi(h, k)=\min \{f(h+1), f(k-1)\}$. It can be easily checked that $f(x)$ is a convex function on the interval $[0, n]$, the maximum value is reached at $x=\frac{n}{2}$. Thus, $f(x)$ is an increasing function on the interval $\left[0, \frac{n}{2}\right]$.

If $0 \leqslant h \leqslant k-2$, then $h+1 \leqslant k-1$. Since $h \leqslant n-k, h+1 \leqslant n-k+1$ and $\min \{k-1, n-k+1\} \leqslant \frac{n}{2}$. Thus, when $h \leqslant \frac{n}{2}-1, f(h+1) \leqslant f(k-1)=f(n-k+1)$, and so $\psi(h, k)=f(h+1)=(n-h-1)(h+1)$.

If $h \geqslant k-1$, then $k-1<h+1 \leqslant \frac{n}{2}, f(k-1)<f(h+1)$, so $\psi(n, k)=f(k-1)=(n-k+1)(k-1)$.
The lemma follows.
To state and prove our main results, we need some notations. Let B be a minimum h-edge-cut of $S_{n, k}$. Clearly, $S_{n, k}-B$ has exactly two connected components. Let X and Y be two vertex-set of two connected components of $S_{n, k}-B$. For a fixed $t \in I_{k} \backslash\{1\}$ and any $i \in I_{n}$, let

$$
\begin{aligned}
& X_{i}=X \cap V\left(S_{n-1, k-1}^{t: i}\right), \\
& Y_{i}=Y \cap V\left(S_{n-1, k-1}^{t: i}\right), \\
& B_{i}=B \cap E\left(S_{n-1, k-1}^{t: i}\right) \text { and } \\
& B_{i j}=B \cap E\left(S_{n-1, k-1}^{t: i}, S_{n-1, k-1}^{t: j}\right),
\end{aligned}
$$

and let

$$
\begin{aligned}
& J=\left\{i \in I_{n}: X_{i} \neq \emptyset\right\} \\
& J^{\prime}=\left\{i \in J: Y_{i} \neq \emptyset\right\} \text { and } \\
& T=\left\{i \in I_{n}: Y_{i} \neq \emptyset\right\} .
\end{aligned}
$$

Lemma 2.8: Let B be a minimum h-edge-cut of $S_{n, k}$ and X be the vertex-set of a connected component of $S_{n, k}-B$. If $3 \leqslant k \leqslant n-1$ and $1 \leqslant h \leqslant n-k$ then, for any $t \in I_{k} \backslash\{1\}$,
(a) B_{i} is an $(h-1)$-edge-cut of $S_{n-1, k-1}^{t: i}$ for any $i \in J^{\prime}$,
(b) $\lambda_{s}^{(h)}\left(S_{n, k}\right) \geqslant\left|J^{\prime}\right| \lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right)$.

Proof. (a) By the definition of J^{\prime}, B_{i} is an edge-cut of $S_{n-1, k-1}^{t: i}$ for any $i \in J^{\prime}$. For any vertex x in $S_{n-1, k-1}^{t: i}-B_{i}$, since x has degree at least h in $S_{n, k}-S$ and has exactly one neighbor outsider $S_{n-1, k-1}^{t: i}, x$ has degree at least $h-1$ in $S_{n, k}^{t: i}-B_{i}$. This fact shows that B_{i} is an $(h-1)$-edge-cut of $S_{n-1, k-1}^{t: i}$ for any $i \in J^{\prime}$.
(b) By the assertion (a), we have $\left|B_{i}\right| \geqslant \lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right)$, and so

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right)=|B| \geqslant \sum_{i \in J^{\prime}}\left|B_{i}\right| \geqslant\left|J^{\prime}\right| \lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) .
$$

The lemma follows.

III. Proof of Theorem

By Lemma 2.5 and Lemma 2.7, we only need to prove that, for $2 \leqslant k \leqslant n-1$ and $0 \leqslant h \leqslant n-k$,

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \geqslant \begin{cases}(n-h-1)(h+1) & \text { for } h \leqslant k-2 \text { and } h \leqslant \frac{n}{2}-1, \\ (n-k+1)(k-1) & \text { otherwise. }\end{cases}
$$

Let $\omega(h, k)=\max \{(n-h-1)(h+1),(n-k+1)(k-1)\}$.
We proceed by induction on $k \geqslant 2$ and $h \geqslant 0$. The inequality is true for $k=2$ and any h with $0 \leqslant h \leqslant n-2$ by Corollary 2.6. The inequality is also true for $h=0$ and any k with $2 \leqslant k \leqslant n-1$ since $\lambda_{s}^{(0)}\left(S_{n, k}\right)=\lambda\left(S_{n, k}\right)=$ $n-1$. Assume the induction hypothesis for $k-1$ with $k \geqslant 3$ and for $h-1$ with $h \geqslant 1$, that is,

$$
\lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \geqslant \begin{cases}(n-h) h & \text { for } h \leqslant k-3 \text { and } h \leqslant \frac{n-1}{2}, \\ (n-k+2)(k-2) & \text { otherwise. }\end{cases}
$$

Let B be a minimum h-edge-cut of $S_{n, k}$ and X be the vertex-set of a minimum connected component of $S_{n, k}-B$. By Lemma 2.5, we have

$$
\begin{equation*}
|B| \leqslant \omega(h, k) . \tag{1}
\end{equation*}
$$

Use notations defined in Section II. Choose $t \in I_{k} \backslash\{1\}$ such that $|J|$ is as large as possible. For each $i \in I_{n}$, we write $S_{n-1, k-1}^{i}$ for $S_{n-1, k-1}^{t: i}$ for short.

We first show $|J|=1$. Suppose to the contrary $|J| \geqslant 2$. We will deduce contradictions by considering three cases depending on $\left|J^{\prime}\right|=0,\left|J^{\prime}\right|=1$ or $\left|J^{\prime}\right| \geqslant 2$.

Case 1. $\left|J^{\prime}\right|=0$.
In this case, $X_{i} \neq \emptyset$ and $Y_{i}=\emptyset$ for each $i \in J$, that is, $J \cap T=\emptyset$. By $|J| \geqslant 2$ and the minimality of $X,|T| \geqslant 2$. Assume $\left\{i_{1}, i_{2}\right\} \subseteq J$ and $\left\{i_{3}, i_{4}\right\} \in T$. By Lemma 2.4, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1, k-1}^{i_{1}}$ (resp. $S_{n-1, k-1}^{i_{2}}$) and $S_{n-1, k-1}^{i_{3}}\left(\right.$ resp. $S_{n-1, k-1}^{i_{4}}$), all of which are contained in B. Since $J \cap T=\emptyset$, we have that

$$
|B| \geqslant 4 \frac{(n-2)!}{(n-k)!} .
$$

For $k=3$,

$$
|B| \geqslant 4 \frac{(n-2)!}{(n-k)!} \geqslant 4(n-2)>2(n-2)
$$

Combining Lemma 2.5 with Lemma 2.7 yields $|B| \leqslant \lambda_{s}^{(h)}\left(S_{n, 3}\right) \leqslant 2(n-2)$, a contradiction. For $k \geqslant 4$, it is easy to check that

$$
\begin{aligned}
|B| & \geqslant 4 \frac{(n-2)!}{(n-k)!} \geqslant 4(n-2)(n-3)=(2 n-4)(2 n-6) \\
& >\max \{(n-h-1)(h+1),(n-k+1)(k-1)\} \\
& =\omega(h, k),
\end{aligned}
$$

which contradicts the inequality (1).
Case 2. $\left|J^{\prime}\right|=1$.
Without loss of generality, assume $J^{\prime}=\{1\}$. By Lemma 2.8 (a), B_{1} is an $(h-1)$-edge-cut of $S_{n-1, k-1}^{1}$. By $|J| \geqslant 2$, there exists an $i \in J-J^{\prime}$ such that $X_{i}=V\left(S_{n-1, k-1}^{i}\right)$. By the minimality of X, there exists some $j \in T-J^{\prime}$ such that $Y_{j}=V\left(S_{n-1, k-1}^{j}\right)$. By Lemma 2.4, there are $\frac{(n-2)!}{(n-k)!}$ independent swap-edges between $S_{n-1, k-1}^{i}$ and $S_{n-1, k-1}^{j}$, thus $\left|B_{i j}\right|=\frac{(n-2)!}{(n-k)!} \geqslant n-2$. We consider the following two cases.

If $\lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \geqslant(n-h) h$, then

$$
\begin{aligned}
|B| & \geqslant\left|B_{1}\right|+\left|B_{i j}\right| \\
& \geqslant(n-h) h+(n-2) \\
& >(n-h-1) h+(n-h-1) \\
& =(n-h-1)(h+1)
\end{aligned}
$$

If $\lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \geqslant(n-k+2)(k-2)$, then

$$
\begin{aligned}
|B| & \geqslant\left|B_{1}\right|+\left|B_{i j}\right| \\
& \geqslant(n-k+2)(k-2)+(n-2) \\
& >(n-k+1)(k-2)+(n-k+1) \\
& =(n-k+1)(k-1) .
\end{aligned}
$$

Therefore, we have $|B|>\omega(h, k)$, which contradicts the inequality (1).
Case 3. $\left|J^{\prime}\right| \geqslant 2$.
By Lemma 2.8 (b), if $\lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \geqslant(n-h) h$ then

$$
\begin{aligned}
|B| & \geqslant\left|J^{\prime}\right| \lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \\
& \geqslant 2(n-h) h \geqslant(n-h) h+(n-h) \\
& >(n-h-1)(h+1)
\end{aligned}
$$

if $\lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \geqslant(n-k+2)(k-2)$ then

$$
\begin{aligned}
|B| & \geqslant\left|J^{\prime}\right| \lambda_{s}^{(h-1)}\left(S_{n-1, k-1}\right) \\
& \geqslant 2(n-k+2)(k-2) \\
& \geqslant(n-k+2)(k-2)+(n-k+2) \\
& >(n-k+1)(k-1)
\end{aligned}
$$

Therefore, we have $|B|>\omega(h, k)$, which contradicts the inequality (1).
Thus, we have $|J|=1$. By the choice of t, the i-th bits of all vertices in X are same for each $i=2,3, \ldots, k$, and so X is a complete graph. Thus, we have that

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \quad=|B|=(n-|X|)|X|
$$

Since $h+1 \leqslant|X| \leqslant n-k+1$ and $f(x)=(n-x) x$ is a convex function on the interval $[0, n]$, we have that

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \quad=|B|=(n-|X|)|X| \geqslant \psi(h, k)
$$

where $\psi(h, k)$ is defined in Lemma 2.7.
If $h \leqslant \frac{n}{2}-1$, using Lemma 2.7, we have

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right) \geqslant \psi(h, k)= \begin{cases}(n-h-1)(h+1) & \text { if } 0 \leqslant h \leqslant k-2 ; \\ (n-k+1)(k-1) & \text { if } h \geqslant k-1 .\end{cases}
$$

If $h \geqslant \frac{n}{2}$, then $X=V\left(K_{n-k+1}\right)$. Otherwise, there exists some $x \in V\left(K_{n-k+1}-X\right)$ such that

$$
h \leqslant d(x)=n-1-|X| \leqslant n-h-2,
$$

which implies $h \leqslant \frac{n}{2}-1$, a contradiction. Therefore, we have $|X|=n-k+1$, and

$$
\lambda_{s}^{(h)}\left(S_{n, k}\right)=|B|=(n-|X|)|X|=(n-k+1)(k-1) \text { for } h \geqslant \frac{n}{2} .
$$

By the induction principle, the theorem follows.
As we have known, when $k=n-1, S_{n, n-1}$ is isomorphic to the star graph S_{n}. Akers and Krishnamurthy [1] determined $\lambda\left(S_{n}\right)$ and $\lambda_{s}^{(1)}\left(S_{n}\right)$, which can be obtained from our result by setting $k=n-1$ and $h=0,1$, respectively.
Corollary: $\lambda\left(S_{n}\right)=n-1$ for $n \geqslant 2$ and $\lambda_{s}^{(1)}\left(S_{n}\right)=2 n-4$ for $n \geqslant 3$.

Acknowledgements: The authors acknowledge support from NNSF of China (No.11071233).

References

[1] S. B. Akers and B. Krishnamurthy, A group theoretic model for symmetric interconnection networks. IEEE Trans. Computers, 38 (4) (1989), 555-566.
[2] E. Cheng and M. J. Lipman, Unidirectional (n, k)-star graphs. Journal Interconnection Networks, 3(1-2) (2002), 1934.
[3] E. Cheng and M. J. Lipman, Increasing the connectivity of the star graphs. Networks, 40(3) (2002), 165-169.
[4] W.-K. Chiang and R.-J. Chen, The (n, k)-star graphs: A generalized star graph. Information Processing Letters, 56 (1995), 259-264.
[5] J.-M. Xu, Combinatoral Theory in Networks (in Chinese). Academic Press, Beijing, 2007.

