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The growing size of the multiprocessor system increases its vulnerability to component
failures. It is crucial to locate and replace the faulty processors to maintain a system’s
high reliability. The fault diagnosis is the process of identifying faulty processors in a
system through testing. This paper shows that the largest connected component of the
survival graph contains almost all of the remaining vertices in the dual-cube DCn when
the number of faulty vertices is up to twice or three times of the traditional connectivity.
Based on this fault resiliency, this paper determines that the conditional diagnosability
of DCn (n ≥ 3) under the comparison model is 3n− 2, which is about three times of the
traditional diagnosability.

Keywords: Fault tolerance; comparison diagnosis; conditional diagnosability; dual-cubes.

1. Introduction

Processors of a multiprocessor system are connected according to a given inter-

connection network. Fault-tolerance is especially important for interconnection net-

works, since failures of interconnection network components are inevitable. To be

reliable, the rest of the network should retain connection when component faults
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occur. Obviously, this can only be guaranteed if the number of faults is smaller

than the connectivity of the network. When the number of faults is larger than the

connectivity, some extensions of connectivity are necessary, since the graph may

become disconnected. Some generalizations of connectivity were introduced and in-

vestigated for various classes of graphs in [10], including super connectedness and

tightly super connectedness, where only one singleton can appear in the surviving

network. As the number of faults in the graph is increased, it is desirable that

the most part of the surviving network retain connection, with a few processors

separated from the rest, since then the network will continue to be able to func-

tion. Many interconnection networks have been investigated in this aspect, when

the number of faults is roughly twice the connectivity, see [12, 24]. One can even

go further and ask what happens when more faulty vertices appear. This has been

investigated for the hypercube in [44–46] and for certain Cayley graphs generated

by transpositions in [13], and it has been shown that the surviving network has a

large connected component containing almost all non-faulty vertices.

The process of identifying faulty processors in a system by analyzing the out-

comes of available inter-processor tests is called system-level diagnosis. In 1967,

Preparata, Metze, and Chien [39] established a foundation of system diagnosis and

an original diagnostic model, called the PMC model. Its target is to identify the

exact set of all faulty vertices before their repair or replacement. All tests are per-

formed between two adjacent processors, and it is assumed that a test result is

reliable (respectively, unreliable) if the processor that initiates the test is fault-free

(respectively, faulty). The comparison-based diagnosis models, first proposed by

Malek [37] and Chwa and Hakimi [16], are considered to be a practical approach

for fault diagnosis in the multiprocessor systems. In these models, the same job is

assigned to a pair of processors in the system and their outputs are compared by

a central observer. This central observer performs diagnosis using the outcomes of

these comparisons. Maeng and Malek [36] extended Malek’s comparison approach

to allow the comparisons carried out by the processors themselves. Sengupta and

Dahbura [40] developed this comparison approach such that the comparisons have

no central unit involved.

Lin et al. [35] introduced the conditional diagnosis under the comparison model.

By evaluating the size of connected components, they obtained that the conditional

diagnosability of the star graph Sn under the comparison model is 3n− 7, which is

about three times larger that the classical diagnosability of star graphs. In the same

method, Hsu et al. [20] have recently proved that the conditional diagnosability of

the hypercube Qn is 3n−5. This idea is attributed to Lai et al. [25] who are the first

to use a conditional diagnosis strategy. They obtained that the conditional diag-

nosability of the hypercube Qn is 4n− 7 under the PMC model. Furthermore, Hsu

et al. [20] exposed the difference between these two conditional diagnosis models.

The dual-cube, proposed as a generalization of the hypercubes in an attempt to

solve the scalability problem of the hypercubes, while preserving its attractive fea-

tures, has been extensively studied [21–23, 26–32,41]. Chen et al. [6, 7] first showed
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that the diagnosability of the distributed system modeled by dual-cube DCn is n+1

under the PMC model, and presented an adaptive diagnosis provided that at most

n+1 processes are faulty. Based on the fault tolerance of the dual-cube, this paper

considers its conditional diagnosability under the comparison diagnosis model.

The rest of this paper is organized as follows. Section 2 introduces some def-

initions, notations and the structure of the dual-cube DCn, and shows that DCn

is a Cayley graph based on semi-direct product in group theory. Section 3 is de-

voted to the fault resiliency of DCn, and derives the extra connectivity. Section

4 concentrates on the conditional diagnosability of DCn. Section 5 concludes the

paper.

2. Dual-Cubes

An interconnection network is conveniently represented by an undirected graph. The

vertices (edges) of the graph represent the nodes (links) of the network. Throughout

this paper, the terms vertex and node, edge and link, and graph and network are

used interchangeably. For notation and terminology not defined here we follow [42].

Specifically, we use a graph G = G(V,E) to represent an interconnection network,

where a vertex u ∈ V represents a processor and an edge (u, v) ∈ E represents a

link between vertices u and v. If at least one end-vertex of an edge is faulty, the

edge is said to be faulty; otherwise, the edge is said to be fault-free.

For any vertex u of the graph G = (V,E), N(u) denotes the set of all neighbors

of u, i.e., N(u) = {v | (u, v) ∈ E}. We also denote, by |N(u)|, the degree d(u) of

u. The parameters ∆(G) = max{d(u) | u ∈ V (G)} and δ(G) = min{d(u) | u ∈

V (G)} are the maximum and the minimum degree of the graph G. Let S be a

subset or a subgraph of V (G), whose order is denoted by |S|. The subgraph of G

induced by S, denoted by G[S], is the graph with the vertex-set S and the edge-set

{(u, v) | (u, v) ∈ E(G), u, v ∈ S}. Let S be a subgraph of G or a subset of V (G),

and let N(S) =
⋃

u∈S N(u) \ S. We also denote N [S] = N(S) ∪ S. For brevity,

N [u] = N(u) ∪ {u}, N({u, v}) and N [{u, v}] are written as N(u, v) and N [u, v],

respectively. We use d(u, v) to denote the distance between u and v, the length of a

shortest path between u and v in G. The diameter of G is defined as the maximum

distance between any two vertices in G.

For any subset F ⊂ V , the notation G−F denotes a graph obtained by removing

all vertices in F from G and deleting those edges with at least one end-vertex in F ,

simultaneously. If G− F is disconnected, F is called a separating set. A separating

set F is called a k-separating set if |F | = k. The maximal connected subgraphs of

G−F are called components. The connectivity κ(G) of G is defined as the minimum

k for which G has a k-separating set; otherwise κ(G) is defined as n− 1 if G = Kn.

A graph G is said to be k-connected if κ(G) ≥ k. A k-separating set is called to be

minimum if k = κ(G).

The interconnection network has been an important research area for parallel

and distributed computer systems. Network reliability is one of the major factors in
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Fig. 1. The dual-cube DC2.

designing the topology of an interconnection network. Because of its elegant topo-

logical properties and the ability to emulate a wide variety of other frequently used

networks, the hypercube has been one of the most popular interconnection net-

works for parallel computer/communication systems. However, when dealing with

the parallel computers of very large scale, the port limitation due to the technology

greatly forbids the use of hypercube networks.

The dual-cube DCn(see Fig. 1 for n = 2), first introduced by Li and Peng [27],

mitigates the problem of increasing number of links in the large-scale hypercube

network while it keeps most of the topological properties of the hypercube network.

The number of vertices of an n-dimensional dual-cube DCn is equal to the number

of vertices of a (2n + 1)-dimensional hypercube Q2n+1. Each vertex in Q2n+1 is

adjacent to 2n+1 neighbors and the total number of edges of Q2n+1 is (2n+1)×22n,

while each vertex in DCn is adjacent to n + 1 neighbors and the total number of

edges of DCn is (n+1)× 22n. Although any DCn has much less edges than Q2n+1

with the same number of vertices, the diameter of DCn, 2n+2, is of the same order

of the diameter of Q2n+1, which is 2n+ 1. The dual-cube DCn has 2n+1 copies of

Qn, which are divided into two classes, Class 0 and Class 1. Each class consists of

2n copies of Qn and each copy is called a cluster. Every pair of clusters from the

opposite classes has an edge.

Definition 1. [27] A dual-cube DCn consists of 22n+1 vertices, and each vertex is

labeled with a unique (2n+ 1)-bits binary string and has n+ 1 neighbors. There is

a link between two nodes u = u2nu2n−1 . . . u0 and v = v2nv2n−1 . . . v0 if and only

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
12

.2
3:

17
29

-1
74

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
03

/2
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 12, 2013 10:15 WSPC/INSTRUCTION FILE S0129054112500256

Conditional Fault Diagnosability of Dual-Cubes 1733

if u and v differ exactly in one bit position i under the the following conditions:

(1) if 0 ≤ i ≤ n− 1, then u2n = v2n = 0; and

(2) if n ≤ i ≤ 2n− 1, then u2n = v2n = 1.

Each node in a DCn is identified by a unique (2n+ 1)-bit number, an id. Each

id contains three parts: 1-bit class-id, n-bit cluster-id and n-bit node-id. We use

id=(class-id, cluster-id, node-id) to denote the node address. The bit-position of

cluster-id and node-id depends on the value of class-id. If class-id=0 (resp. class-

id=1), then node-id (resp. cluster-id) is the rightmost n bits and cluster-id (resp.

node-id) is the next n bits. An edge in a cluster is called a cube edge; and an edge

connecting two nodes in two clusters of distinct classes is called a cross edge. In the

other word, e = (u, v) is a cross edge if and only if u and v differ in the leftmost bit

position.

The Hamming weight of a vertex u, denoted by w(u), is the number of i such that

ui = 1. The Hamming distance h(u, v) between two vertices u and v is the number

of different bits in the corresponding strings of both vertices. Clearly, h(u, v) = 1

if u and v are adjacent. Let Vb = {u | w(u) is even} and Vw = {u | w(u) is

odd}. Obviously, Vb ∩ Vw = ∅, and V (DCn) = Vb ∪ Vw. There is no edge between

the clusters of the same class. If two nodes are in one cluster, or in two clusters

of distinct classes, the distance between the two nodes is equal to its Hamming

distance, the number of bits where the two nodes have distinct values. Otherwise,

it is equal to the Hamming distance plus two: one for entering a cluster of another

class and one for leaving.

In addition, the following property of DCn is useful, which can be checked by

the definition of DCn. For any two distinct vertices u and v in DCn,

|N(u) ∩N(v)|







= 0, if d(u, v) ≥ 3;

≤ 2, if d(u, v) = 2;

= 0, if d(u, v) = 1.

(1)

Recently, Chen and Kao [8] have proposed a more convenient new labelling for

vertices of dual-cubes. Now, we modify it as follows.

Definition 2. [8] The dual-cube DCn consists of two classes, Class 0 and Class 1.

For i ∈ {0, 1}, Class i has 2n copies of Qn, namely, DCi,0
n , DCi,1

n , . . . , DCi,2n−1
n , and

each DCi,j
n is called a cluster. We shall label any vertex in DCi,j

n of DCn by (i, j, k),

where k is the vertex id in Qn. Two vertices (i, j, k) and (i′, j′, k′) are adjacent in

DCn if and only if one of the following conditions are satisfied:

(1) i = i′, j = j′ and the vertices k and k′ are adjacent in Qn; and

(2) |i− i′| = 1, j = k′, and k = j′.

Efficient algorithms that find disjoint paths for node-to-node routing, node-to-

set routing, and set-to-set routing in dual-cubes are presented by Li and Peng [28],

Kaneko and Peng [22], and Kaneko and Peng [23], respectively. Using global and
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local information of faulty status, Li et al. [31] proposed two efficient algorithms

for finding a fault-free routing path between any two fault-free nodes in the dual

cube with a large number of faulty nodes, respectively. Li et al. [30] showed that the

collective communications can be done in dual-cube with almost the same commu-

nication times as in hypercube. To avoid collecting global fault information whose

broadcasting propagation will incur traffic congestion and even new component fail-

ure in the networks, Jiang and Wu [21] proposed a fault tolerant routing based on

a limited global information in dual-cube. Li et al. [29] showed that DCn contains

a fault-free hamiltonian cycle even if it has up to n− 1 edge faults for n ≥ 2. Sub-

sequently, they [32] showed that there exists a fault-free cycle containing at least

22n+1 − 2f vertices in DCn, n ≥ 3, with f ≤ n faulty nodes. Lai and Tsai [26]

obtained the vertex bipancyclicity of dual-cube, and showed that dual-cube is bi-

pancyclic even if it has up to n−1 faulty edges. Shih et al. [41] proved the existence

of n+ 1 mutually independent hamiltonian cycles in dual-cube.

Definition 3. [42] Let H be a finite group, and S ⊂ H be a generating set of H .

The right Cayley graph, G = Cay(H,S), of H corresponding to S is defined as:

V (G) = H , E(G) = {(h, hs) | h ∈ H, s ∈ S}. G = Cay(H,S) is undirected if S is

symmetric, i.e., S−1 = S; and G = Cay(H,S) has no loop if S does not contains

the identity of H .

Let S2 be the symmetric group of order 2, and Z2 be the cyclic group of order

2. Obviously, S2 is isomorphic to Z2. We denote that S2 = {e, ǫ} with ǫ2 = e, the

identity of S2.

Let Γ be the direct product of n cyclic group Z2’s. i.e., Γ = Zn
2 = Z2 × Z2 ×

· · · × Z2. Obviously, Γ is also a group with the identity e0 = (0, 0, . . . , 0), and its

generating set S = {e1, e2, . . . , en}, where ei = (0, . . . , 0, 1, 0, . . . , 0), in which the

only “1” is in the ith position from the right.

Let S2 act on the set of the product Γ× Γ via

(α, β)γ =

{

(α, β) if γ is the identity of S2;

(β, α) otherwise.
(2)

Define the semi-direct product (Γ × Γ) ⋊ S2 such that for any two elements

(α, β, γ) and (α′, β′, γ′), the operation ∗ is defined as follows.

(α, β, γ) ∗ (α
′

, β
′

, γ
′

) = (α, β, γ) ∗ ((α
′

, β
′

)γ , γ
′

)

=

{

(αα
′

, ββ
′

, γγ
′

) if γ is the identity of S2;

(αβ
′

, βα
′

, γγ
′

) otherwise. (3)

Let S = {(e0, e1, e), (e0, e2, e), . . . , (e0, en, e), (e0, e0, ǫ)}. Then it is easy to check

that the dual-cube DCn is isomorphic to the Cayley graph of (Γ × Γ) ⋊ S2 corre-

sponding to S, that is, DCn
∼= Cay((Γ × Γ) ⋊ S2, S). We state this result as the

following theorem.
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Theorem 1. DCn is a Cayley graph, i.e., DCn
∼= Cay((Γ × Γ) ⋊ S2, S), where

Γ = Zn
2 = Z2 × Z2 × · · · × Z2; and so DCn is vertex transitive.

3. Fault Tolerance of the Dual-Cubes

The connectivity κ(G) of a graph G is an important parameter to measure the

fault tolerance of the network, while it has an obvious deficiency in that it tacitly

assume that all elements in any subset of G can potentially fail at the same time. To

compensate for this shortcoming, it would seem natural to generalize the classical

connectivity by introducing some conditions or restrictions on the separating set S

and/or the components of G− S.

The connectivity κ(G) of G is the minimum number of vertices whose removal

results in a disconnected or a trivial (one vertex) graph. A k-regular k-connected

graph is super k-connected if any one of its minimum separating sets is a set of the

neighbors of some vertex. If, in addition, the deletion of a minimum separating set

results in a graph with two components (one of which has only one vertex), then

the graph is tightly super k-connected. For example, the complete bipartite graph

Kn,n is n-super connected but not tightly n-super connected. The notions of super

connectedness and tightly super connectedness are first introduced in [1] and [10],

respectively.

Esfahanian [17] first introduced the concepts of the restricted separating set

and the restricted connectivity of a graph G. A set S of vertices is a restricted

separating set if G − S is disconnected and N(x) is not completely contained in S

for any vertex x in G. The restricted connectivity of G, denoted by κr(G), is the

minimum cardinality of a restricted separating set. Considering that it is not easy to

examine whether a separating set is restricted, Xu et al. [43] formally proposed the

super connectivity, a weaker concept than the restricted connectivity. A separating

set S of G is super if G− S contains no isolated vertices. The super connectivity of

G, denoted by κs(G), is the minimum cardinality of a super separating set. Clearly,

κ(G) ≤ κs(G) ≤ κr(G) if κr(G) exists.

Fábrega and Fiol [18] generalized the concept of super connectivity to h-extra

connectivity for an undirected graph. Let G be a connected undirected graph, and

h be an integer with 0 ≤ h ≤ δ(G). A subset S ⊂ V (G) is said an h-extra separating

set if G− S is disconnected and every connected component contains at least h+1

vertices. The h-extra connectivity κ
(h)
o (G) is defined as

κ(h)
o (G) = min{|S| | S is an h− extra separating set of G}.

It follows from the definition that the h-extra connectivity can provide a more

accurate measurement than the traditional connectivity or super connectivity for

fault tolerance of a large-scale interconnection network.

Usually, if the surviving graph G − S contains a large connected component

C when G − S is not connected, the component C may be used as the functional

subsystem, without incurring severe performance degradation. Thus, in evaluating a

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
12

.2
3:

17
29

-1
74

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
03

/2
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 12, 2013 10:15 WSPC/INSTRUCTION FILE S0129054112500256

1736 S. Zhou, L. Chen & J.-M. Xu

distributed system, it is indispensable to estimate the size of the maximal connected

components of the underlying graph when the structure begins to lose processors.

Yang et al. [44–46] proved that the hypercube Qn with f faulty processors has

a component of size at least 2n − f − 1 if f ≤ 2n− 3, and of size at least 2n − f − 2

if f ≤ 3n − 6. Yang et al. [47] also obtained a similar result for the star graph

Sn. Cheng et al. [11, 14] gave a more detailed result for Sn. The removal of any

separating set of at most 2n−4 vertices from Sn results in exactly two components,

one of them is a single vertex or edge. Cheng and Lipták [13] generalized this result

for Sn with linearly many faults. Cheng et al. [15] presented a similar result for the

2-tree-generated networks with linearly many faults. In this section, we detail on

the fault resilience of the dual-cube DCn.

Lemma 2. [27, 28, 32] For n ≥ 3, DCn has the following combinatorial properties.

(1) DCn has 22n+1 vertices with regular degree n+ 1;

(2) DCn has vertex connectivity of n+ 1, and edge connectivity n+ 1;

(3) Assume that two vertices u and v differ in k bit-positions. Then the distance

between u and v is d(u, v) = k + 2 if u and v are in different clusters of the

same class; otherwise d(u, v) = k. DCn has diameter 2n+ 2;

(4) DCn is bipartite graph.

Throughout this paper, the notation F denotes a set of faulty vertices in DCn.

A subgraph H of DCn is called fault-free if V (H) ∩ F = ∅. We denote 〈n〉 =

{0, 1} × {0, 1, 2, . . . , 2n − 1} and let

Fi,j = DCi,j
n ∩ F and fi,j = |Fi,j | for (i, j) ∈ 〈n〉; (4)

I = {(i, j) | fi,j = |Fi,j | ≥ n for (i, j) ∈ 〈n〉}, J = 〈n〉 − I. (5)

Lemma 3. [20, 44–46] Let F be a set of faulty vertices in the hypercube Qn with

|F | ≤ 2n− 3 and n ≥ 3. If Qn −F is disconnected, then Qn −F has two connected

components and one of which is an isolated vertex.

Lemma 4. Let F be a set of faulty vertices in DCn with |F | ≤ 3n− 3 and n ≥ 3.

Then DCJ
n − FJ is connected.

Proof. For any (i, j) ∈ J , fi,j ≤ n− 1, DCi,j
n − Fi,j is connected.

Note that each class has 2n clusters. Since 2n − |F | ≥ 2n − (3n− 3) ≥ 2, there

exist some cluster DC0,j0
n in class 0 and some cluster DC1,j1

n in class 1, each of

which has no vertex in F . Obviously, DC0,j0
n is connected to DC1,j1

n for there is a

fault-free cross edge between them.

If |I| ≥ 3, then |F | ≥ 3n, which contradicts our hypothesis. Thus, |I| ≤ 2. Now

we discuss as follows.

Case 1 There exists exactly one subgraph DC0,x0

n ( respectively, DC1,y1

n ), such

that (0, x0) ∈ I (respectively, (1, y1) ∈ I).

Since 2n − 1 > 2n − 3, for any subgraph DC1,y
n with (1, y) ∈ J , there exists

one fault-free cross edge between DC1,y
n and some DC0,x

n , such that DC0,x
n has no
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faulty vertex and is connected to DC1,j1
n . Since 2n > 2n − 3, for any DC0,x′

n with

(0, x′) ∈ J , there exists a fault-free cross edge between DC0,x′

n and some DC1,y′

n

such that DC1,y′

n has no faulty vertex and is connected to DC0,j0
n . Thus, DCJ

n −FJ

is connected.

Case 2 There exist exactly two subgraphs DCi,x0

n , DCi,x1

n such that

(i, x0), (i, x1) ∈ I, where i is 0 or 1.

Without loss of generality, we may say that i is 0. Since 2n − 2 > n − 3, for

any DC1,y
n with (1, y) ∈ J , there exists one fault-free cross edge between DC1,y

n

and some DC0,x
n , such that DC0,x

n has no faulty vertex and is connected to DC1,j1
n .

Since 2n > n − 3, for any DC0,x′

n with (0, x′) ∈ J , there exists one fault-free cross

edge between DC0,x′

n and some DC1,y′

n such that DC1,y′

n has no faulty vertex and

is connected to DC0,j0
n . Thus, DCJ

n − FJ is connected.

Case 3 There exist exactly two subgraphs DC0,x0

n , DC1,y0

n such that

(0, x0), (1, y0) ∈ I.

Since 2n − 1 > n − 3, for any DC1,y
n with (1, y) ∈ J , there exists one fault-

free cross edge between DC1,y
n and some DC0,x

n , such that DC0,x
n has no faulty

vertex and is connected to DC1,j1
n . Since 2n − 1 > n − 3, for any DC0,x′

n with

(0, x′) ∈ J , there exists one fault-free cross edge between DC0,x′

n and some DC1,y′

n

such that DC1,y′

n has no faulty vertex and is connected to DC0,j0
n . Thus, DCJ

n −FJ

is connected.

Theorem 5. For n ≥ 3, DCn is tightly super n+ 1-connected.

Proof. Let F be a minimum separating set in DCn. Then, using the notations

defined in (4), we have that

|F | =
∑

(i,j)∈〈n〉

fi,j = κ(DCn) = n+ 1.

By the definition of tightly super connectivity, we need to show that DCn − F has

exactly two components, one of them is a single vertex. We consider three cases.

Case 1 There exists some (i0, j0) ∈ 〈n〉 such that fi0,j0 = n+ 1.

In this case, by Lemma 2, fi,j = 0 for any (i, j) ∈ 〈n〉 and (i, j) 6= (i0, j0),

DCi,j
n is connected. DCn − DCi0,j0

n is still connected by Lemma 4. Every vertex

of DCi0,j0
n − Fi0,j0 has exactly one fault-free neighbor vertex in DCn −DCi0,j0

n , so

DCn − F is still connected, a contradiction.

Case 2 fi0,j0 = n for some (i0, j0) ∈ 〈n〉.

By the hypothesis, there exists some (i1, j1) ∈ 〈n〉 with (i1, j1) 6= (i0, j0) such

that fi1,j1 = 1. Since DCi,j
n is isomorphic to the n-dimensional hypercube Qn

which is n-connected, DCi,j
n is still connected for any (i, j) ∈ 〈n〉 with (i, j) 6=

(i0, j0). As DCi0,j0
n , which is isomorphic to the hypercube Qn, is tightly super

n-connected by Lemma 3, DCi0,j0
n − Fi0,j0 has at most one vertex isolated from

DCn − (V (DCi0,j0
n ) ∪ (F − Fi0,j0)). Since fi1,j1 = 1, DCn − F has exactly two

connected components, one of which is an isolated vertex.

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
12

.2
3:

17
29

-1
74

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
03

/2
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 12, 2013 10:15 WSPC/INSTRUCTION FILE S0129054112500256

1738 S. Zhou, L. Chen & J.-M. Xu

Case 3 fi,j ≤ n− 1 for any (i, j) ∈ 〈n〉.

Obviously, DCi,j
n is still connected. Since 2n > n + 1, there exist some DC0,j0

n

and DC1,j1
n , each of which has no vertex in F . Obviously, DC0,j0

n is connected to

DC1,j1
n for there is a fault-free cross edge between them.

Since 2n > n+1, for any DC1,y
n with (1, y) ∈ J , there exists one fault-free cross

edge between DC1,y
n and some DC0,x

n , which has no faulty vertex and is connected

to DC1,j1
n . Since 2n > n + 1, for any DC0,x′

n with (0, x′) ∈ J , there exists one

fault-free cross edge between DC0,x′

n and some DC1,y′

n which has no faulty vertex

and is connected to DC0,j0
n . Thus, DCn − F is connected, a contradiction.

Lemma 6. Let F be a separating set of DCn with |F | ≤ 3n − 3 and n ≥ 3. If

there is some (i0, j0) ∈ 〈n〉 such that |F |− fi0,j0 ≤ 1, then DCn−F has exactly two

components, one of which is a single vertex.

Proof. We use the notations defined in (4) and (5) in the following. By the hy-

pothesis, for any (i, j) ∈ 〈n〉 − {(i0, j0)},

fi,j ≤ |F | − fi0,j0 ≤ 1.

Since DCn−F is disconnected, and DCn− (DCi0,j0
n ∪F ) is connected by Lemma 4,

there is a component of DCn −F that contains no vertices in DCJ
n −FJ . Let H be

a union of such components of DCn −F . Thus N
DCn−DC

i0,j0
n

(H) ⊆ F \ Fi0,j0 , and

we have that

|V (H)| ≤ |F | − fi0,j0 ≤ 1,

which yields |V (H)| ≤ 1, that is, H is a single vertex, say u. By the choice of H ,

other components of DCn − F must be contained in DCJ
n − FJ . Since DCJ

n − FJ

is connected by Lemma 4, DCn − (F ∪ {u}) is connected. It follows that DCn − F

has exactly two components, one of which is a single vertex. The lemma follows.

Lemma 7. Let F be a separating set of DCn with |F | ≤ 3n − 3 and n ≥ 3,

and let H be the union of connected components of DCn − F , whose vertices are

totally distributed in DCi,j
n − Fi,j for some (i, j) ∈ 〈n〉. If N

DC
i,j
n
(H) ⊆ Fi,j , then

|V (H)| ≤ 2.

Proof. Let h = |V (H)|. We want to prove h ≤ 2. Suppose to the contrary that

h ≥ 3. Take a subset T ⊆ V (H) with |T | = 3. Let T ′ = V (H−T ). By the hypothesis,

N
DC

i,j
n
(T ) \ T ′ ⊆ Fi,j . Note that DCi,j

n is isomorphic to hypercube Qn. We denote

T = DCi,j
n [x, y, z], and discuss as follows.

IfH [T ] has no edges, thenN
DC

i,j
n
(u)−T = N

DC
i,j
n
(u) for any vertex u ∈ {x, y, z}

with |N
DC

i,j
n
(u)| = n. Note that DCi,j

n is isomorphic to the hypercube Qn,

|N
DC

i,j
n
(u) ∩ N

DC
i,j
n
(v)| ≤ 2 for any two distinct vertices u, v ∈ {x, y, z}. Fur-

thermore, if

|N
DC

i,j
n
(x) ∩N

DC
i,j
n
(y)| = |N

DC
i,j
n
(x) ∩N

DC
i,j
n
(z)| = |N

DC
i,j
n
(y) ∩N

DC
i,j
n
(z)| = 2,
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then

|N
DC

i,j
n
(x) ∩N

DC
i,j
n
(y) ∩N

DC
i,j
n
(z)| = 1.

Thus, by the principle of inclusion and exclusion, we have

|N
DC

i,j
n
(T )| =

∑

u∈T

|N
DC

i,j
n
(u)− T | − (

∑

u6=v∈T

|(N
DC

i,j
n
(u)− T ) ∩ (N

DC
i,j
n
(v)| − T )

+|(N
DC

i,j
n
(x)− T ) ∩ (N

DC
i,j
n
(y)− T ) ∩ (N

DC
i,j
n
(z)− T )|

≥ 3n− 5.

If H [T ] has only one edge, say e = (x, y), then x and y have no common neigh-

bors, z and x (resp. y) have at most two common neighbors by (1), but two cases

can not occur meanwhile as there are no cycles of odd length. It follows that

|N
DC

i,j
n
(T )| ≥ 3n− 4.

If H [T ] has two edges, we deduce, by (1), that

|N
DC

i,j
n
(T )| ≥ 3n− 5.

Summing up all cases above, we have that

fi,j ≥ |N
DC

i,j
n
(T ) \ T ′|

≥ |N
DC

i,j
n
(T )| − (h− 3)

≥ 3n− 5− (h− 3)

= 3n− 2− h,

that is,

fi,j ≥ 3n− 2− h. (6)

By the definition of H , we have N
DCn−DC

i,j
n
(H) ⊆ F − Fi,j and |F | − fi,j ≥ h.

Thus, we deduce that

fi,j ≤ |F | − h ≤ 3n− 3− h,

that is,

fi,j ≤ 3n− 3− h. (7)

Combining (6) with (7), we deduce a contradiction. Thus, we have h ≤ 2.

Theorem 8. The 1-extra connectivity of DCn (n ≥ 3) is κ
(1)
o (DCn) = 2n.

Proof. We choose an edge (u, v) in some subgraph DCi,j
n . Obviously, |N(u, v)| =

2n, DCn − N [u, v] is still connected by Lemma 4. Each connected component of

DCn −N(u, v) has order at least two. Thus, we have κ
(1)
o (DCn) ≤ 2n.

Now we show that κ
(1)
o (DCn) > 2n − 1. Let F be an arbitrary set of faulty

vertices in DCn with |F | ≤ 2n− 1 such that DCn − F is disconnected.
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If |I| ≥ 2, then |F | ≥ 2n, a contradiction. Now, we set I = {(i, j)}.

Let H be the union of components of DCn−F that contain no vertex in DCJ
n −

FJ . Thus, H is in DCi,j
n . By the choice of H , other components of DCn − F must

be contained in DCJ
n − FJ . Since DCJ

n − FJ is connected, DCn − (F ∪ V (H)) is

connected. Thus, to complete the proof of the theorem, we only need to show that

|H | = 1. By Lemma 7, we only need to show that |H | = 2 is not possible. Suppose

to the contrary that H = DCi,j
n [u, v]. Obviously, N(u, v) ⊆ F .

If u is not adjacent to v, then d(u, v) ≥ 2, and |N(u) ∩N(v)| ≤ 2 by (1). Thus,

we have

|F | ≥ |N(u) ∪N(v)| = |N(u)|+ |N(v)| − |N(u) ∩N(v)|

= 2(n+ 1)− |N(u) ∩N(v)|

≥ 2(n+ 1)− 2 > |F |,

a contradiction.

If (u, v) is an edge of DCn, then |N(u) ∩N(v)| = 0 by (1). Thus, we have

|F | ≥ |N(u, v)| = |N(u)|+ |N(v)| − |{u, v}|

= 2(n+ 1)− 2

> |F |,

a contradiction.

We now discuss the fault tolerance of DCn with more faulty vertices, up to

3n− 3, when n ≥ 3.

Lemma 9. Let F be an arbitrary set of faulty vertices in DCn (n ≥ 3) with

|F | ≤ 3n− 3. If DCn − F is disconnected, then it either has two components, one

of which is an isolated vertex or an isolated edge, or has three components, two of

which are isolated vertices.

Proof. Since DCn − F is disconnected, F is a separating set of DCn.

If there exists some (i, j) ∈ 〈n〉 such that fi,j ≥ 3n− 4, and so

|F | − fi,j ≤ 1,

by Lemma 6, DCn−F has exactly two components, one of which is a single vertex,

and so the theorem holds. Now, we consider that fi,j ≤ 3n− 5 for any (i, j) ∈ 〈n〉.

Let H be the union of components of DCn−F that contain no vertex in DCJ
n −

FJ , and let h = |V (H)|. Since DCJ
n − FJ is connected, H is in DCI

n − FI . By the

choice of H , other components of DCn −F must be contained in DCJ
n − FJ . Since

DCJ
n − FJ is connected, DCn − (F ∪ V (H)) is connected. Thus, to complete the

proof of the theorem, we only need to show that h ≤ 2.

If |I| ≥ 3, then |F | ≥ 3n > 3n−3 ≥ |F |, a contradiction. Now, we set 1 ≤ |I| ≤ 2

in the following.

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
12

.2
3:

17
29

-1
74

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
03

/2
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 12, 2013 10:15 WSPC/INSTRUCTION FILE S0129054112500256

Conditional Fault Diagnosability of Dual-Cubes 1741

If |I| = 1, then h ≤ 2 by Lemma 7. Now we suppose that I = {(i1, j1), (i2, j2)},

and let h1 and h2 be the numbers of vertices of H that lie in DCi1,j1
n and DCi2,j2

n ,

respectively.

Obviously, fi,j ≤ 2n − 3 for any (i, j) ∈ I; otherwise, |F | ≥ 3n− 2, which is a

contradiction. We have h1 ≤ 1 and h2 ≤ 1 by Lemma 3. Thus, h = h1 + h2 ≤ 2.

Theorem 10. The 2-extra connectivity of DCn (n ≥ 3) is κ
(2)
o (DCn) = 3n− 2.

Proof. By Lemma 9, we have that κ
(2)
o (DCn) > 3n − 3. It suffices to show that

κ
(2)
o (DCn) ≤ 3n − 2. We choose a cycle C = (x, y, u, v, x), of length four, in some

cluster DCi,j
n .

Since the cluster DCi,j
n is isomorphic the hypercube Qn, |N

DC
i,j
n
(x, y, u)| =

3n − 5. By the definition of dual-cubes, every vertex of {x, y, u} has exactly one

neighbor outside DCi,j
n , and these three neighbors (say, x, y and u) are in different

clusters whose class are different from i. Thus, |N [x, y, u]| = 3n− 5 + 3 = 3n− 2.

Furthermore,DCn−DCi,j
n −{x, y, u} is still connected. In fact, there exists some

cluster DCi,l
n , which is different from DCi,j

n , where l 6= i. Except for at most one

vertex of {x, y, u}, each of the clustersDCi,0
n , DCi,1

n , . . . , DCi,2n−1
n is connected, and

has exactly one neighbor in DCi,l
n . Similarly, Each cluster DCi,s

n (where s 6= j, l) has

exactly one vertex adjacent to DCi,0
n . Thus, DCn −DCi,j

n − {x, y, u} is connected.

Since every vertex of DCi,j
n −N

DC
i,j
n
[x, y, u] has exactly one neighbor in DCn −

DCi,j
n − {x, y, u}. Thus, DCn − N(x, y, u) has two connected components, one is

the path P = P (x, y, u), the other is DCn−N [x, y, u]. Obviously, each of these two

components has order at least three.

From the discussion above, we have κ
(2)
o (DCn) = 3n− 2 for n ≥ 3.

4. Diagnosability of Dual-Cubes

The comparison diagnosis strategy of a graph G = (V,E) can be modeled as a

multi-graph M = (V,C), where C is a set of labelled edges. If the processors u

and v can be compared by the processor w, there exists a labelled edge (u, v)

in C, denoted by (u, v)w. We call w the comparator of u and v. Since different

comparators can compare the same pair of processors, M is a multi-graph. Denote

the comparison result as σ((u, v)w) such that σ((u, v)w) = 0 if the outputs of u and

v agree, and σ((u, v)w) = 1 if the outputs disagree. If the comparator w is fault-free

and σ((u, v)w) = 0, the processors u and v are fault-free; while if σ((u, v)w) = 1,

at least one of the three processors u, v and w is faulty. The collection of the

comparison results defined as a function σ : C → {0, 1}, is called the syndrome

of the diagnosis. If the comparator w is faulty, the comparison result is unreliable.

A faulty comparator can lead to unreliable results, so a set of faulty vertices may

produce different syndromes. A subset F ( V is said to be compatible with a

syndrome σ if σ can arise from the circumstance that all vertices in F are faulty

and all vertices in V − F are fault-free. A multiprocessor system G is said to be
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diagnosable if, for every syndrome σ, there is a unique F ⊂ V that is compatible

with σ. A system is said to be t-diagnosable if the system is diagnosable as long as

the number of faulty vertices does not exceed t. The maximum number of faulty

vertices that the system G can guarantee to identify is called the diagnosability

of G, which is denoted by t(G). Let σF = {σ | σ is compatible with F}. Two

distinct subsets F1 and F2 of V (G) are said to be indistinguishable if and only if

σF1
∩ σF2

6= φ, and distinguishable otherwise [20, 35, 40]. There are several different

ways to verify whether a system is t-diagnosable under the comparison approach.

The following lemma obtained by Sengupta and Dahbura [40] gives necessary and

sufficient conditions to ensure distinguishability.

Lemma 11. [40] Let G be a graph, F1 and F2 be two distinct subsets of vertices

in G. The pair (F1, F2) is distinguishable if and only if at least one of the following

conditions is satisfied.

(1) There are two distinct vertices u and w ∈ V (G−F1∪F2) and a vertex v ∈ F1∆F2

such that (u, v)w ∈ C, where F1∆F2 = (F1 \ F2) ∪ (F2 \ F1);

(2) There are two distinct vertices u and v ∈ F1 \ F2 (or F2 \ F1) and a vertex

w ∈ V (G− F1 ∪ F2) such that (u, v)w ∈ C.

Lin et al. [35] introduced the so-called conditional diagnosability of a multi-

processor system under the situation that no set of faulty vertices can contain all

neighbors of any vertex in the system. A fault-set F ⊂ V (G) is called a conditional

fault-set if N(v) is not subset of the faulty set F for every vertex v in V (G). A system

G(V,E) is said to be conditionally t-diagnosable if F1 and F2 are distinguishable for

each pair (F1, F2) of distinct conditional fault-sets in G with |F1| ≤ t and |F2| ≤ t.

The conditional diagnosability of G, denoted by tc(G) is defined as the maximum

value of t for which G is conditionally t-diagnosable. Clearly, tc(G) ≥ t(G). This

section will focus on the conditional diagnosability of dual-cubes.

Lemma 12. Let F1 and F2 be any two distinct conditional fault-sets of |F1| ≤ 3n−

2, |F2| ≤ 3n−2 for n ≥ 3. Denote by H the maximum component of DCn−F1∩F2.

Then, for every vertex u ∈ F1∆F2, u ∈ H.

Proof. Without loss of generality, we assume that u ∈ F1 − F2. Since F2 is a

conditional fault-set, there is a vertex v ∈ (DCn − F2) − {u} such that (u, v) ∈

E(DCn). Suppose that u is not a vertex of H . Then v is not in H , so u and v are

in a small component of DCn − F1 ∩ F2. Since F1 and F2 are distinct, we have

|F1 ∩ F2| ≤ 3n− 3.

Hence {u, v} forms a component K2 in DCn − F1 ∩ F2 by Lemma 9, that is to

say, the vertex u is the unique neighbor of v in DCn−F1∩F2. This is a contradiction

since F1 is a conditional fault-set, but all the neighbors of v are faulty in F1.
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Lemma 13. [35] Let G be a graph with δ(G) ≥ 2, and let F1 and F2 be any two

distinct conditional fault-sets of G with F1 ⊂ F2. Then, (F1, F2) is a distinguishable

conditional pair under the comparison diagnosis model.

Theorem 14. tc(DCn) = 3n− 2 for n ≥ 3.

Proof. We first prove that tc(DCn) ≤ 3n − 2 for n ≥ 3. In fact, when n ≥ 3, we

select four vertices x, y, z, u ∈ V (DCn), such that (x, y, z, u) be a cycle of length

four. Set A = N [x, y, z], F1 = A− {y, z}, and F2 = A− {x, y}. We get

|F1| = |F2| = 3n− 1, and |F1 − F2| = |F2 − F1| = 1.

It is easy to check that both F1 and F2 are two conditional fault-sets, and F1

and F2 are indistinguishable. Thus, we have

tc(DCn) ≤ 3n− 2.

Now, we prove that tc(DCn) ≥ 3n− 2 for n ≥ 3.

Let F1 and F2 be any two distinct conditional fault-sets of DCn with |F1| ≤ 3n−

2, |F2| ≤ 3n− 2 for n ≥ 3. We need only to prove that (F1, F2) is a distinguishable

conditional pair under the comparison diagnosis model.

By Lemma 13, (F1, F2) is a distinguishable conditional pair if F1 ⊂ F2 or F2 ⊂

F1. Now, we assume that |F1 − F2| ≥ 1, and |F2 − F1| ≥ 1. Let S = F1 ∩ F2. Then

we have |S| ≤ 3n − 3 for n ≥ 3. Let H be the largest connected component of

DCn − F1 ∩ F2. By Lemma 12, every vertex in F1∆F2 is in H .

We claim that H has a vertex u outside F1 ∪ F2 that has no neighbor in S. We

need only to estimate the lower bound on the number, say γ, of candidate nodes

for u.

Since every vertex has degree n+1, the vertices in S can have at most (n+1)|S|

neighbors in H . There are at most |F1|+ |F2| − |S| vertices in F1 ∪F2 and at most

two vertices of DCn − S may not belong to H by Lemma 9. So we have

γ ≥ |H | − |F1∆F2| − (n+ 1)|S|

≥ 22n+1 − (n+ 1)|S| − (|F1|+ |F2| − |S|)− 2

≥ 22n+1 − (n+ 2)× (3n− 3)− 2

≥ 1 for n ≥ 3.

Thus, there exists some vertex of H outside F1 ∪ F2, which has no neighbors in

S. Let u be such a vertex.

If u has no neighbor in F1 ∪ F2, then we can find a path of length at least two

within H to a vertex v in F1 ∪ F2. We may assume that v is the first vertex of

F1∆F2 on this path, and let q and w be the two vertices on this path immediately

before v (we may have u = q), so q and w are not in F1 ∪ F2. The existence of the

edges (q, w) and (w, v) ensures that (F1, F2) is a distinguishable conditional pair

of DCn by Lemma 11. Now we assume that u has a neighbor in F1∆F2. Since the

degree of u is at least 3, and u has no neighbor in S, there are three possibilities:

In
t. 

J.
 F

ou
nd

. C
om

pu
t. 

Sc
i. 

20
12

.2
3:

17
29

-1
74

7.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 O

F 
C

H
IN

A
 o

n 
03

/2
4/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



March 12, 2013 10:15 WSPC/INSTRUCTION FILE S0129054112500256

1744 S. Zhou, L. Chen & J.-M. Xu

(1) u has two neighbors in F1 \ F2; or

(2) u has two neighbors in F2 \ F1; or

(3) u has at least one neighbor outside F1 ∪ F2.

In each sub-case above, Lemma 11 implies that (F1, F2) is a distinguishable

conditional pair of DCn under the comparison diagnosis model, and so the proof is

complete.

5. Conclusion

The paper derives the fault resiliency of dual-cubes, and then uses the fault resiliency

to evaluate the conditional fault diagnosability of dual-cubes under the comparison

model. The ordinary diagnosability of DCn under the comparison model is only n+

1, while the conditional diagnosability of DCn is 3n− 2, which is about three times

of the traditional diagnosability under the comparison model. The fault resiliency

of dual-cubes may also reveal its conditional connectivity of high order.

The dual-cube is a special case of metacube [4, 34] and its generalization-

recursive dual-net [33], two of which are versatile families of interconnection

networks that can connect an extremely large number of nodes with a small

number of links per node and keep the diameter rather low. The perfect hierar-

chical hypercubes [3, 5], the hierarchical hypercubes [38], and the hierarchical cubic

networks [2, 19] are very similar to dual-cubes: they also connect n-dimensional

hypercubes each and all have a regular degree of n+1. The main idea of this paper

can be also applied to all of these complex network structure.
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