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Abstract For a simple digraph G, let β(G) be the size of the smallest subset X ⊆ E(G) such that

G−X has no directed cycles, and let γ(G) be the number of unordered pairs of nonadjacent vertices in

G. A digraph G is called k-free if G has no directed cycles of length at most k. This paper proves that

β(G) ≤ 0.3819γ(G) if G is a 4-free digraph, and β(G) ≤ 0.2679γ(G) if G is a 5-free digraph. These

improve the results of Sullivan in 2008.
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1 Introduction

Let G = (V, E) be a digraph without loops and parallel edges, where V = V (G) is the vertex
set and E = E(G) is the edge set.

It is well known that the cycle rank of an undirected graph G is the minimum number of
edges that must be removed in order to eliminate all of cycles in the graph. That is, if G has
υ vertices, ε edges, and ω connected components, then the minimum number of edges whose
deletion from G leaves an acyclic graph equals the cycle rank (or Betti number) ρ(G) = ε−υ+ω

(see Xu [1]). However, the same problem for a digraph is quite difficult.
A digraph G is called to be k-free if there is no directed cycle of G with length at most k.

A digraph is acyclic if it has no directed cycles. For a digraph G, let β(G) be the size of the
smallest subset X ⊆ E(G) such that G−X is acyclic, and let γ(G) be the number of unordered
pairs of nonadjacent vertices in G, called the number of missing edges of G.

Chudnovsky et al. [2] proved that β(G) ≤ γ(G) if G is a 3-free digraph and gave the following
conjecture.

Conjecture 1.1 If G is a 3-free digraph, then β(G) ≤ 1
2γ(G).
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Concerning this conjecture, Dunkum et al. [3] proved that β(G) ≤ 0.88γ(G). Very recently,
Chen et al. [4] improved the result to β(G) ≤ 0.8616γ(G). Conjecture 1.1 is closely related to
the following special case of the conjecture proposed by Caccetta and Häggkvist [5].

Conjecture 1.2 Any digraph on n vertices with minimum out-degree at least n/3 contains a
directed triangle.

Short of proving the conjecture, one may seek as small value of c as possible such that every
digraph on n vertices with minimum out-degree at least cn contains a triangle. This was the
strategy of Caccetta and Häggkvist [5], who obtained the value c ≤ 0.3819. Bondy [6] showed
that c ≤ 0.3797, and Shen [7] improved it to c ≤ 0.3542. Hamburger, et al. [8] improved it to
0.35312. Very recently, Hladky et al. [9] further improved this bound to 0.3465. Namely, any
digraph on n vertices with minimum out-degree at least 0.3465 n contains a directed triangle.

Generalizing Conjecture 1.1, Sullivan [10] proposed the following conjecture, and gave an
example showing that this would be best possible if this conjecture is true, noting that Conjec-
ture 1.1 is a special case of this when m = 3.

Conjecture 1.3 If G is an m-free digraph with m ≥ 3, then

β(G) ≤ 2
(m + 1)(m − 2)

γ(G).

Sullivan proved partial results of Conjecture 1.3, and showed that β(G) ≤ 1
m−2γ(G) for

m = 4, 5. In this article, we improve these two results, which are summarized in the following
theorems.

Theorem 1.4 If G is a 4-free digraph, then β(G) ≤ 3−√
5

2 γ(G) ≈ 0.3819γ(G).

Theorem 1.5 If G is a 5-free digraph, then β(G) ≤ (2 −√
3)γ(G) ≈ 0.2679γ(G).

The proofs of the two results are in Section 3. We proceed by induction on |V (G)| by
refining Sullivan et al.’s methods used in [2, 10] and using some computation techniques. In
Section 2, we give some notations and known results used in our proofs.

2 Preliminaries

Let G be a simple digraph. For two disjoint subsets A, B ⊆ V (G), let E(A, B) denote the set of
directed edges (a, b) with a ∈ A and b ∈ B. Similarly, let Ē(A, B) be the missing edges between
A and B. It follows that

|Ē(A, B)| = |Ē(B, A)| = |A| · |B| − |E(A, B)| − |E(B, A)|.
We say P = (x, y, z) an induced directed 2-path (2-path for short), if (x, y), (y, z) ∈ E(G)

and x, z are nonadjacent, where x, y, z are called the original, internal and terminal vertices of
P , respectively. For each v ∈ V (G), let f(v), g(v) and h(v) be the number of 2-paths with the
original vertex v, the internal vertex v, and the terminal vertex v, respectively. Let N be the
number of 2-paths of G. Then

N =
∑

v∈V (G)

f(v) =
∑

v∈V (G)

g(v) =
∑

v∈V (G)

h(v). (2.1)

Let N+
i (v) be the set of vertices u such that the shortest directed path starting with v and

ending with u has length i. Similarly, let N−
i (v) be the set of vertices whose shortest directed
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path to v has length i. It follows that
⎧
⎪⎪⎨

⎪⎪⎩

f(v) = |E(N+
1 (v), N+

2 (v))|,
g(v) = |Ē(N−

1 (v), N+
1 (v))|,

h(v) = |E(N−
2 (v), N−

1 (v))|.
(2.2)

Let P (v) be the number of triples of distinct vertices (x, y, z) such that for some u ∈ V (G),
(x, u, y, z) is an induced directed path with the original vertex x = v. Similarly, let Q(v) be
the number of triples of distinct vertices (x, y, z) such that for some u ∈ V (G), (x, u, y, z) is an
induced directed path with the internal vertex y = v, and R(v) be the number of such triples
with z = v. Also, let P ′(v) be the number of triples of distinct vertices (x, y, z) which makes
(x, y, u, z) be an induced directed path with x = v for some u ∈ V (G). Let Q′(v) and R′(v) be
the number of such triples with y = v and z = v, respectively.

From the above definitions, we can verify
∑

v∈V (G)

P (v) =
∑

v∈V (G)

Q(v) =
∑

v∈V (G)

R(v) (2.3)

and
∑

v∈V (G)

P ′(v) =
∑

v∈V (G)

Q′(v) =
∑

v∈V (G)

R′(v). (2.4)

Finally, set C(v) be the vertices whose shortest directed path to or from v has length at least
three, that is C(v) = V (G)\({v} ∪ N+

1 (v) ∪ N+
2 (v) ∪ N−

1 (v) ∪ N−
2 (v)). We have the following

bounds on P (v), Q(v), R(v), P ′(v), Q′(v), R′(v) in terms of C(v) and N+
i (v), N−

i (v) for i = 1, 2.

Proposition 2.1 ([10]) If G is a 4-free digraph, then for any v ∈ V (G),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

P (v) = |E(N+
2 (v), C(v) ∪ N−

2 (v))|,
Q(v) ≤ |Ē(N−

2 (v), N+
1 (v))|,

Q′(v) ≤ |Ē(N+
2 (v), N−

1 (v))|,
R′(v) = |E(C(v) ∪ N+

2 (v), N−
2 (v))|.

Proposition 2.2 ([10]) If G is a 5-free digraph, then for any v ∈ V (G),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (v) = |E(N+
2 (v), C(v)|,

Q(v) ≤ |Ē(N−
2 (v), N+

1 (v))|,
R(v) ≤ |Ē(C(v), N−

1 (v))|,
P ′(v) ≤ |Ē(C(v), N+

1 (v))|,
Q′(v) ≤ |Ē(N+

2 (v), N−
1 (v))|,

R′(v) = |E(C(v), N−
2 (v))|.

3 Proofs of Main Results

In this section, we will give proofs of Theorems 1.4–1.5, respectively. We first prove Theorem 1.4
starting with some notations and lemmas.
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Lemma 3.1 ai ≥ 0, bi ≥ 0 and λi > 0, i = 1, 2, . . . , n, and
∑n

i=1 bi > 0. Then

min
1≤i≤n

{
ai

bi

}
≤

∑n
i=1 λiai∑n
i=1 λibi

.

Proof Suppose that min1≤i≤n{ai

bi
} = a1

b1
, without loss of generality. Let ai

bi
= +∞ if bi = 0.

Then a1
b1

≤ ai

bi
, and so a1

b1
· bi ≤ ai (the inequality holds even if bi = 0) for each i = 1, 2, . . . , n.

Thus, we have
n∑

i=1

λiai ≥
n∑

i=1

λibi · a1

b1
=

a1

b1

n∑

i=1

λibi.

Since
∑n

i=1 bi > 0 and λi > 0 for each i = 1, 2, . . . , n, we have
∑n

i=1 λibi > 0. It follows that

min
1≤i≤n

{
ai

bi

}
=

a1

b1
≤

∑n
i=1 λiai∑n
i=1 λibi

as desired, and so the lemma follows. �
Let G be a 4-free digraph. For each v ∈ V (G), set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(v) = |E(N+
1 (v), N+

2 (v))|,
e2(v) = |E(N−

2 (v), N−
1 (v))|,

e3(v) = |E(N+
2 (v), C(v) ∪ N−

2 (v))|,
e4(v) = |E(C(v) ∪ N+

2 (v), N−
2 (v))|,

ē1(v) = |Ē(N−
1 (v), N+

1 (v))|,
ē2(v) = |Ē(N+

1 (v), N−
2 (v))|,

ē3(v) = |Ē(N−
1 (v), N+

2 (v))|,

(3.1)

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1(v) =
e1(v)

ē1(v) + ē2(v)
,

k2(v) =
e2(v)

ē1(v) + ē3(v)
,

k3(v) =
e3(v)

ē1(v) + ē2(v) + ē3(v)
,

k4(v) =
e4(v)

ē1(v) + ē2(v) + ē3(v)
.

(3.2)

Lemma 3.2 If G is a 4-free digraph, then there exists some v ∈ V (G) such that

min
1≤i≤4

{ki(v)} ≤ 3 −√
5

2
.

Proof From (2.1)–(2.4), (3.1) and Proposition 2.1, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

v∈V (G)

e1(v) =
∑

v∈V (G)

e2(v) =
∑

v∈V (G)

ē1(v),

∑

v∈V (G)

e3(v) =
∑

v∈V (G)

P (v) =
∑

v∈V (G)

Q(v) ≤
∑

v∈V (G)

ē2(v),

∑

v∈V (G)

e4(v) =
∑

v∈V (G)

R′(v) =
∑

v∈V (G)

Q′(v) ≤
∑

v∈V (G)

ē3(v).

(3.3)
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From (3.3), for all λ > 0, we have
∑

v∈V (G)

[e1(v) + e2(v) + λ(e3(v) + e4(v))] ≤
∑

v∈V (G)

[2ē1(v) + λ(ē2(v) + ē3(v))]. (3.4)

The inequality (3.4) implies that there must exist some v ∈ V (G) such that

e1(v) + e2(v) + λ(e3(v) + e4(v)) ≤ 2ē1(v) + λ(ē2(v) + ē3(v)). (3.5)

It follows from (3.2), (3.5) and Lemma 3.1 that

min
1≤i≤4

{ki(v)} ≤ (e1(v) + e2(v) + λe3(v) + λe4(v))/((ē1(v) + ē2(v))

+ (ē1(v) + ē3(v)) + λ(ē1(v) + ē2(v) + ē3(v)) + λ(ē1(v) + ē2(v) + ē3(v)))

=
e1(v) + e2(v) + λ(e3(v) + e4(v))

(2 + 2λ)ē1(v) + (2λ + 1)(ē2(v) + ē3(v))

≤ 2ē1(v) + λ(ē2(v) + ē3(v))
(2 + 2λ)ē1(v) + (2λ + 1)(ē2(v) + ē3(v))

. (3.6)

Let λ = 1+
√

5
2 . Then

2
2 + 2λ

=
λ

2λ + 1
=

3 −√
5

2
. (3.7)

Substituting (3.7) into (3.6) yields the desired inequality

min
1≤i≤4

{ki(v)} ≤ 3 −√
5

2
,

and so the lemma follows. �
Proof of Theorem 1.4 We proceed by induction on |V (G)|. Clearly, Theorem 1.4 holds for

|V (G)| ≤ 5. Assume that Theorem 1.4 holds for all digraphs with |V (G)| < n. Let G be a
4-free digraph with |V (G)| = n.

If there exists some v ∈ V (G) such that N+
1 (v) = ∅ or N−

1 (v) = ∅, then v is not in a directed
cycle. By the induction hypothesis, we can choose X ⊆ E(G − v) with |X| ≤ 3−√

5
2 γ(G − v)

such that (G − v) − X is acyclic, then G − X has no directed cycles. It follows that β(G) ≤
|X| ≤ 3−√

5
2 γ(G − v) ≤ 3−√

5
2 γ(G), and so the theorem follows.

Thus, in the following discussion, we assume that N+
1 (v) �= ∅ and N−

1 (v) �= ∅ for any
v ∈ V (G).

Let v be the vertex satisfying Lemma 3.2. Now we prove that for each i = 1, 2, 3, 4, if
ki(v) ≤ 3−√

5
2 , we can find X ⊆ E(G) satisfying |X| ≤ 3−√

5
2 γ(G) and G − X has no directed

cycles. We consider four cases, respectively, according to Lemma 3.2, which ki(v) defined
in (3.2) is at most 3−√

5
2 for i ∈ {1, 2, 3, 4}.

Case 1 k1(v) = e1(v)
ē1(v)+ē2(v) ≤ 3−√

5
2 .

We consider the partition of V (G) as follows

V (G1) = N+
1 (v), V (G2) = {v} ∪ N+

2 (v) ∪ C(v) ∪ N−
2 (v) ∪ N−

1 (v).

The number of missing edges between V (G1) and V (G2) satisfies

|Ē(V (G1), V (G2))| ≥ |Ē(N+
1 (v), N−

1 (v))| + |Ē(N+
1 (v), N−

2 (v))| = ē1(v) + ē2(v).
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It follows that

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))| ≥ γ(G1) + γ(G2) + ē1(v) + ē2(v).

For i = 1, 2, since 0 < |V (Gi)| < n, by the induction hypothesis, β(G1) ≤ 3−√
5

2 γ(G1) and
β(G2) ≤ 3−√

5
2 γ(G2), we can choose Xi ⊆ E(Gi) with |Xi| ≤ 3−√

5
2 γ(Gi) such that Gi − Xi is

acyclic. Let X3 be the set of all edges from N+
1 (v) to N+

2 (v). Then |X3| = e1(v). Since there
is no edge from N+

1 (v) to {v} ∪ C(v) ∪ N−
2 (v) ∪ N−

1 (v) (because G is 4-free), every edge from
V (G1) to V (G2) belongs to X3. Let X = X1 ∪ X2 ∪ X3. Then G − X has no directed cycles.
Thus,

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e1(v)

≤ 3 −√
5

2
γ(G1) +

3 −√
5

2
γ(G2) +

3 −√
5

2
(ē1(v) + ē2(v))

≤ 3 −√
5

2
γ(G)

as desired.
Case 2 k2(v) = e2(v)

ē1(v)+ē3(v) ≤ 3−√
5

2 .

Using the following partition of V (G),

V (G1) = {v} ∪ N+
1 (v) ∪ N+

2 (v) ∪ C(v) ∪ N−
2 (v), V (G2) = N−

1 (v),

we get

|Ē(V (G1), V (G2))| ≥ |Ē(N+
1 (v), N−

1 (v))| + |Ē(N+
2 (v), N−

1 (v))| = ē1(v) + ē3(v),

which derives that

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))| ≥ γ(G1) + γ(G2) + ē1(v) + ē3(v).

By the induction hypothesis, β(G1) ≤ 3−√
5

2 γ(G1) and β(G2) ≤ 3−√
5

2 γ(G2), we can choose
Xi ⊆ E(Gi) with |Xi| ≤ 3−√

5
2 γ(Gi) such that Gi − Xi is acyclic. Let X3 be the set of all

edges from N−
2 (v) to N−

1 (v). Then |X3| = e2(v). Since there is no edge from {v} ∪ N+
1 (v) ∪

N+
2 (v)∪C(v) to N−

1 (v) (because G is 4-free), every edge from V (G1) to V (G2) belongs to X3.
Let X = X1 ∪ X2 ∪ X3. Then G − X has no directed cycles. Thus,

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e2(v)

≤ 3 −√
5

2
γ(G1) +

3 −√
5

2
γ(G2) +

3 −√
5

2
(ē1(v) + ē3(v))

≤ 3 −√
5

2
γ(G)

as desired.
Case 3 k3(v) = e3(v)

ē1(v)+ē2(v)+ē3(v) ≤ 3−√
5

2 .

Consider the following partition of V (G),

V (G1) = N+
1 (v) ∪ N+

2 (v), V (G2) = {v} ∪ C(v) ∪ N−
2 (v) ∪ N−

1 (v).
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The number of missing edges between V (G1) and V (G2) satisfies

|Ē(V (G1), V (G2))|
≥ |Ē(N+

1 (v), N−
1 (v))| + |Ē(N+

1 (v), N−
2 (v))| + |Ē(N+

2 (v), N−
1 (v))|

= ē1(v) + ē2(v) + ē3(v).

It follows that

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))| ≥ γ(G1) + γ(G2) + ē1(v) + ē2(v) + ē3(v).

By the induction hypothesis, β(G1) ≤ 3−√
5

2 γ(G1) and β(G2) ≤ 3−√
5

2 γ(G2), we can choose
Xi ⊆ E(Gi) with |Xi| ≤ 3−√

5
2 γ(Gi) such that Gi − Xi is acyclic. Let X3 be the set of all

edges from N+
2 (v) to C(v) ∪ N−

2 (v). Then |X3| = e3(v). Since there is no edge from N+
1 (v) to

{v} ∪C(v)∪N−
2 (v)∪N−

1 (v) and from N+
2 (v) to {v} ∪N−

1 (v) (because G is 4-free), every edge
from V (G1) to V (G2) belongs to X3. Let X = X1 ∪ X2 ∪ X3. Then G − X has no directed
cycles. Thus, we get

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e3(v)

≤ 3 −√
5

2
γ(G1) +

3 −√
5

2
γ(G2) +

3 −√
5

2
(ē1(v) + ē2(v) + ē3(v))

≤ 3 −√
5

2
γ(G)

as desired.
Case 4 k4(v) = e4(v)

ē1(v)+ē2(v)+ē3(v) ≤ 3−√
5

2 .

Using the following partition of V (G),

V (G1) = {v} ∪ N+
1 (v) ∪ N+

2 (v) ∪ C(v), V (G2) = N−
2 (v) ∪ N−

1 (v),

we obtain

|Ē(V (G1), V (G2))|
≥ |Ē(N+

1 (v), N−
1 (v))| + |Ē(N+

1 (v), N−
2 (v))| + |Ē(N+

2 (v), N−
1 (v))|

= ē1(v) + ē2(v) + ē3(v).

It follows that

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))| ≥ γ(G1) + γ(G2) + ē1(v) + ē2(v) + ē3(v).

By the induction hypothesis, β(G1) ≤ 3−√
5

2 γ(G1) and β(G2) ≤ 3−√
5

2 γ(G2), we can choose
Xi ⊆ E(Gi) with |Xi| ≤ 3−√

5
2 γ(Gi) such that Gi − Xi is acyclic. Let X3 be the set of

all edges from N+
2 (v) ∪ C(v) to N−

2 (v). Then |X3| = e4(v). Since there is no edge from
{v} ∪ N+

1 (v) ∪ N+
2 (v) ∪ C(v) to N−

1 (v) and from N+
2 (v) to {v} ∪ N−

1 (v) (because G is 4-free),
every edge from V (G1) to V (G2) belongs to X3. Let X = X1 ∪ X2 ∪ X3. Then G − X has no
directed cycles and

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e4(v)
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≤ 3 −√
5

2
γ(G1) +

3 −√
5

2
γ(G2) +

3 −√
5

2
(ē1(v) + ē2(v) + ē3(v))

≤ 3 −√
5

2
γ(G)

as desired.
For each case there exists X ⊆ E(G) satisfying |X| ≤ 3−√

5
2 γ(G) and G−X has no directed

cycles. This implies that β(G) ≤ |X| ≤ 3−√
5

2 γ(G). Theorem 1.4 follows. �
We now prove Theorem 1.5 starting with some notations and a lemma used in our proofs.
Let G be a 5-free digraph, for each v ∈ V (G), set

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1(v) = |E(N+
1 (v), N+

2 (v))|,
e2(v) = |E(N−

2 (v), N−
1 (v))|,

e3(v) = |E(N+
2 (v), C(v))|,

e4(v) = |E(C(v), N−
2 (v))|,

ē1(v) = |Ē(N−
1 (v), N+

1 (v))|,
ē2(v) = |Ē(N+

1 (v), N−
2 (v))|,

ē3(v) = |Ē(N−
1 (v), N+

2 (v))|,
ē4(v) = |Ē(N+

1 (v), C(v))|,
ē5(v) = |Ē(N−

1 (v), C(v))|,

(3.8)

and ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1(v) =
e1(v)

ē1(v) + ē2(v) + ē4(v)
,

k2(v) =
e2(v)

ē1(v) + ē3(v) + ē5(v)
,

k3(v) =
e3(v)

ē1(v) + ē2(v) + ē3(v) + ē4(v)
,

k4(v) =
e4(v)

ē1(v) + ē2(v) + ē3(v) + ē5(v)
.

(3.9)

Lemma 3.3 If G is a 4-free digraph, there exists some v ∈ V (G) such that

min
1≤i≤4

{ki(v)} ≤ 2 −
√

3.

Proof From (2.1)–(2.4), (3.9) and Proposition 2.2, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

v∈V (G)

e1(v) =
∑

v∈V (G)

e2(v) =
∑

v∈V (G)

ē1(v),

∑

v∈V (G)

e3(v) =
∑

v∈V (G)

P (v) =
∑

v∈V (G)

Q(v) ≤
∑

v∈V (G)

ē2(v),

∑

v∈V (G)

e3(v) =
∑

v∈V (G)

P (v) =
∑

v∈V (G)

R(v) ≤
∑

v∈V (G)

ē5(v),

∑

v∈V (G)

e4(v) =
∑

v∈V (G)

R′(v) =
∑

v∈V (G)

Q′(v) ≤
∑

v∈V (G)

ē3(v),

∑

v∈V (G)

e4(v) =
∑

v∈V (G)

R′(v) =
∑

v∈V (G)

P ′(v) ≤
∑

v∈V (G)

ē4(v).

(3.10)
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It follows from (3.10) that, for all α, β > 0,
∑

v∈V (G)

[e1(v) + e2(v) + (α + β)(e3(v) + e4(v))]

≤
∑

v∈V (G)

[2ē1(v) + α(ē2(v) + ē3(v)) + β(ē4(v) + ē5(v))]. (3.11)

Thus, the inequality (3.11) implies that there exists some v ∈ V (G) such that

e1(v) + e2(v) + (α + β)(e3(v) + e4(v))

≤ 2ē1(v) + α(ē2(v) + ē3(v)) + β(ē4(v) + ē5(v)). (3.12)

By (3.9), (3.12) and Lemma 3.1, we have

min
1≤i≤4

{ki(v)}

≤ (e1(v) + e2(v) + (α + β)(e3(v) + e4(v)))/((ē1(v) + ē2(v) + ē4(v)) + (ē1(v) + ē3(v)

+ ē5(v)) + (α + β)[(ē1(v) + ē2(v) + ē3(v) + ē4(v)) + (ē1(v) + ē2(v) + ē3(v) + ē5(v))])

= (e1(v) + e2(v) + α(e3(v) + e4(v)) + β(e3(v) + e4(v)))/

([2 + 2(α + β)]ē1(v) + [2(α + β) + 1](ē2(v) + ē3(v)) + [(α + β) + 1](ē4(v) + ē5(v)))

≤ (2ē1(v) + α(ē2(v) + ē3(v)) + β(ē4(v) + ē5(v)))/([2 + 2(α + β)]ē1(v)

+ [2(α + β) + 1](ē2(v) + ē3(v)) + [(α + β) + 1](ē4(v) + ē5(v))). (3.13)

Let α =
√

3, β = 1. Then

2
2 + 2(α + β)

=
α

2(α + β) + 1
=

β

(α + β) + 1
= 2 −

√
3. (3.14)

Substituting (3.14) into (3.13) yields the desired inequality

min
1≤i≤4

{ki(v)} ≤ 2 −
√

3,

and so the lemma follows. �

Proof of Theorem 1.5 We proceed by induction on |V (G)|. Clearly, Theorem 1.5 holds for
|V (G)| ≤ 6. Assume that Theorem 1.5 holds for all digraphs with |V (G)| < n. Let G be a 5-free
digraph with |V (G)| = n. We may assume that N+

1 (v) �= ∅ and N−
1 (v) �= ∅ for any v ∈ V (G).

Let v be the vertex satisfying Lemma 3.3. Now we prove that for each i = 1, 2, 3, 4, if
ki(v) ≤ 2−√

3, we can find X ⊆ E(G) satisfying |X| ≤ (2−√
3)γ(G) and G−X has no directed

cycles. It will derive that β(G) ≤ |X| ≤ (2 − √
3)γ(G). We consider four cases, respectively,

according to Lemma 3.3, which ki(v) defined in (3.9) is at most 2 −√
3 for i ∈ {1, 2, 3, 4}.

Case 1 k1(v) = e1(v)
ē1(v)+ē2(v)+ē4(v) ≤ 2 −√

3.

Consider the following partition of V (G),

V (G1) = N+
1 (v), V (G2) = {v} ∪ N+

2 (v) ∪ C(v) ∪ N−
2 (v) ∪ N−

1 (v).

The number of missing edges between V (G1) and V (G2) satisfies

|Ē(V (G1), V (G2))|
≥ |Ē(N+

1 (v), N−
1 (v))| + |Ē(N+

1 (v), N−
2 (v))| + |Ē(N+

1 (v), C(v))|
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= ē1(v) + ē2(v) + ē4(v).

Thus,

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))|
≥ γ(G1) + γ(G2) + ē1(v) + ē2(v) + ē4(v).

For i = 1, 2, since 0 < |V (Gi)| < n, by the inductive hypothesis, β(G1) ≤ (2 − √
3)γ(G1)

and β(G2) ≤ (2 −√
3)γ(G2), we can choose Xi ⊆ E(Gi) with |Xi| ≤ (2 −√

3)γ(Gi) such that
Gi − Xi is acyclic. Let X3 be the set of all edges from N+

1 (v) to N+
2 (v). Then |X3| = e1(v).

Since there is no edge from N+
1 (v) to {v} ∪C(v)∪N−

2 (v)∪N−
1 (v) (because G is 5-free), every

edge from V (G1) to V (G2) belongs to X3. Let X = X1∪X2∪X3. Then G−X has no directed
cycles. Thus, we can deduce the desired inequality

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e1(v)

≤ (2 −
√

3)γ(G1) + (2 −
√

3)γ(G2) + (2 −
√

3)(ē1(v) + ē2(v) + ē4(v))

≤ (2 −
√

3)γ(G).

Case 2 k2(v) = e2(v)
ē1(v)+ē3(v)+ē5(v) ≤ 2 −√

3.

Using the following partition of V (G),

V (G1) = {v} ∪ N+
1 (v) ∪ N+

2 (v) ∪ C(v) ∪ N−
2 (v), V (G2) = N−

1 (v),

we have

|Ē(V (G1), V (G2))|
≥ |Ē(N+

1 (v), N−
1 (v))| + |Ē(N+

2 (v), N−
1 (v))| + |Ē(C(v), N−

1 (v))|
= ē1(v) + ē3(v) + ē5(v).

It follows that

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))|
≥ γ(G1) + γ(G2) + ē1(v) + ē3(v) + ē5(v).

By the induction hypothesis, β(G1) ≤ (2 − √
3)γ(G1) and β(G2) ≤ (2 − √

3)γ(G2), we
can choose Xi ⊆ E(Gi) with |Xi| ≤ (2 − √

3)γ(Gi) such that Gi − Xi is acyclic. Let X3 be
the set of all edges from N−

2 (v) to N−
1 (v). Then |X3| = e2(v). Since there is no edge from

{v} ∪ N+
1 (v) ∪ N+

2 (v) ∪ C(v) to N−
1 (v), every edge from V (G1) to V (G2) belongs to X3. Let

X = X1 ∪X2 ∪X3. Then G−X has no directed cycles. We can deduce the desired inequality

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e2(v)

≤ (2 −
√

3)γ(G1) + (2 −
√

3)γ(G2) + (2 −
√

3)(ē1(v) + ē3(v) + ē5(v))

≤ (2 −
√

3)γ(G).

Case 3 k3(v) = e3(v)
ē1(v)+ē2(v)+ē3(v)+ē4(v) ≤ 2 −√

3.
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Consider the partition of V (G),

V (G1) = N+
1 (v) ∪ N+

2 (v), V (G2) = {v} ∪ C(v) ∪ N−
2 (v) ∪ N−

1 (v).

The number of missing edges between V (G1) and V (G2) satisfies

|Ē(V (G1), V (G2))|
≥ |Ē(N+

1 (v), N−
1 (v))| + |Ē(N+

1 (v), N−
2 (v))|

+ |Ē(N+
1 (v), C(v))| + |Ē(N+

2 (v), N−
1 (v))|

= ē1(v) + ē2(v) + ē4(v) + ē3(v).

Thus,

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))|
≥ γ(G1) + γ(G2) + ē1(v) + ē2(v) + ē4(v) + ē3(v).

By the induction hypothesis, β(G1) ≤ (2 −√
3)γ(G1) and β(G2) ≤ (2 −√

3)γ(G2), we can
choose Xi ⊆ E(Gi) with |Xi| ≤ (2 −√

3)γ(Gi) such that Gi − Xi is acyclic. Let X3 be the set
of all edges from N+

2 (v) to C(v). Then |X3| = e3(v). Since there is no edge from N+
1 (v) to

{v} ∪ C(v) ∪ N−
2 (v) ∪ N−

1 (v) and from N+
2 (v) to {v} ∪ N−

1 (v) ∪ N−
2 (v) (because G is 5-free),

every edge from V (G1) to V (G2) belongs to X3. Let X = X1 ∪ X2 ∪ X3. Then G − X has no
directed cycles. We can deduce the desired inequality

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e3(v)

≤ (2 −
√

3)γ(G1) + (2 −
√

3)γ(G2) + (2 −
√

3)(ē1(v) + ē2(v) + ē3(v) + ē4(v))

≤ (2 −
√

3)γ(G).

Case 4 k4(v) = e4(v)
ē1(v)+ē2(v)+ē3(v) ≤ 2 −√

3.

Using the partitions of V (G),

V (G1) = {v} ∪ N+
1 (v) ∪ N+

2 (v) ∪ C(v), V (G2) = N−
2 (v) ∪ N−

1 (v),

we have

|Ē(V (G1), V (G2))|
≥ |Ē(N+

1 (v), N−
1 (v))| + |Ē(N+

1 (v), N−
2 (v))|

+ |Ē(N−
1 (v), C(v))| + |Ē(N+

2 (v), N−
1 (v))|

= ē1(v) + ē2(v) + ē5(v) + ē3(v),

which derives

γ(G) = γ(G1) + γ(G2) + |Ē(V (G1), V (G2))|
≥ γ(G1) + γ(G2) + ē1(v) + ē2(v) + ē5(v) + ē3(v).

By the induction hypothesis, β(G1) ≤ (2 − √
3)γ(G1) and β(G2) ≤ (2 − √

3)γ(G2), we
can choose Xi ⊆ E(Gi) with |Xi| ≤ (2 − √

3)γ(Gi) such that Gi − Xi is acyclic. Let X3 be
the set of all edges from C(v) to N−

2 (v). Then |X3| = e4(v). Since there are no edges from
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{v} ∪ N+
1 (v) ∪ N+

2 (v) ∪ C(v) to N−
1 (v) and from {v} ∪ N+

1 (v) ∪ N+
2 (v) to N−

2 (v) (because G

is 5-free), every edge from V (G1) to V (G2) belongs to X3. Let X = X1 ∪X2 ∪ X3, we can get
that G\X has no directed cycles and

β(G) ≤ |X1| + |X2| + |X3|
= |X1| + |X2| + e4(v)

≤ (2 −
√

3)γ(G1) + (2 −
√

3)γ(G2) + (2 −
√

3)(ē1(v) + ē2(v) + ē3(v) + ē5(v))

≤ (2 −
√

3)γ(G).

The proof of Theorem 1.5 is complete. �
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165/166, 71–80 (1997)

[7] Shen, J.: Directed triangles in digraphs. J. Combin. Theory, Ser. B, 74, 405–407 (1998)

[8] Hamburger, P., Haxell, P., Kostochka, A.: On the directed triangles in digraphs. Electronic J. Combin.,

14, Note 19 (2007)
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