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The design of large dependable multiprocessor systems requires quick and precise mechanisms for detecting
the faulty nodes. The system-level fault diagnosis is the process of identifying faulty processors in a system
through testing. This paper shows that the largest connected component of the survival graph contains
almost all remaining vertices in the hierarchical hypercube HHCn when the number of faulty vertices is
up to two or three times of the traditional connectivity. Based on this fault resiliency, we establish that the
conditional diagnosability of HHCn (n = 2m + m, m ≥ 2) under the comparison model is 3m − 2, which
is about three times of the traditional diagnosability.

Keywords: fault tolerance; comparison diagnosis; diagnosability; hierarchical hypercubes

2010 AMS Subject Classifications: 05C90; 05C40

1. Introduction

Processors of a multiprocessor system are connected according to a given interconnection network.
Fault tolerance is especially important for interconnection networks, since failures of network
components are inevitable when the size of network grows largely. To be reliable, the rest of
the network should stay connected when component faults occur. Obviously, this can only be
guaranteed if the number of faults is smaller than the minimum degree of the network. When
the number of faults is larger than the minimum degree, some extensions of connectivity are
necessary, since the graph may become disconnected. Some generalizations of connectivity were
introduced and examined for various classes of graphs in [6], including super connectedness and
tightly super connectedness, where only one singleton can appear in the remaining network. As
the number of faults of the graph increases, it is desirable that when a few processors separated
from the rest, the largest component of the surviving network stays connected and the network
will continue to be able to function. Many interconnection networks have been examined in this
aspect, when the number of faults is roughly twice the minimum degree [4,13]. One can even go
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further and ask what happens when more vertices are deleted. This has been examined for the
hypercube in [28–30] and for certain Cayley graphs generated by transpositions in [5], and it has
been shown that the surviving network has a large component containing almost all vertices.

The process of identifying faulty processors in a system by analysing the outcomes of available
inter-processor tests is called system-level diagnosis. Preparata et al. [21] established a foundation
of system diagnosis and an original diagnostic model, called the Preparata Metze Chien (PMC)
model. Its target is to identify the exact set of all faulty vertices before their repair or replacement.
All tests are performed between two adjacent processors, and it was assumed that a test result is
reliable (respectively, unreliable) if the processor that initiates the test is fault-free (respectively,
faulty). The comparison-based diagnosis models, first proposed by Malek [17] and Chwa and
Hakimi [8], have been considered to be a practical approach for fault diagnosis in the multipro-
cessor systems. In these models, the same job is assigned to a pair of processors in the system and
their outputs are compared by a central observer.This central observer performs diagnosis using the
outcomes of these comparisons. Maeng and Malek [16] extended Malek’s comparison approach
to allow the comparisons carried out by the processors themselves. Sengupta and Dahbura [22]
developed this comparison approach such that the comparisons have no central unit involved.

Lin et al. [15] introduced the conditional diagnosis under the comparison model. By evaluating
the size of connected components, they obtained that the conditional diagnosability of the star
graph Sn under the comparison model is 3n − 7, which is about three times larger than that of the
classical diagnosability of star graphs. Using the same method, Hsu et al. [11] proved that the
conditional diagnosability of the hypercube Qn is 3n − 5. This idea was attributed to Lai et al. [14]
who were the first to use a conditional diagnosis strategy. They obtained that the conditional
diagnosability of the hypercube Qn is 4n − 7 under the PMC model. Furthermore, Hsu et al. [11]
exposed the difference between these two conditional diagnosis models. Recently, Zhou [33]
investigated the conditional diagnosability of the crossed cube CQn through the fault tolerance of
CQn. Zhou and Xiao [34] obtained the conditional diagnosability of the alternating group network.
By a similar processing style to [11,33], this paper will focus on the conditional diagnosability of
hierarchical hypercube (HHC), which is a more complicated variant of hypercube.

The hypercube network suffers from a practical limitation: as n increases, it becomes more
difficult to design and fabricate the nodes of Qn because of the large fan-out. To remove the
limitation, the cube-connected cycles (CCC for short) network was designed as a substitute for
the hypercube network. The node degree of a CCC network is restricted to 3. However, this
restriction degrades the performance of a CCC network at the same time. For example, a CCC
network has a greater diameter than a hypercube network having the same number of nodes. Taking
both the practical limitation and the performance into account, the HHC network was proposed as
a compromise between the hypercube network and the CCC network. An HHC network, which
has a two-level structure, takes hypercubes as basic modules and connects them in a hypercube
manner. An HHC network has a logarithmic diameter, which is the same as a hypercube network.
Since the topology of one HHC network is closely related to the topology of a hypercube network,
it inherits some favourable properties from the latter.

This paper contains four sections in addition to the introduction. Section 2 introduces some
definitions, notations and the structure of the hierarchical hypercube HHCn. Section 3 is devoted
to the fault resiliency of HHCn and derives the extra connectivities. Section 4 concentrates on the
conditional diagnosability of HHCn. Section 5 contains some concluding remarks.

2. Hierarchical hypercubes

An interconnection network is conveniently represented by an undirected graph. The vertices
(edges) of the graph represent the nodes (links) of the network. Throughout this paper, the terms
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2154 S. Zhou et al.

vertex and node, edge and link, and graph and network are used interchangeably. For notation
and terminology not defined here, we follow [25]. Specifically, we use a graph G = G(V , E) to
represent an interconnection network, where a vertex u ∈ V represents a processor and an edge
(u, v) ∈ E represents a link between vertices u and v. If at least one end-vertex of an edge is faulty,
the edge is said to be faulty; otherwise, the edge is said to be fault-free.

Let S be a subset of V(G). The subgraph of G induced by S, denoted by G[S], is the graph with
the vertex set S and the edge set {(u, v) | (u, v) ∈ E(G), u, v ∈ S}. For any vertex u and one subgraph
H in G, NH(u) denotes the set of all neighbours of u in H, that is, NH(u) = {v ∈ H | (u, v) ∈ E}.
Let S be a subgraph of G or a subset of V(G), and let NH(S) = (

⋃
u∈S NH(u)) \ S. We also

denote N[S] = N(S) ∪ S. For brevity, N[u] = N(u) ∪ {u}, N({u, v}) and N[{u, v}] are written as
N(u, v) and N[u, v], respectively. The union G = G1 ∪ G2 of graphs G1 and G2 is the graph
with V(G) = V(G1) ∪ V(G2) and E(G) = E(G1) ∪ E(G2). We use d(u, v) to denote the distance
between u and v, the length of a shortest path between u and v in G. The diameter of G is defined
as the maximum distance between any two vertices in G.

For any subset F ⊂ V , the notation G − F denotes a graph obtained by removing all vertices
in F from G and deleting those edges with at least one end-vertex in F, simultaneously. If G − F
is disconnected, F is called a separating set. A separating set F is called a k-separating set if
|F| = k. The maximal connected subgraphs of G − F are called components. The connectivity
κ(G) of G is defined as the minimum k for which G has a k-separating set; otherwise, κ(G) is
defined as n − 1 if G = Kn. A graph G is called to be k-connected if κ(G) ≥ k. A k-separating
set is called to be minimum if k = κ(G).

Network reliability is one of the major factors in designing the topology of an interconnection
network. Because of its elegant topological properties and the ability to emulate a wide variety of
other frequently used networks, the hypercube has been one of the most popular interconnection
networks for parallel computer/communication systems. However, when dealing with the parallel
computers of very large scale, the port limitation due to the technology greatly forbid the use of
hypercube networks.

An n-dimensional cube-connected cycle (CCCn for short) can be obtained by replacing each
node of n-dimensional hypercube Qn with a cycle of n nodes so that they are connected to the
n neighbours of the original node in Qn. Actually, an HHC network is a modification of a CCC
in which the cycle is replaced with a hypercube [18–20]. An n-dimensional hierarchical cube
(HHCn for short) can be constructed as follows: start with a Q2m network and then replace each
node of it with a hypercube Qm. Since there are a total of 22m × 2m = 22m+m nodes, each node
in the HHCn network can be uniquely represented by a binary sequence bn−1bn−2 · · · b0, where
n = 2m + m. In Figure 1, an example with m = 2 is shown. For convenience, bn−1bn−2 · · · b0

is expressed as a two-tuple (X , Y), where X = bn−1bn−2 · · · bm tells which Qm the node is
located in and Y = bm−1bm−2 · · · b0 gives the address of the node in the located Qm network. Let
Y l = bm−1bm−2 · · · bl+1blbl−1 · · · b0 (or Xm+l = bn−1bn−2 · · · bm+l+1bm+lbm+l−1 · · · b0) denote the
binary sequence obtained by complementing bl (or bm+l) of X (or Y ). The network HHCn can be
defined in terms of graph as follows.

Definition 2.1 [18–20] The node set of an n-dimensional HHC (HHCn for short) network is
{(X , Y) | X = bn−1bn−2 · · · bm, Y = bm−1bm−2 · · · b0 and bi ∈ {0, 1} for all 0 ≤ i ≤ n − 1, where
n = 22m+m and m ≥ 1}. Node adjacency of HHCn is defined as follows: (X, Y) is adjacent to

(1) (X, Y l) for all 0 ≤ l ≤ m − 1 and
(2) (Xm+dec(Y), Y), where dec(Y) is the decimal value of Y.

The spanning subgraph {(X , Y) | X = bn−1bn−2 · · · bm, Y = bm−1bm−2 · · · b0 and bi ∈ {0, 1} for
all 0 ≤ i ≤ n − 1} of HHCn with dec(X) = j is denoted as HHCj

n.
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Figure 1. (a) Hypercube Q22 and (b) hierarchical hypercube HHC6.

Edges defined by (1) are referred to as internal edges, and those defined by (2) are referred to
as external edges. Internal edges are within Qm networks and each of external edges connects two
Qm networks. Note that the HHCn network is (m + 1)-regular, symmetric and has a diameter of
2m+1. In subsequent discussion, whenever a node v of an HHCn network is mentioned, we use
vX and vY to denote the X part and Y part of v, respectively. For any two distinct vertices u and
v in HHCn

|N(u) ∩ N(v)|

⎧⎪⎨
⎪⎩

= 0, if d(u, v) ≥ 3,

≤ 2, if d(u, v) = 2,

= 0, if d(u, v) = 1.

(1)

To simplify the description of the HHCn structure, integers and their binary encoding are used
interchangeably in this paper, and it assumes that n = 2m + m and m ≥ 1. The set of edges E is
the union of two set Eint and Eext, which are the sets of internal and external edges, respectively,
as the following equation illustrates:

Eint = {((i, j), (i, j + fk(j) × 2k)) | 0 ≤ i < 2n−m, 0 ≤ j < 2m, 0 ≤ k < m},
Eext = {((i, j), (i + fj(i) × 2j, j)) | 0 ≤ i < 2n−m, 0 ≤ j < 2m},

where (bitk(x) denotes the kth coordinate of the binary representation of x)

fk(x) =
{

1, if bitk(x) = 0,

−1, if bitk(x) = 1.
(2)

Thus, every vertex (i, j) of HHCn is connected to the following:

(1) m vertices in the same sub-hypercube through internal edges. These are the vertices whose
addresses are found by changing only one bit of the j part of the address.

(2) exactly one vertex in a neighbour sub-hypercube through an external vertex corresponding to
change of the jth bit of the i part of the address.
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2156 S. Zhou et al.

Wu et al. [23] gave a construction of node disjoint paths of any two vertices in HHC with the
estimation of length on these paths. Wu et al. [24] showed that the HHC is bipancyclic. Some
fault tolerant problems are still open for HHCs.

3. Fault tolerance of the HHC

The connectivity κ(G) of a graph G is an important parameter to measure the fault tolerance
of the network, while it has an obvious deficiency in that it tacitly assumes that all elements in
any subset of G can fail potentially at the same time. To compensate for this shortcoming, it is
natural to generalize the classical connectivity by introducing some conditions or restrictions on
the separating set S and/or the components of G − S.

The connectivity κ(G) of G is the minimum number of vertices whose removal results in a
disconnected or a trivial (one vertex) graph. A k-regular k-connected graph is super k-connected
if any one of its minimum separating sets is a set of the neighbours of some vertex. If, in addition,
the deletion of a minimum separating set results in a graph with two components (one of which
has only one vertex), then the graph is tightly super k-connected. For example, the complete
bipartite graph Kn,n is n-super connected but not tightly n-super connected. The notions of super
connectedness and tightly super connectedness were first introduced in [1,6], respectively.

Esfahanian [9] first introduced the concepts of the restricted separating set and the restricted
connectivity of a graph G. A set S of vertices is a restricted separating set if G − S is disconnected
and N(x) is not completely contained in S for any vertex x of G. The restricted connectivity of
G, denoted by κr(G), is the minimum cardinality of a restricted separating set. Considering it is
difficult to examine whether a separating set is restricted, Xu et al. [26] formally proposed the
super connectivity, one weaker concept than the restricted connectivity. A separating set S of G
is super if G − S contains no isolated vertices. The super connectivity of G, denoted by κs(G),
is the minimum cardinality of a super separating set. Clearly, κ(G) ≤ κs(G) ≤ κr(G) if κr(G)

exists [26].
Fábrega and Fiol [10] generalized the concept of super connectivity to h-extra connectivity for an

undirected graph. Let G be a connected undirected graph and h be an integer with 0 ≤ h ≤ δ(G).A
subset S ⊂ V(G) is called an h-extra separating set if G − S is disconnected and every connected
component contains at least h + 1 vertices. The h-extra connectivity κ(h)

o (G) is defined as

κ(h)
o (G) = min{|S| |S is an h-extra separating set of G}.

It follows from definitions that the h-extra connectivity can provide a more accurate measure-
ment than the connectivity or super connectivity for fault tolerance of a large-scale interconnection
network.

Usually, if the surviving graph G − S contains a large connected component C when G − S
is not connected, the component C may be used as the functional subsystem, without incurring
severe performance degradation. Thus, in evaluating a distributed system, it is indispensable to
estimate the size of the maximal connected components of the underlying graph when the structure
begins to lose processors.

Yang et al. [28–30] proved that the hypercube Qn with f faulty processors has a component
of size at least 2n − f − 1 if f ≤ 2n − 3, and size at least 2n − f − 2 if f ≤ 3n − 6. Recently,
Yang and Meng [27] determined the extra connectivity of hypercubes, Hsu et al. [12] went further
to establish the component connectivity of hypercubes. Yang et al. [31], Cheng and Lipman [2]
and Cheng and Lipták [3] evaluated the size of surviving graph Sn − F of star graph Sn, where
F is a subset of V(Sn) with |F| ≤ 2n − 4. Cheng and Lipták [5] extended the results on Sn with
linearly many faults. Yuan et al. [32] generalized the results on (n, k)-star graphs. Cheng et al. [7]
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presented a similar result for the two-tree-generated networks with linearly many faults. In this
section, we detail on the fault resilience of the hierarchical hypercube HHCn. When m = 1, HHCn

with n = 2m + m is a trivial cycle of length 8. Therefore, we consider that m ≥ 2 for the time being.

Lemma 3.1 [18–20,23,24] For n = 2m + m and m ≥ 2, HHCn has the following combinatorial
properties:

(1) HHCn has 22m+m vertices with regular degree m + 1.
(2) HHCn has the vertex connectivity of m + 1 and the edge connectivity m + 1.
(3) HHCn has the diameter 2m+1.
(4) HHCn is a bipartite graph and it is bipancyclic.

Lemma 3.2 [11,28–30] Let F be a set of faulty vertices in the hypercube Qm with |F| ≤ 2m − 3
and m ≥ 2. If Qm − F is disconnected, then Qm − F has two connected components and one of
which is an isolated vertex.

Throughout this paper, the notation F denotes the set of faulty vertices in HHCn. A subgraph
H of HHCn is called to be fault-free if V(H) ∩ F = ∅. We denote

Fi = HHCi
n ∩ F and fi = |Fi| for i ∈ [0, 22m − 1], (3)

I = {i | fi = |Fi| ≥ m for i ∈ [0, 22m − 1]}, J = [0, 22m − 1] − I . (4)

Furthermore, we define

HHCJ
n − FJ =

⋃
j∈J

(HHCj
n − Fj). (5)

Lemma 3.3 Let F be a set of faulty vertices in HHCn with |F| ≤ 3m − 3 and n = 2m + m, m ≥ 2.
Then, HHCJ

n − FJ is connected.

Proof Furthermore, we define J1 = {j ∈ J | < fj = |Fj| ≤ m − 1} and J0 = J \ J1. By contract-
ing each HHCj

n (j ∈ [0, 22m − 1]) as a new vertex, we obtain a new graph, say G, which is
isomorphic to Q2m and has connectivity 2m. The vertex of G corresponding to HHCj

n (j ∈ J0) can
be seen as a fault-free vertex, and the vertex of G corresponding to HHCi

n (i ∈ I ∪ J1) can be seen
as a faulty vertex. Since 2m > 3m − 3 ≥ |F| for m ≥ 2, G is connected, so HHCn − HHCJ1∪I

n =
HHCJ0

n is connected.
For any j ∈ J1, HHCj

n is isomorphic to the hypercube Qm, whose connectivity is m. Thus,
HHCj

n − Fj is connected. To prove that HHCJ
n − FJ is connected, we need to consider three cases

as follows.
Case 1. |I| = 0
For each j ∈ J1, there exist exactly 2m matching edges between HHCj

n and HHCn − HHCj
n.

Since 2m > 3m − 3 for m ≥ 2, HHCj
n − Fj is connected to HHCJ0

n . By the arbitrariness of j ∈ J1,
HHCJ1

n − FJ1 is connected to HHCJ0
n . Hence, HHCJ

n − FJ is connected.
Case 2. |I| = 1.
For each j ∈ J1, there exist exactly 2m matching edges between HHCj

n and HHCn − HHCj
n, at

most one of which is in HHCI
n. Since 2m − 1 > 3m − 3 − m = 2m − 3 for m ≥ 2, HHCj

n − Fj is
connected to HHCJ0

n . By the arbitrariness of j ∈ J1, HHCJ1
n − FJ1 is connected to HHCJ0

n . Hence,
HHCJ

n − FJ is connected.
Case 3. |I| = 2.
For each j ∈ J1, there exist exactly 2m matching edges between HHCj

n and HHCn − HHCj
n, at

most two of which is in HHCI
n. Since 2m − 2 > 3m − 3 − 2m = m − 3 for m ≥ 2, HHCj

n − Fj is
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connected to HHCJ0
n . By the arbitrariness of j ∈ J1, HHCJ1

n − FJ1 is connected to HHCJ0
n . Hence,

HHCJ
n − FJ is connected. �

Theorem 3.4 For n = 2m + m and m ≥ 2, HHCn is tightly super m + 1-connected.

Proof Let F be a minimum separating set in HHCn. Then, using the notations defined in
Equations (3) and (4), we have that

|F| =
∑

i∈[0,22m −1]
fi = κ(HHCn) = m + 1.

By the definition of tightly super connectivity, we need to show that HHCn − F has exactly two
components, one of them is a single vertex. If fi ≤ m − 1 for any i ∈ [0, 22m − 1], HHCn − F is
still connected by Lemma 3.3. Now, we consider two cases.

Case 1. There exists some i0 ∈ [0, 22m − 1] such that fi0 = m + 1.
In this case, by Lemma 3.1, fi = 0 for any i ∈ [0, 22m − 1] and i 	= i0, HHCi

n is connected.
HHCn − HHCi0

n is still connected by Lemma 3.3. Every vertex of HHCi0
n − Fi0 has exactly one

fault-free neighbour vertex in HHCn − HHCi0
n , so HHCn − F is still connected, a contradiction.

Case 2. fi0 = m for some i0 ∈ [0, 22m − 1].
By the hypothesis, there exists some i1 ∈ [0, 22m − 1] with i1 	= i0 such that fi1 = 1. Since HHCi

n
is isomorphic to the m-dimensional hypercube Qm which is m-connected, HHCi

n is still connected
for any i ∈ [0, 22m − 1] with i 	= i0. As HHCi0

n is tightly super m-connected, HHCi0
n − Fi0 has at

most one vertex isolated from HHCn − (V(HHCi0
n ) ∪ (F − Fi0)). Since fi1 = 1, HHCn − F has

exactly two connected components, one of which is an isolated vertex. �

Lemma 3.5 Let F be a separating set of HHCn with |F| ≤ 3m − 3 and m ≥ 2. If there is some
i0 ∈ [0, 22m − 1] such that |F| − fi0 ≤ 1, then HHCn − F has exactly two components, one of
which is a single vertex.

Proof We use the notations defined in Equations (3) and (4) in the following. By the hypothesis,
for any i ∈ [0, 22m − 1] − {i0},

fi ≤ |F| − fi0 ≤ 1.

Since HHCn − F is disconnected, and HHCn − (HHCi0
n ∪ F) is connected by Lemma 3.3, there

is a component of HHCn − F that contains no vertices in HHCJ
n − FJ . Let H be the union of such

components of HHCn − F. Thus, NHHCn−HHC
i0
n
(H) ⊆ F \ Fi0 , and we have that

|V(H)| ≤ |F| − fi0 ≤ 1

which yields |V(H)| ≤ 1, that is to say, H is a single vertex, say u. By the choice of H, other
components of HHCi0

n − Fi0 must be connected to HHCJ
n − FJ . Since HHCJ

n − FJ is connected
by Lemma 3.3, HHCn − (F ∪ {u}) is connected. It follows that HHCn − F has exactly two
components, one of which is a single vertex. The lemma follows. �

Lemma 3.6 For n = 2m + m and m ≥ 2, let F be a separating set of HHCn with |F| ≤ 3m − 3
and H be the union of connected components of HHCn − F which are in HHCi

n − Fi for some
i ∈ [0, 22m − 1]. If NHHCi

n
(H) ⊆ Fi, then |V(H)| ≤ 2.

Proof Let h = |V(H)|. We would like to prove h ≤ 2. Suppose to the contrary that h ≥ 3. Take
a subset T ⊆ V(H) with |T | = 3. Let T ′ = V(H − T). By the hypothesis, NHHCi

n
(T) \ T ′ ⊆ Fi.

Note that HHCi
n is isomorphic to hypercube Qm. We denote T = {x, y, z} and discuss as follows.
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If H[T ] has no edges, then every pair of vertices in T has at most two common neighbours by
Equation (2), and hence

|NHHCi
n
(T)| ≥ 3m − 5.

If H[T ] has only one edge, say e = (x, y), then x and y have no common neighbours, z and
x (respectively, y) have at most two common neighbours by Equation (2), but two cases cannot
occur meanwhile as there are no cycles of odd length. It follows that

|NHHCi
n
(T)| ≥ 3m − 4.

Similarly, by Equation (2), we can obtain that if H[T ] has two edges, then

|NHHCi
n
(T)| ≥ 3m − 5.

Summing all cases, we have that

fi ≥ |NHHCi
n
(T) \ T ′|

≥ |NHHCi
n
(T)| − (h − 3)

≥ 3m − 5 − (h − 3)

= 3m − 2 − h,

that is,

fi ≥ 3m − 2 − h. (6)

Since NHHCn−HHCi
n
(H) ⊆ F − Fi, |F| − fi ≥ h, from which we have that

fi ≤ |F| − h ≤ 3m − 3 − h,

that is,

fi ≤ 3m − 3 − h. (7)

Combining Equation (6) with Equation (7) deduces a contradiction. Thus, h ≤ 2. �

Theorem 3.7 The 1-extra connectivity of HHCn (n = 2m + m, m ≥ 2) is κ
(1)
0 (HHCn) = 2m.

Proof We choose an edge (u, v) in some subgraph HHCi
n. Obviously, |N(u, v)| = 2m, HHCn −

N[u, v] is still connected by Lemma 3.3. Each connected component of HHCn − N(u, v) has order
at least 2. Thus, we have κ

(1)
0 (HHCn) ≤ 2m.

Now, we show that κ
(1)
0 (HHCn) > 2m − 1. Let F be a set of faulty vertices in HHCn with

|F| ≤ 2m − 1 such that HHCn − F is disconnected.
If |I| ≥ 2, then |F| ≥ 2m, a contradiction. Now, we set I = {i0}.
Let H be the union of all components of HHCn − F that contain no vertex in HHCJ

n − FJ .
Thus, H is in HHCi0

n . By the choice of H, other components of HHCi0
n − Fi0 must be connected to

HHCJ
n − FJ . Since HHCJ

n − FJ is connected, HHCn − (F ∪ V(H)) is connected. Thus, to com-
plete the proof, it suffices to show that |V(H)| = 1. By Lemma 3.6, we only need to show that
|V(H)| = 2 is not possible. Suppose to the contrary that H = {u, v}. Obviously, N(u, v) ⊆ F.

If u is not adjacent to v, then d(u, v) ≥ 2, |N(u) ∩ N(v)| ≤ 2. By Equation (2), we have

|F| ≥ |N(u) ∪ N(v)|
≥ |N(u)| + |N(v)| − |N(u) ∩ N(v)|
≥ 2(m + 1) − |N(u) ∩ N(v)|
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≥ 2(m + 1) − 2

> |F|,
a contradiction.

If (u, v) is an edge of HHCn, then |N(u) ∩ N(v)| = 0. By Equation (2), we have

|F| ≥ |N(u, v)|
≥ |N(u)| + |N(v)| − |{u, v}|
≥ 2(m + 1) − 2

> |F|,
a contradiction. �

We now discuss the fault tolerance of HHCn with more faulty vertices up to 3m − 3 when
m ≥ 2.

Lemma 3.8 Let F be a set of faulty vertices in HHCn (n = 2m + m, m ≥ 2) with |F| ≤ 3m − 3. If
HHCn − F is disconnected, then it either has two components, one of which is an isolated vertex
or an isolated edge, or has three components, two of which are isolated vertices.

Proof Since HHCn − F is disconnected, F is a separating set of HHCn.
If there exists some i ∈ [0, 22m − 1] such that fi ≥ 3m − 4, and hence

|F| − fi ≤ 1,

by Lemma 3.5, HHCn − F has exactly two components, one of which is a single vertex. Now, we
consider that fi ≤ 3m − 5 for any i ∈ [0, 22m − 1].

Let H be the union of all components of HHCn − F that contain no vertex in HHCJ
n − FJ ,

and let h = |V(H)|. Since HHCJ
n − FJ is connected, H is in HHCI

n. By the choice of H, other
components of HHCI

n − FI must be connected to HHCJ
n − FJ . Since HHCJ

n − FJ is connected,
HHCn − (F ∪ V(H)) is connected. To complete the proof, it suffices to show that h ≤ 2.

If |I| ≥ 3, then |F| ≥ 3m > 3m − 3 ≥ |F|, a contradiction. Now, we set 1 ≤ |I| ≤ 2 in the
following.

If |I| = 1, then h ≤ 2 by Lemma 3.6. Now, we suppose that I = {i1, i2}, and let h1 and h2 be
the numbers of vertices of H that lie in HHCi1

n and HHCi2
n , respectively.

Obviously, fi ≤ 2m − 3 for any i ∈ I , otherwise, |F| ≥ 3m − 2, which is a contradiction. We
have h1 ≤ 1 and h2 ≤ 1 by Lemma 3.2. Thus, h = h1 + h2 ≤ 2. �

Lemma 3.8 tells that κ
(2)
0 (HHCn) > 3m − 3. Now, we choose a path, P = (u, v, w), of length 3

in some subgraph HHCi
n. Obviously, |N(u, v, w)| = 3m − 2, HHCn − N[u, v, w] is still connected

and has order at least 3. Thus, we have the following.

Theorem 3.9 The 2-extra connectivity of hierarchical hypercube HHCn (n = 2m + m and m ≥
2) is κ

(2)
0 (HHCn) = 3m − 2.

4. Diagnosability of HHCs

The comparison diagnosis strategy of a graph G = (V , E) can be modelled as a multi-graph
M = (V , C), where C is a set of labelled edges. If the processors u and v can be compared by the
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processor w, provided that u and v are both adjacent to w, there exists a labelled edge (u, v) in C,
denoted by (u, v)w. We call w the comparator of u and v. Since different comparators can compare
the same pair of processors, M is a multi-graph. Denote the comparison result as σ((u, v)w) such
that σ((u, v)w) = 0 if the outputs of u and v agree, and σ((u, v)w) = 1 if the outputs disagree.
If the comparator w is fault-free and σ((u, v)w) = 0, the processors u and v are fault-free; while
σ((u, v)w) = 1, at least one of the three processors u, v and w is faulty. The collection of the
comparison results defined as a function σ : C → {0, 1} is called the syndrome of the diagnosis.
If the comparator w is faulty, the comparison result is unreliable. A faulty comparator can lead to
unreliable results, so a set of faulty vertices may produce different syndromes. A subset F � V
is said to be compatible with a syndrome σ if σ can arise from the circumstance that all vertices
in F are faulty and all vertices in V − F are fault-free. A system G is said to be diagnosable if,
for every syndrome σ , there is a unique F ⊂ V that is compatible with σ . A system is said to be
t-diagnosable if the system is diagnosable as long as the number of faulty vertices does not exceed
t. The maximum number of faulty vertices that the system G can guarantee to identify is called
the diagnosability of G, written as t(G). Let σF = {σ | σ is compatible with F}. Two distinct
subsets F1 and F2 of V(G) are said to be indistinguishable if and only if σF1 ∩ σF2 	= φ, and
distinguishable otherwise [11,15,22]. There are several different ways to verify whether a system
is t-diagnosable under the comparison approach. The following lemma obtained by Sengupta and
Dahbura [22] gives necessary and sufficient conditions to ensure distinguishability.

Lemma 4.1 [22] Let G be a graph and F1 and F2 be two distinct subsets of vertices in G. The
pair (F1, F2) is distinguishable if and only if at least one of the following conditions is satisfied.

(1) There are two distinct vertices u and w ∈ V(G − F1 ∪ F2) and a vertex v ∈ F1�F2 such that
(u, v)w ∈ C, where F1 
 F2 = (F1 \ F2) ∪ (F2 \ F1).

(2) There are two distinct vertices u and v ∈ F1 \ F2 (or F2 \ F1) and a vertex w ∈ V(G − F1 ∪
F2) such that (u, v)w ∈ C.

Lin et al. [15] introduced the so-called conditional diagnosability of a system under the situation
that no set of faulty vertices can contain all neighbours of any vertex in the system. A fault-set
F ⊂ V(G) is called a conditional fault set if N(v) is not a subset of F for every vertex v in V(G). A
system G(V , E) is said to be conditionally t-diagnosable if F1 and F2 are distinguishable for each
pair (F1, F2) of distinct conditional fault sets in G with |F1| ≤ t and |F2| ≤ t. The conditional
diagnosability of G, denoted by tc(G), is defined as the maximum value of t for which G is
conditionally t-diagnosable. Clearly, tc(G) ≥ t(G). This section will focus on the conditional
diagnosability of HHCs.

Lemma 4.2 Let F1 and F2 be any two distinct conditional fault sets of |F1| ≤ 3m − 2 and |F2| ≤
3m − 2. Denote by H the maximum component of HHCn − F1 ∩ F2 with n = 2m + m, m ≥ 2.
Then, for every vertex u ∈ F1�F2, u ∈ H.

Proof Without loss of generality, we assume that u ∈ F1 − F2. Since F2 is a conditional fault
set, there is a vertex v ∈ (HHCn − F2) − {u} such that (u, v) ∈ E(HHCn). Suppose that u is not a
vertex of H . Then, v is not in H, hence u and v are in one small component of HHCn − F1 ∩ F2.
Since F1 and F2 are distinct, we have

|F1 ∩ F2| ≤ 3m − 3.

Hence, HHCn[u, v] forms a component K2 in HHCn − F1 ∩ F2 by Lemma 3.8, that is, the vertex
u is the unique neighbour of v in HHCn − F1 ∩ F2. This is a contradiction since F1 is a conditional
fault set, but all the neighbours of v are faulty in F1. �
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Lemma 4.3 [15] Let G be a graph with δ(G) ≥ 2, and let F1 and F2 be any two distinct
conditional fault sets of G with F1 ⊂ F2. Then, (F1, F2) is a distinguishable conditional pair
under the comparison diagnosis model.

Theorem 4.4 tc(HHCn) = 3m − 2 for n = 2m + m and m ≥ 2.

Proof We first prove that tc(HHCn) ≤ 3m − 2 for m ≥ 2. In fact, when n ≥ 3, we select four
vertices x, y, z, u ∈ V(HHCn), such that (x, y, z, u) is a cycle of length 4. Set A = N[x, y, z], F1 =
A − {y, z} and F2 = A − {x, y}. We obtain

|F1| = |F2| = 3m − 1 and |F1 − F2| = |F2 − F1| = 1.

It is easy to check that F1 and F2 are two conditional fault sets and are indistinguishable. Thus,
we have

tc(HHCn) ≤ 3m − 2.

Now, we prove that tc(HHCn) ≥ 3m − 2 for m ≥ 2.
Let F1 and F2 be any two distinct conditional fault sets of HHCn. If |F1| ≤ 3m − 2, |F2| ≤

3m − 2 for m ≥ 2. It suffices to prove that (F1, F2) is a distinguishable conditional pair under the
comparison diagnosis model.

By Lemma 4.3, (F1, F2) is a distinguishable conditional pair if F1 ⊂ F2 or F2 ⊂ F1. Now, we
assume that |F1 − F2| ≥ 1 and |F2 − F1| ≥ 1. Let S = F1 ∩ F2. Then, we have |S| ≤ 3m − 3 for
m ≥ 2. Let H be the largest connected component of HHCn − F1∩F2. By Lemma 4.2, every
vertex in F1�F2 is in H.

We claim that H has a vertex u outside of F1 ∪ F2 that has no neighbour in S. Since every vertex
has degree m + 1, the vertices in S can have at most (m + 1)|S| neighbours in H. There are at
most |F1| + |F2| − |S| vertices in F1 ∪ F2 and at most two vertices of HHCn − S may not belong
to H by Lemma 3.8. Thus, we have

22m+m − (m + 1)|S| − (|F1| + |F2| − |S|) − 2

≥ 22m+m − (m + 2) × (3m − 3) − 2

≥ 4.

Thus, there must be some vertex of H outside of F1 ∪ F2, which has no neighbours in S. Let u
be such a vertex.

If u has no neighbour in F1 ∪ F2, we can find a path of length at least 2 within H to a vertex
v in F1�F2. We may assume that v is the first vertex of F1�F2 on this path, and let q and w be
the two vertices on this path immediately before v (we may have u = q), hence q and w are not
in F1 ∪ F2. The existence of the edges (q, w) and (w, v) ensures that (F1, F2) is a distinguishable
conditional pair of HHCn by Lemma 4.1. Now, we assume that u has a neighbour in F1�F2. Since
the degree of u is at least 3, and u has no neighbour in S, there are three possibilities:

(1) u has two neighbours in F1 \ F2,
(2) u has two neighbours in F2 \ F1 or
(3) u has at least one neighbour outside F2 ∪ F1.

In each sub-case above, by Lemma 4.1, (F1, F2) is a distinguishable conditional pair of HHCn

under the comparison diagnosis model, hence the proof is complete. �
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5. Conclusion

The paper derives the fault resiliency of HHCs and then uses the fault resiliency to evaluate fault
diagnosability of HHCs under the comparison model. The traditional diagnosability of HHCn

with n = 2m + m and m ≥ 2 under the comparison model is only m + 1, while the conditional
diagnosability of HHCn is 3m − 2, which is about three times that of the traditional diagnosability
under the comparison model. The fault resiliency of an HHC may also reveal its conditional
connectivity of high order. This method can also be applied to other complex network structures.
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