Acta Mathematica Sinica, English Series Jan., 2013, Vol. 29, No. 1, pp. 53–64 Published online: September 20, 2012 DOI: 10.1007/s10114-012-1538-5 Http://www.ActaMath.com

© Springer-Verlag Berlin Heidelberg & The Editorial Office of AMS 2013

On Sullivan's Conjecture on Cycles in 4-free and 5-free Digraphs

Hao LIANG

Department of Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, P. R. China E-mail: lianghao@mail.ustc.edu.cn

Jun Ming XU

School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei 230026, P. R. China E-mail: xujm@ustc.edu.cn

Abstract For a simple digraph G, let $\beta(G)$ be the size of the smallest subset $X \subseteq E(G)$ such that G - X has no directed cycles, and let $\gamma(G)$ be the number of unordered pairs of nonadjacent vertices in G. A digraph G is called k-free if G has no directed cycles of length at most k. This paper proves that $\beta(G) \leq 0.3819\gamma(G)$ if G is a 4-free digraph, and $\beta(G) \leq 0.2679\gamma(G)$ if G is a 5-free digraph. These improve the results of Sullivan in 2008.

Keywords Digraph, directed cycle

MR(2000) Subject Classification 05C20, 05C38

1 Introduction

Let G = (V, E) be a digraph without loops and parallel edges, where V = V(G) is the vertex set and E = E(G) is the edge set.

It is well known that the cycle rank of an undirected graph G is the minimum number of edges that must be removed in order to eliminate all of cycles in the graph. That is, if G has v vertices, ε edges, and ω connected components, then the minimum number of edges whose deletion from G leaves an acyclic graph equals the cycle rank (or Betti number) $\rho(G) = \varepsilon - v + \omega$ (see Xu [1]). However, the same problem for a digraph is quite difficult.

A digraph G is called to be k-free if there is no directed cycle of G with length at most k. A digraph is *acyclic* if it has no directed cycles. For a digraph G, let $\beta(G)$ be the size of the smallest subset $X \subseteq E(G)$ such that G - X is acyclic, and let $\gamma(G)$ be the number of unordered pairs of nonadjacent vertices in G, called the *number of missing edges* of G.

Chudnovsky et al. [2] proved that $\beta(G) \leq \gamma(G)$ if G is a 3-free digraph and gave the following conjecture.

Conjecture 1.1 If G is a 3-free digraph, then $\beta(G) \leq \frac{1}{2}\gamma(G)$.

Received September 22, 2011, accepted April 12, 2012

The first author is supported by the Key Project of Chinese Ministry of Education (Grant No. 109140); the second author is supported by NNSF of China (Grant No. 11071233)

Concerning this conjecture, Dunkum et al. [3] proved that $\beta(G) \leq 0.88\gamma(G)$. Very recently, Chen et al. [4] improved the result to $\beta(G) \leq 0.8616\gamma(G)$. Conjecture 1.1 is closely related to the following special case of the conjecture proposed by Caccetta and Häggkvist [5].

Conjecture 1.2 Any digraph on n vertices with minimum out-degree at least n/3 contains a directed triangle.

Short of proving the conjecture, one may seek as small value of c as possible such that every digraph on n vertices with minimum out-degree at least cn contains a triangle. This was the strategy of Caccetta and Häggkvist [5], who obtained the value $c \leq 0.3819$. Bondy [6] showed that $c \leq 0.3797$, and Shen [7] improved it to $c \leq 0.3542$. Hamburger, et al. [8] improved it to 0.35312. Very recently, Hladky et al. [9] further improved this bound to 0.3465. Namely, any digraph on n vertices with minimum out-degree at least 0.3465n contains a directed triangle.

Generalizing Conjecture 1.1, Sullivan [10] proposed the following conjecture, and gave an example showing that this would be best possible if this conjecture is true, noting that Conjecture 1.1 is a special case of this when m = 3.

Conjecture 1.3 If G is an m-free digraph with $m \ge 3$, then

$$\beta(G) \le \frac{2}{(m+1)(m-2)}\gamma(G).$$

Sullivan proved partial results of Conjecture 1.3, and showed that $\beta(G) \leq \frac{1}{m-2}\gamma(G)$ for m = 4, 5. In this article, we improve these two results, which are summarized in the following theorems.

Theorem 1.4 If G is a 4-free digraph, then $\beta(G) \leq \frac{3-\sqrt{5}}{2}\gamma(G) \approx 0.3819\gamma(G)$. **Theorem 1.5** If G is a 5-free digraph, then $\beta(G) \leq (2-\sqrt{3})\gamma(G) \approx 0.2679\gamma(G)$.

The proofs of the two results are in Section 3. We proceed by induction on |V(G)| by refining Sullivan et al.'s methods used in [2, 10] and using some computation techniques. In Section 2, we give some notations and known results used in our proofs.

2 Preliminaries

Let G be a simple digraph. For two disjoint subsets $A, B \subseteq V(G)$, let E(A, B) denote the set of directed edges (a, b) with $a \in A$ and $b \in B$. Similarly, let $\overline{E}(A, B)$ be the missing edges between A and B. It follows that

$$|\bar{E}(A,B)| = |\bar{E}(B,A)| = |A| \cdot |B| - |E(A,B)| - |E(B,A)|.$$

We say P = (x, y, z) an induced directed 2-path (2-path for short), if $(x, y), (y, z) \in E(G)$ and x, z are nonadjacent, where x, y, z are called the original, internal and terminal vertices of P, respectively. For each $v \in V(G)$, let f(v), g(v) and h(v) be the number of 2-paths with the original vertex v, the internal vertex v, and the terminal vertex v, respectively. Let N be the number of 2-paths of G. Then

$$N = \sum_{v \in V(G)} f(v) = \sum_{v \in V(G)} g(v) = \sum_{v \in V(G)} h(v).$$
(2.1)

Let $N_i^+(v)$ be the set of vertices u such that the shortest directed path starting with v and ending with u has length i. Similarly, let $N_i^-(v)$ be the set of vertices whose shortest directed path to v has length i. It follows that

$$\begin{cases} f(v) = |E(N_1^+(v), N_2^+(v))|, \\ g(v) = |\bar{E}(N_1^-(v), N_1^+(v))|, \\ h(v) = |E(N_2^-(v), N_1^-(v))|. \end{cases}$$
(2.2)

Let P(v) be the number of triples of distinct vertices (x, y, z) such that for some $u \in V(G)$, (x, u, y, z) is an induced directed path with the original vertex x = v. Similarly, let Q(v) be the number of triples of distinct vertices (x, y, z) such that for some $u \in V(G)$, (x, u, y, z) is an induced directed path with the internal vertex y = v, and R(v) be the number of such triples with z = v. Also, let P'(v) be the number of triples of distinct vertices (x, y, z) which makes (x, y, u, z) be an induced directed path with x = v for some $u \in V(G)$. Let Q'(v) and R'(v) be the number of such triples with y = v and z = v, respectively.

From the above definitions, we can verify

$$\sum_{v \in V(G)} P(v) = \sum_{v \in V(G)} Q(v) = \sum_{v \in V(G)} R(v)$$
(2.3)

and

$$\sum_{v \in V(G)} P'(v) = \sum_{v \in V(G)} Q'(v) = \sum_{v \in V(G)} R'(v).$$
(2.4)

Finally, set C(v) be the vertices whose shortest directed path to or from v has length at least three, that is $C(v) = V(G) \setminus (\{v\} \cup N_1^+(v) \cup N_2^+(v) \cup N_1^-(v) \cup N_2^-(v))$. We have the following bounds on P(v), Q(v), R(v), P'(v), Q'(v), R'(v) in terms of C(v) and $N_i^+(v), N_i^-(v)$ for i = 1, 2. **Proposition 2.1** ([10]) If G is a 4-free digraph, then for any $v \in V(G)$,

$$\begin{cases} P(v) = |E(N_2^+(v), C(v) \cup N_2^-(v))|, \\ Q(v) \le |\bar{E}(N_2^-(v), N_1^+(v))|, \\ Q'(v) \le |\bar{E}(N_2^+(v), N_1^-(v))|, \\ R'(v) = |E(C(v) \cup N_2^+(v), N_2^-(v))|. \end{cases}$$

Proposition 2.2 ([10]) If G is a 5-free digraph, then for any $v \in V(G)$,

$$\begin{cases} P(v) = |E(N_2^+(v), C(v)|, \\ Q(v) \le |\bar{E}(N_2^-(v), N_1^+(v))|, \\ R(v) \le |\bar{E}(C(v), N_1^-(v))|, \\ P'(v) \le |\bar{E}(C(v), N_1^+(v))|, \\ Q'(v) \le |\bar{E}(N_2^+(v), N_1^-(v))|, \\ R'(v) = |E(C(v), N_2^-(v))|. \end{cases}$$

3 Proofs of Main Results

In this section, we will give proofs of Theorems 1.4–1.5, respectively. We first prove Theorem 1.4 starting with some notations and lemmas.

Lemma 3.1 $a_i \ge 0, b_i \ge 0 \text{ and } \lambda_i > 0, i = 1, 2, ..., n, and \sum_{i=1}^n b_i > 0.$ Then

$$\min_{1 \le i \le n} \left\{ \frac{a_i}{b_i} \right\} \le \frac{\sum_{i=1}^n \lambda_i a_i}{\sum_{i=1}^n \lambda_i b_i}$$

Proof Suppose that $\min_{1 \le i \le n} \{\frac{a_i}{b_i}\} = \frac{a_1}{b_1}$, without loss of generality. Let $\frac{a_i}{b_i} = +\infty$ if $b_i = 0$. Then $\frac{a_1}{b_1} \le \frac{a_i}{b_i}$, and so $\frac{a_1}{b_1} \cdot b_i \le a_i$ (the inequality holds even if $b_i = 0$) for each i = 1, 2, ..., n. Thus, we have

$$\sum_{i=1}^n \lambda_i a_i \ge \sum_{i=1}^n \lambda_i b_i \cdot \frac{a_1}{b_1} = \frac{a_1}{b_1} \sum_{i=1}^n \lambda_i b_i.$$

Since $\sum_{i=1}^{n} b_i > 0$ and $\lambda_i > 0$ for each i = 1, 2, ..., n, we have $\sum_{i=1}^{n} \lambda_i b_i > 0$. It follows that

$$\min_{1 \le i \le n} \left\{ \frac{a_i}{b_i} \right\} = \frac{a_1}{b_1} \le \frac{\sum_{i=1}^n \lambda_i a_i}{\sum_{i=1}^n \lambda_i b_i}$$

as desired, and so the lemma follows.

Let G be a 4-free digraph. For each $v \in V(G)$, set

$$e_{1}(v) = |E(N_{1}^{+}(v), N_{2}^{+}(v))|,$$

$$e_{2}(v) = |E(N_{2}^{-}(v), N_{1}^{-}(v))|,$$

$$e_{3}(v) = |E(N_{2}^{+}(v), C(v) \cup N_{2}^{-}(v))|,$$

$$e_{4}(v) = |E(C(v) \cup N_{2}^{+}(v), N_{2}^{-}(v))|,$$

$$\bar{e}_{1}(v) = |\bar{E}(N_{1}^{-}(v), N_{1}^{+}(v))|,$$

$$\bar{e}_{2}(v) = |\bar{E}(N_{1}^{+}(v), N_{2}^{-}(v))|,$$

$$\bar{e}_{3}(v) = |\bar{E}(N_{1}^{-}(v), N_{2}^{+}(v))|,$$
(3.1)

and

$$\begin{aligned}
k_1(v) &= \frac{e_1(v)}{\bar{e}_1(v) + \bar{e}_2(v)}, \\
k_2(v) &= \frac{e_2(v)}{\bar{e}_1(v) + \bar{e}_3(v)}, \\
k_3(v) &= \frac{e_3(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)}, \\
k_4(v) &= \frac{e_4(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)}.
\end{aligned}$$
(3.2)

Lemma 3.2 If G is a 4-free digraph, then there exists some $v \in V(G)$ such that

$$\min_{1 \le i \le 4} \{k_i(v)\} \le \frac{3 - \sqrt{5}}{2}.$$

Proof From (2.1)–(2.4), (3.1) and Proposition 2.1, we have

$$\sum_{v \in V(G)} e_1(v) = \sum_{v \in V(G)} e_2(v) = \sum_{v \in V(G)} \bar{e}_1(v),$$

$$\sum_{v \in V(G)} e_3(v) = \sum_{v \in V(G)} P(v) = \sum_{v \in V(G)} Q(v) \le \sum_{v \in V(G)} \bar{e}_2(v),$$

$$\sum_{v \in V(G)} e_4(v) = \sum_{v \in V(G)} R'(v) = \sum_{v \in V(G)} Q'(v) \le \sum_{v \in V(G)} \bar{e}_3(v).$$
(3.3)

From (3.3), for all $\lambda > 0$, we have

$$\sum_{v \in V(G)} [e_1(v) + e_2(v) + \lambda(e_3(v) + e_4(v))] \le \sum_{v \in V(G)} [2\bar{e}_1(v) + \lambda(\bar{e}_2(v) + \bar{e}_3(v))].$$
(3.4)

The inequality (3.4) implies that there must exist some $v \in V(G)$ such that

$$e_1(v) + e_2(v) + \lambda(e_3(v) + e_4(v)) \le 2\bar{e}_1(v) + \lambda(\bar{e}_2(v) + \bar{e}_3(v)).$$
(3.5)

It follows from (3.2), (3.5) and Lemma 3.1 that

$$\min_{1 \le i \le 4} \{k_i(v)\} \le (e_1(v) + e_2(v) + \lambda e_3(v) + \lambda e_4(v)) / ((\bar{e}_1(v) + \bar{e}_2(v))) \\
+ (\bar{e}_1(v) + \bar{e}_3(v)) + \lambda (\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)) + \lambda (\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v))) \\
= \frac{e_1(v) + e_2(v) + \lambda (e_3(v) + e_4(v))}{(2 + 2\lambda)\bar{e}_1(v) + (2\lambda + 1)(\bar{e}_2(v) + \bar{e}_3(v))} \\
\le \frac{2\bar{e}_1(v) + \lambda (\bar{e}_2(v) + \bar{e}_3(v))}{(2 + 2\lambda)\bar{e}_1(v) + (2\lambda + 1)(\bar{e}_2(v) + \bar{e}_3(v))}.$$
(3.6)

Let $\lambda = \frac{1+\sqrt{5}}{2}$. Then

$$\frac{2}{2+2\lambda} = \frac{\lambda}{2\lambda+1} = \frac{3-\sqrt{5}}{2}.$$
(3.7)

Substituting (3.7) into (3.6) yields the desired inequality

$$\min_{1 \le i \le 4} \{k_i(v)\} \le \frac{3 - \sqrt{5}}{2},$$

and so the lemma follows.

Proof of Theorem 1.4 We proceed by induction on |V(G)|. Clearly, Theorem 1.4 holds for $|V(G)| \leq 5$. Assume that Theorem 1.4 holds for all digraphs with |V(G)| < n. Let G be a 4-free digraph with |V(G)| = n.

If there exists some $v \in V(G)$ such that $N_1^+(v) = \emptyset$ or $N_1^-(v) = \emptyset$, then v is not in a directed cycle. By the induction hypothesis, we can choose $X \subseteq E(G-v)$ with $|X| \leq \frac{3-\sqrt{5}}{2}\gamma(G-v)$ such that (G-v) - X is acyclic, then G-X has no directed cycles. It follows that $\beta(G) \leq |X| \leq \frac{3-\sqrt{5}}{2}\gamma(G-v) \leq \frac{3-\sqrt{5}}{2}\gamma(G)$, and so the theorem follows.

Thus, in the following discussion, we assume that $N_1^+(v) \neq \emptyset$ and $N_1^-(v) \neq \emptyset$ for any $v \in V(G)$.

Let v be the vertex satisfying Lemma 3.2. Now we prove that for each i = 1, 2, 3, 4, if $k_i(v) \leq \frac{3-\sqrt{5}}{2}$, we can find $X \subseteq E(G)$ satisfying $|X| \leq \frac{3-\sqrt{5}}{2}\gamma(G)$ and G - X has no directed cycles. We consider four cases, respectively, according to Lemma 3.2, which $k_i(v)$ defined in (3.2) is at most $\frac{3-\sqrt{5}}{2}$ for $i \in \{1, 2, 3, 4\}$. **Case 1** $k_1(v) = \frac{e_1(v)}{\overline{e_1(v) + \overline{e_2}(v)}} \leq \frac{3-\sqrt{5}}{2}$.

We consider the partition of V(G) as follows

$$V(G_1) = N_1^+(v), \ V(G_2) = \{v\} \cup N_2^+(v) \cup C(v) \cup N_2^-(v) \cup N_1^-(v) \cup$$

The number of missing edges between $V(G_1)$ and $V(G_2)$ satisfies

$$|\bar{E}(V(G_1), V(G_2))| \ge |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_1^+(v), N_2^-(v))| = \bar{e}_1(v) + \bar{e}_2(v).$$

It follows that

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V(G_1), V(G_2))| \ge \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_2(v).$$

For i = 1, 2, since $0 < |V(G_i)| < n$, by the induction hypothesis, $\beta(G_1) \le \frac{3-\sqrt{5}}{2}\gamma(G_1)$ and $\beta(G_2) \le \frac{3-\sqrt{5}}{2}\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \le \frac{3-\sqrt{5}}{2}\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_1^+(v)$ to $N_2^+(v)$. Then $|X_3| = e_1(v)$. Since there is no edge from $N_1^+(v)$ to $\{v\} \cup C(v) \cup N_2^-(v) \cup N_1^-(v)$ (because G is 4-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles. Thus,

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_1(v) \\ &\leq \frac{3 - \sqrt{5}}{2} \gamma(G_1) + \frac{3 - \sqrt{5}}{2} \gamma(G_2) + \frac{3 - \sqrt{5}}{2} (\bar{e}_1(v) + \bar{e}_2(v)) \\ &\leq \frac{3 - \sqrt{5}}{2} \gamma(G) \end{aligned}$$

as desired.

Case 2 $k_2(v) = \frac{e_2(v)}{\bar{e}_1(v) + \bar{e}_3(v)} \le \frac{3-\sqrt{5}}{2}.$

Using the following partition of V(G),

$$V(G_1) = \{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v) \cup N_2^-(v), \ V(G_2) = N_1^-(v),$$

we get

$$|\bar{E}(V(G_1), V(G_2))| \ge |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_2^+(v), N_1^-(v))| = \bar{e}_1(v) + \bar{e}_3(v) + \bar{e}_$$

which derives that

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V(G_1), V(G_2))| \ge \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_3(v).$$

By the induction hypothesis, $\beta(G_1) \leq \frac{3-\sqrt{5}}{2}\gamma(G_1)$ and $\beta(G_2) \leq \frac{3-\sqrt{5}}{2}\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \leq \frac{3-\sqrt{5}}{2}\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_2^-(v)$ to $N_1^-(v)$. Then $|X_3| = e_2(v)$. Since there is no edge from $\{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v)$ to $N_1^-(v)$ (because G is 4-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles. Thus,

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_2(v) \\ &\leq \frac{3 - \sqrt{5}}{2} \gamma(G_1) + \frac{3 - \sqrt{5}}{2} \gamma(G_2) + \frac{3 - \sqrt{5}}{2} (\bar{e}_1(v) + \bar{e}_3(v)) \\ &\leq \frac{3 - \sqrt{5}}{2} \gamma(G) \end{aligned}$$

as desired.

Case 3 $k_3(v) = \frac{e_3(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)} \le \frac{3 - \sqrt{5}}{2}.$

L

Consider the following partition of V(G),

$$V(G_1) = N_1^+(v) \cup N_2^+(v), \quad V(G_2) = \{v\} \cup C(v) \cup N_2^-(v) \cup N_1^-(v).$$

The number of missing edges between $V(G_1)$ and $V(G_2)$ satisfies

$$\begin{split} |\bar{E}(V(G_1), V(G_2))| \\ \geq |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_1^+(v), N_2^-(v))| + |\bar{E}(N_2^+(v), N_1^-(v))| \\ = \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v). \end{split}$$

It follows that

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |E(V(G_1), V(G_2))| \ge \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v).$$

By the induction hypothesis, $\beta(G_1) \leq \frac{3-\sqrt{5}}{2}\gamma(G_1)$ and $\beta(G_2) \leq \frac{3-\sqrt{5}}{2}\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \leq \frac{3-\sqrt{5}}{2}\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_2^+(v)$ to $C(v) \cup N_2^-(v)$. Then $|X_3| = e_3(v)$. Since there is no edge from $N_1^+(v)$ to $\{v\} \cup C(v) \cup N_2^-(v) \cup N_1^-(v)$ and from $N_2^+(v)$ to $\{v\} \cup N_1^-(v)$ (because G is 4-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles. Thus, we get

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_3(v) \\ &\leq \frac{3 - \sqrt{5}}{2} \gamma(G_1) + \frac{3 - \sqrt{5}}{2} \gamma(G_2) + \frac{3 - \sqrt{5}}{2} (\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)) \\ &\leq \frac{3 - \sqrt{5}}{2} \gamma(G) \end{aligned}$$

as desired.

Case 4 $k_4(v) = \frac{e_4(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)} \le \frac{3 - \sqrt{5}}{2}.$

Using the following partition of V(G),

$$V(G_1) = \{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v), \quad V(G_2) = N_2^-(v) \cup N_1^-(v),$$

we obtain

$$\begin{aligned} |\bar{E}(V(G_1), V(G_2))| \\ &\geq |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_1^+(v), N_2^-(v))| + |\bar{E}(N_2^+(v), N_1^-(v))| \\ &= \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v). \end{aligned}$$

It follows that

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V(G_1), V(G_2))| \ge \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v).$$

By the induction hypothesis, $\beta(G_1) \leq \frac{3-\sqrt{5}}{2}\gamma(G_1)$ and $\beta(G_2) \leq \frac{3-\sqrt{5}}{2}\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \leq \frac{3-\sqrt{5}}{2}\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_2^+(v) \cup C(v)$ to $N_2^-(v)$. Then $|X_3| = e_4(v)$. Since there is no edge from $\{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v)$ to $N_1^-(v)$ and from $N_2^+(v)$ to $\{v\} \cup N_1^-(v)$ (because G is 4-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles and

$$\beta(G) \le |X_1| + |X_2| + |X_3|$$
$$= |X_1| + |X_2| + e_4(v)$$

Liang H. and Xu J. M.

$$\leq \frac{3-\sqrt{5}}{2}\gamma(G_1) + \frac{3-\sqrt{5}}{2}\gamma(G_2) + \frac{3-\sqrt{5}}{2}(\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v))$$

$$\leq \frac{3-\sqrt{5}}{2}\gamma(G)$$

as desired.

For each case there exists $X \subseteq E(G)$ satisfying $|X| \leq \frac{3-\sqrt{5}}{2}\gamma(G)$ and G-X has no directed cycles. This implies that $\beta(G) \leq |X| \leq \frac{3-\sqrt{5}}{2}\gamma(G)$. Theorem 1.4 follows.

We now prove Theorem 1.5 starting with some notations and a lemma used in our proofs. Let G be a 5-free digraph, for each $v \in V(G)$, set

$$e_{1}(v) = |E(N_{1}^{+}(v), N_{2}^{+}(v))|,$$

$$e_{2}(v) = |E(N_{2}^{-}(v), N_{1}^{-}(v))|,$$

$$e_{3}(v) = |E(N_{2}^{+}(v), C(v))|,$$

$$e_{4}(v) = |E(C(v), N_{2}^{-}(v))|,$$

$$\bar{e}_{1}(v) = |\bar{E}(N_{1}^{-}(v), N_{1}^{+}(v))|,$$

$$\bar{e}_{2}(v) = |\bar{E}(N_{1}^{+}(v), N_{2}^{-}(v))|,$$

$$\bar{e}_{3}(v) = |\bar{E}(N_{1}^{+}(v), N_{2}^{+}(v))|,$$

$$\bar{e}_{4}(v) = |\bar{E}(N_{1}^{+}(v), C(v))|,$$

$$\bar{e}_{5}(v) = |\bar{E}(N_{1}^{-}(v), C(v))|,$$
(3.8)

and

$$k_{1}(v) = \frac{e_{1}(v)}{\bar{e}_{1}(v) + \bar{e}_{2}(v) + \bar{e}_{4}(v)},$$

$$k_{2}(v) = \frac{e_{2}(v)}{\bar{e}_{1}(v) + \bar{e}_{3}(v) + \bar{e}_{5}(v)},$$

$$k_{3}(v) = \frac{e_{3}(v)}{\bar{e}_{1}(v) + \bar{e}_{2}(v) + \bar{e}_{3}(v) + \bar{e}_{4}(v)},$$

$$k_{4}(v) = \frac{e_{4}(v)}{\bar{e}_{1}(v) + \bar{e}_{2}(v) + \bar{e}_{3}(v) + \bar{e}_{5}(v)}.$$
(3.9)

Lemma 3.3 If G is a 4-free digraph, there exists some $v \in V(G)$ such that

$$\min_{1 \le i \le 4} \{k_i(v)\} \le 2 - \sqrt{3}.$$

Proof From (2.1)–(2.4), (3.9) and Proposition 2.2, we have

$$\sum_{v \in V(G)} e_1(v) = \sum_{v \in V(G)} e_2(v) = \sum_{v \in V(G)} \bar{e}_1(v), \\
\sum_{v \in V(G)} e_3(v) = \sum_{v \in V(G)} P(v) = \sum_{v \in V(G)} Q(v) \le \sum_{v \in V(G)} \bar{e}_2(v), \\
\sum_{v \in V(G)} e_3(v) = \sum_{v \in V(G)} P(v) = \sum_{v \in V(G)} R(v) \le \sum_{v \in V(G)} \bar{e}_5(v), \\
\sum_{v \in V(G)} e_4(v) = \sum_{v \in V(G)} R'(v) = \sum_{v \in V(G)} Q'(v) \le \sum_{v \in V(G)} \bar{e}_3(v), \\
\sum_{v \in V(G)} e_4(v) = \sum_{v \in V(G)} R'(v) = \sum_{v \in V(G)} P'(v) \le \sum_{v \in V(G)} \bar{e}_4(v).$$
(3.10)

It follows from (3.10) that, for all $\alpha, \beta > 0$,

$$\sum_{v \in V(G)} [e_1(v) + e_2(v) + (\alpha + \beta)(e_3(v) + e_4(v))] \\ \leq \sum_{v \in V(G)} [2\bar{e}_1(v) + \alpha(\bar{e}_2(v) + \bar{e}_3(v)) + \beta(\bar{e}_4(v) + \bar{e}_5(v))].$$
(3.11)

Thus, the inequality (3.11) implies that there exists some $v \in V(G)$ such that

$$e_{1}(v) + e_{2}(v) + (\alpha + \beta)(e_{3}(v) + e_{4}(v))$$

$$\leq 2\bar{e}_{1}(v) + \alpha(\bar{e}_{2}(v) + \bar{e}_{3}(v)) + \beta(\bar{e}_{4}(v) + \bar{e}_{5}(v)).$$
(3.12)

By (3.9), (3.12) and Lemma 3.1, we have

$$\min_{1 \le i \le 4} \{k_i(v)\} \\
\leq (e_1(v) + e_2(v) + (\alpha + \beta)(e_3(v) + e_4(v)))/((\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v)) + (\bar{e}_1(v) + \bar{e}_3(v) \\
+ \bar{e}_5(v)) + (\alpha + \beta)[(\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v) + \bar{e}_4(v)) + (\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v) + \bar{e}_5(v))]) \\
= (e_1(v) + e_2(v) + \alpha(e_3(v) + e_4(v)) + \beta(e_3(v) + e_4(v)))/ \\
([2 + 2(\alpha + \beta)]\bar{e}_1(v) + [2(\alpha + \beta) + 1](\bar{e}_2(v) + \bar{e}_3(v)) + [(\alpha + \beta) + 1](\bar{e}_4(v) + \bar{e}_5(v))) \\
\leq (2\bar{e}_1(v) + \alpha(\bar{e}_2(v) + \bar{e}_3(v)) + \beta(\bar{e}_4(v) + \bar{e}_5(v)))/([2 + 2(\alpha + \beta)]\bar{e}_1(v) \\
+ [2(\alpha + \beta) + 1](\bar{e}_2(v) + \bar{e}_3(v)) + [(\alpha + \beta) + 1](\bar{e}_4(v) + \bar{e}_5(v))).$$
(3.13)

Let $\alpha = \sqrt{3}, \beta = 1$. Then

$$\frac{2}{2+2(\alpha+\beta)} = \frac{\alpha}{2(\alpha+\beta)+1} = \frac{\beta}{(\alpha+\beta)+1} = 2 - \sqrt{3}.$$
 (3.14)

Substituting (3.14) into (3.13) yields the desired inequality

$$\min_{1 \le i \le 4} \{k_i(v)\} \le 2 - \sqrt{3},$$

and so the lemma follows.

Proof of Theorem 1.5 We proceed by induction on |V(G)|. Clearly, Theorem 1.5 holds for $|V(G)| \le 6$. Assume that Theorem 1.5 holds for all digraphs with |V(G)| < n. Let G be a 5-free digraph with |V(G)| = n. We may assume that $N_1^+(v) \ne \emptyset$ and $N_1^-(v) \ne \emptyset$ for any $v \in V(G)$.

Let v be the vertex satisfying Lemma 3.3. Now we prove that for each i = 1, 2, 3, 4, if $k_i(v) \leq 2 - \sqrt{3}$, we can find $X \subseteq E(G)$ satisfying $|X| \leq (2 - \sqrt{3})\gamma(G)$ and G - X has no directed cycles. It will derive that $\beta(G) \leq |X| \leq (2 - \sqrt{3})\gamma(G)$. We consider four cases, respectively, according to Lemma 3.3, which $k_i(v)$ defined in (3.9) is at most $2 - \sqrt{3}$ for $i \in \{1, 2, 3, 4\}$. **Case 1** $k_1(v) = \frac{e_1(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v)} \leq 2 - \sqrt{3}$.

Consider the following partition of V(G),

$$V(G_1) = N_1^+(v), \quad V(G_2) = \{v\} \cup N_2^+(v) \cup C(v) \cup N_2^-(v) \cup N_1^-(v).$$

The number of missing edges between $V(G_1)$ and $V(G_2)$ satisfies

$$\begin{aligned} |\bar{E}(V(G_1), V(G_2))| \\ \geq |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_1^+(v), N_2^-(v))| + |\bar{E}(N_1^+(v), C(v))| \end{aligned}$$

$$= \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v).$$

Thus,

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |E(V(G_1), V(G_2))|$$

$$\geq \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v).$$

For i = 1, 2, since $0 < |V(G_i)| < n$, by the inductive hypothesis, $\beta(G_1) \le (2 - \sqrt{3})\gamma(G_1)$ and $\beta(G_2) \le (2 - \sqrt{3})\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \le (2 - \sqrt{3})\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_1^+(v)$ to $N_2^+(v)$. Then $|X_3| = e_1(v)$. Since there is no edge from $N_1^+(v)$ to $\{v\} \cup C(v) \cup N_2^-(v) \cup N_1^-(v)$ (because G is 5-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles. Thus, we can deduce the desired inequality

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_1(v) \\ &\leq (2 - \sqrt{3})\gamma(G_1) + (2 - \sqrt{3})\gamma(G_2) + (2 - \sqrt{3})(\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v)) \\ &\leq (2 - \sqrt{3})\gamma(G). \end{aligned}$$

Case 2 $k_2(v) = \frac{e_2(v)}{\bar{e}_1(v) + \bar{e}_3(v) + \bar{e}_5(v)} \le 2 - \sqrt{3}.$

Using the following partition of V(G),

$$V(G_1) = \{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v) \cup N_2^-(v), \quad V(G_2) = N_1^-(v),$$

we have

$$\begin{aligned} |\bar{E}(V(G_1), V(G_2))| \\ &\geq |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_2^+(v), N_1^-(v))| + |\bar{E}(C(v), N_1^-(v))| \\ &= \bar{e}_1(v) + \bar{e}_3(v) + \bar{e}_5(v). \end{aligned}$$

It follows that

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |E(V(G_1), V(G_2))|$$

$$\geq \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_3(v) + \bar{e}_5(v).$$

By the induction hypothesis, $\beta(G_1) \leq (2 - \sqrt{3})\gamma(G_1)$ and $\beta(G_2) \leq (2 - \sqrt{3})\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \leq (2 - \sqrt{3})\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_2^-(v)$ to $N_1^-(v)$. Then $|X_3| = e_2(v)$. Since there is no edge from $\{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v)$ to $N_1^-(v)$, every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles. We can deduce the desired inequality

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_2(v) \\ &\leq (2 - \sqrt{3})\gamma(G_1) + (2 - \sqrt{3})\gamma(G_2) + (2 - \sqrt{3})(\bar{e}_1(v) + \bar{e}_3(v) + \bar{e}_5(v)) \\ &\leq (2 - \sqrt{3})\gamma(G). \end{aligned}$$

Case 3 $k_3(v) = \frac{e_3(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v) + \bar{e}_4(v)} \le 2 - \sqrt{3}.$

Consider the partition of V(G),

$$V(G_1) = N_1^+(v) \cup N_2^+(v), \quad V(G_2) = \{v\} \cup C(v) \cup N_2^-(v) \cup N_1^-(v).$$

The number of missing edges between $V(G_1)$ and $V(G_2)$ satisfies

$$|E(V(G_1), V(G_2))|$$

$$\geq |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_1^+(v), N_2^-(v))|$$

$$+ |\bar{E}(N_1^+(v), C(v))| + |\bar{E}(N_2^+(v), N_1^-(v))|$$

$$= \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v) + \bar{e}_3(v).$$

Thus,

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V(G_1), V(G_2))|$$

$$\geq \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_4(v) + \bar{e}_3(v).$$

By the induction hypothesis, $\beta(G_1) \leq (2 - \sqrt{3})\gamma(G_1)$ and $\beta(G_2) \leq (2 - \sqrt{3})\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \leq (2 - \sqrt{3})\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from $N_2^+(v)$ to C(v). Then $|X_3| = e_3(v)$. Since there is no edge from $N_1^+(v)$ to $\{v\} \cup C(v) \cup N_2^-(v) \cup N_1^-(v)$ and from $N_2^+(v)$ to $\{v\} \cup N_1^-(v) \cup N_2^-(v)$ (because G is 5-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$. Then G - X has no directed cycles. We can deduce the desired inequality

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_3(v) \\ &\leq (2 - \sqrt{3})\gamma(G_1) + (2 - \sqrt{3})\gamma(G_2) + (2 - \sqrt{3})(\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v) + \bar{e}_4(v)) \\ &\leq (2 - \sqrt{3})\gamma(G). \end{aligned}$$

Case 4 $k_4(v) = \frac{e_4(v)}{\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v)} \le 2 - \sqrt{3}.$ Using the partitions of V(G),

$$V(G_1) = \{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v), \quad V(G_2) = N_2^-(v) \cup N_1^-(v),$$

we have

$$\begin{split} |\bar{E}(V(G_1), V(G_2))| \\ &\geq |\bar{E}(N_1^+(v), N_1^-(v))| + |\bar{E}(N_1^+(v), N_2^-(v))| \\ &+ |\bar{E}(N_1^-(v), C(v))| + |\bar{E}(N_2^+(v), N_1^-(v))| \\ &= \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_5(v) + \bar{e}_3(v), \end{split}$$

which derives

$$\gamma(G) = \gamma(G_1) + \gamma(G_2) + |\bar{E}(V(G_1), V(G_2))|$$

$$\geq \gamma(G_1) + \gamma(G_2) + \bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_5(v) + \bar{e}_3(v)$$

By the induction hypothesis, $\beta(G_1) \leq (2 - \sqrt{3})\gamma(G_1)$ and $\beta(G_2) \leq (2 - \sqrt{3})\gamma(G_2)$, we can choose $X_i \subseteq E(G_i)$ with $|X_i| \leq (2 - \sqrt{3})\gamma(G_i)$ such that $G_i - X_i$ is acyclic. Let X_3 be the set of all edges from C(v) to $N_2^-(v)$. Then $|X_3| = e_4(v)$. Since there are no edges from

 $\{v\} \cup N_1^+(v) \cup N_2^+(v) \cup C(v)$ to $N_1^-(v)$ and from $\{v\} \cup N_1^+(v) \cup N_2^+(v)$ to $N_2^-(v)$ (because G is 5-free), every edge from $V(G_1)$ to $V(G_2)$ belongs to X_3 . Let $X = X_1 \cup X_2 \cup X_3$, we can get that $G \setminus X$ has no directed cycles and

$$\begin{aligned} \beta(G) &\leq |X_1| + |X_2| + |X_3| \\ &= |X_1| + |X_2| + e_4(v) \\ &\leq (2 - \sqrt{3})\gamma(G_1) + (2 - \sqrt{3})\gamma(G_2) + (2 - \sqrt{3})(\bar{e}_1(v) + \bar{e}_2(v) + \bar{e}_3(v) + \bar{e}_5(v)) \\ &\leq (2 - \sqrt{3})\gamma(G). \end{aligned}$$

The proof of Theorem 1.5 is complete.

Acknowledgements The authors would like to express their gratitude to the anonymous referees for their kind suggestions and comments on the original manuscript, which resulted in this version.

References

- Xu, J. M.: Theory and Application of Graphs, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003
- [2] Chudnovsky, M., Seymour, P., Sullivan, B.: Cycles in dense digraphs. Combinatorica, 28, 1–18 (2008)
- [3] Dunkum, M., Hamburger, P., Pór, A.: Destroying cycles in digraphs. Combinatorica, **31**, 55–66 (2011)
- Chen, K., Karson, S., Liu, D., et al.: On the Chudnovsky–Seymour–Sullivan conjecture on cycles in triangle-free digraphs. http://arxiv.org/abs/0909.2468 (2009)
- [5] Caccetta, L., Häggkvist, R.: On Minimal Digraphs with Given Girth, Congressus Numerantium XXI, Utilitas Mathematica, 1978, 181–187
- [6] Bondy, J. A.: Counting subgraphs: A new approach to the Caccetta-Häggkvist conjecture. Discrete Math., 165/166, 71–80 (1997)
- [7] Shen, J.: Directed triangles in digraphs. J. Combin. Theory, Ser. B, 74, 405–407 (1998)
- [8] Hamburger, P., Haxell, P., Kostochka, A.: On the directed triangles in digraphs. *Electronic J. Combin.*, 14, Note 19 (2007)
- [9] Hladký, J., Král, D., Norin, S.: Counting flags in triangle-free digraphs. *Electron. Notes Discrete Math.*, 34, 621–625 (2009)
- [10] Sullivan, B.: Extremal Problems in Digraphs, Ph.D. Thesis, Princeton University, 2008