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Abstract For a simple digraph G, let 3(G) be the size of the smallest subset X C E(G) such that
G — X has no directed cycles, and let 7(G) be the number of unordered pairs of nonadjacent vertices in
G. A digraph G is called k-free if G has no directed cycles of length at most k. This paper proves that
B(G) < 0.38197(G) if G is a 4-free digraph, and 8(G) < 0.2679v(G) if G is a 5-free digraph. These
improve the results of Sullivan in 2008.
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1 Introduction

Let G = (V, E) be a digraph without loops and parallel edges, where V' = V(G) is the vertex
set and E = E(G) is the edge set.

It is well known that the cycle rank of an undirected graph G is the minimum number of
edges that must be removed in order to eliminate all of cycles in the graph. That is, if G has
v vertices, € edges, and w connected components, then the minimum number of edges whose
deletion from G leaves an acyclic graph equals the cycle rank (or Betti number) p(G) = e—v+w
(see Xu [1]). However, the same problem for a digraph is quite difficult.

A digraph G is called to be k-free if there is no directed cycle of G with length at most k.
A digraph is acyclic if it has no directed cycles. For a digraph G, let 5(G) be the size of the
smallest subset X C E(G) such that G — X is acyclic, and let v(G) be the number of unordered
pairs of nonadjacent vertices in G, called the number of missing edges of G.

Chudnovsky et al. [2] proved that 3(G) < v(G) if G is a 3-free digraph and gave the following

conjecture.
Conjecture 1.1 If G is a 3-free digraph, then B(G) < 3~(G).
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Concerning this conjecture, Dunkum et al. [3] proved that 5(G) < 0.88v(G). Very recently,
Chen et al. [4] improved the result to 3(G) < 0.8616v(G). Conjecture 1.1 is closely related to
the following special case of the conjecture proposed by Caccetta and Haggkvist [5].

Conjecture 1.2 Any digraph on n vertices with minimum out-degree at least n/3 contains a

directed triangle.

Short of proving the conjecture, one may seek as small value of ¢ as possible such that every
digraph on n vertices with minimum out-degree at least cn contains a triangle. This was the
strategy of Caccetta and Haggkvist [5], who obtained the value ¢ < 0.3819. Bondy [6] showed
that ¢ < 0.3797, and Shen [7] improved it to ¢ < 0.3542. Hamburger, et al. [8] improved it to
0.35312. Very recently, Hladky et al. [9] further improved this bound to 0.3465. Namely, any
digraph on n vertices with minimum out-degree at least 0.3465n contains a directed triangle.

Generalizing Conjecture 1.1, Sullivan [10] proposed the following conjecture, and gave an
example showing that this would be best possible if this conjecture is true, noting that Conjec-
ture 1.1 is a special case of this when m = 3.

Conjecture 1.3 If G is an m-free digraph with m > 3, then
G) < G).

Sullivan proved partial results of Conjecture 1.3, and showed that G(G) < ml_Q*y(G) for

m = 4,5. In this article, we improve these two results, which are summarized in the following

theorems.
Theorem 1.4 If G is a 4-free digraph, then B(G) < 3_2‘/57(6*) ~ 0.3819v(G).
Theorem 1.5 If G is a 5-free digraph, then B(G) < (2 — v/3)7(G) ~ 0.2679v(G).
The proofs of the two results are in Section 3. We proceed by induction on |V(G)| by

refining Sullivan et al.’s methods used in [2, 10] and using some computation techniques. In

Section 2, we give some notations and known results used in our proofs.

2 Preliminaries

Let G be a simple digraph. For two disjoint subsets A, B C V(G), let E(A, B) denote the set of
directed edges (a,b) with a € A and b € B. Similarly, let E(A, B) be the missing edges between
A and B. It follows that

|E(A, B)| = |E(B, A)| = |A] - |B| - |E(A, B)| - | E(B, A)|.

We say P = (x,y,2) an induced directed 2-path (2-path for short), if (z,y), (y,2) € E(G)
and x, z are nonadjacent, where x,y, z are called the original, internal and terminal vertices of
P, respectively. For each v € V(G), let f(v), g(v) and h(v) be the number of 2-paths with the
original vertex v, the internal vertex v, and the terminal vertex v, respectively. Let N be the
number of 2-paths of G. Then

N= Y @)= Y gw)= > h) (2.1)
veV(G) veV(G) veV(G)

Let N;'(v) be the set of vertices u such that the shortest directed path starting with v and
ending with u has length 4. Similarly, let N, (v) be the set of vertices whose shortest directed
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path to v has length i. It follows that

Fw) = |E(N{"(v), Ny (v))],
g9(v) = ENy (v), Ni" (v))], (2.2)

Let P(v) be the number of triples of distinct vertices (z,y, z) such that for some v € V(G),
(z,u,y,z) is an induced directed path with the original vertex x = v. Similarly, let Q(v) be
the number of triples of distinct vertices (z,y, z) such that for some u € V(G), (z,u,y, 2z) is an
induced directed path with the internal vertex y = v, and R(v) be the number of such triples
with z = v. Also, let P/(v) be the number of triples of distinct vertices (z,y, z) which makes
(x,y,u,z) be an induced directed path with z = v for some u € V(G). Let Q'(v) and R'(v) be
the number of such triples with y = v and z = v, respectively.

From the above definitions, we can verify

>, P)= Y Q= > R@) (2.3)
VeV (G) veV(Q) veV(Q)

and

Y Po= Y Qw= 3 R (2.4)

VeV (G) VeV (G) veV(G)

Finally, set C'(v) be the vertices whose shortest directed path to or from v has length at least
three, that is C(v) = V(G)\({v} U Ni (v) U N5 (v) U N; (v) U N5 (v)). We have the following
bounds on P(v), Q(v), R(v), P'(v), Q' (v), R'(v) in terms of C(v) and N, (v), N; (v) for i = 1,2.

Proposition 2.1 ([10]) If G is a 4-free digraph, then for any v € V(G),
,C(v) UNy (v))],

,NY ()],

(v) < [E(N3 (v), Ny (v))],

R'(v) = [E(C(v) UN;" (v), Ny (v))].

Proposition 2.2 ([10]) If G is a 5-free digraph, then for any v € V(G),

3 Proofs of Main Results

In this section, we will give proofs of Theorems 1.4-1.5, respectively. We first prove Theorem 1.4

starting with some notations and lemmas.
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Lemma 3.1 a; >0,b; >0 and \; >0,i=1,2,...,n, and > .~ b; > 0. Then

min i < lezl /\iai.

1<i<n | b; Do Aibi

Proof Suppose that minj<;<,{}’} = ZI, without loss of generality. Let §* = +o0 if b; = 0.
Then ‘gll < 3¢, and so ‘gll - b; < a; (the inequality holds even if b; = 0) for each i = 1,2,...,n.
Thus, we have
i=1 i=1 i=1

Since -1 1 b; >0 and A\; > 0 for each i = 1,2,...,n, we have Y1 | \;b; > 0. It follows that

min 4%\ _ @ < 22:1 Ai;

1<i<n bl b1 Zi:l /\zbz
as desired, and so the lemma follows. O

Let G be a 4-free digraph. For each v € V(G), set

and

Lemma 3.2 If G is a 4-free digraph, then there ezists some v € V(G) such that
3—V5
i ; < .
min {ki(v)} <
Proof From (2.1)—(2.4), (3.1) and Proposition 2.1, we have

dooaw = Y el= Y al),

VeV (G) VeV (G) VeV (G)

Y. o= Y P)= )Y Qu< Y el), (3.3)

VeV (G) VeV (G) VeV (G) VeV (G)

Yo=Y Ru= Y Quw< > &@).

veV(G) veV(Q) veV(G) veV(G)
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From (3.3), for all A > 0, we have
Y le) +ea(v) + Mes(v) +ea@)] < Y [261(0) + A(E2(v) + &3(v))]. (34)

veV(G) veV(G)

The inequality (3.4) implies that there must exist some v € V(G) such that
e1(v) + e2(v) + A(eg(v) + eq(v)) < 21 (v) + A(e2(v) + e3(v)). (3.5)
It follows from (3.2), (3.5) and Lemma 3.1 that

min {k;(v)} < (e1(v) + e2(v) + Aeg(v) + Aeq(v))/((€1(v) + E2(v))

1<i<4
+ (€1(v) +e3(v)) + Aer(v) + e2(v) + e3(v)) + A(ex(v) + é2(v) + é3(v)))
_e(v) +ea(v) + Aes(v) + ea(v))
(24 2N)er(v) + (2A + 1)(e2(v) + e3(v))
< 26:1 (v) + A(ez2(v) +_é3(v)) ) (3.6)
(24 2N)e1(v) + (2A + 1) (ea(v) + es(v))
Let A= 1+2\/5. Then
2 A :3—¢5. (3.7)
242\ 22+1 2
Substituting (3.7) into (3.6) yields the desired inequality
. 3—+5
1I£i124{ki(v)} = 2\/ ’
and so the lemma follows. O

Proof of Theorem 1.4  We proceed by induction on |V(G)|. Clearly, Theorem 1.4 holds for

|[V(G)| < 5. Assume that Theorem 1.4 holds for all digraphs with |V (G)| < n. Let G be a
4-free digraph with |V (G)| = n.

If there exists some v € V(@) such that N;"(v) = 0 or N; (v) = (), then v is not in a directed
cycle. By the induction hypothesis, we can choose X C E(G — v) with | X| < 3*2‘/57((}' — )
such that (G — v) — X is acyclic, then G — X has no directed cycles. It follows that 5(G) <
|X| < 3_2‘/57(G —v) < 3_2\/57(G), and so the theorem follows.

Thus, in the following discussion, we assume that N;"(v) # @ and N; (v) # 0 for any
v € V(Q).

Let v be the vertex satisfying Lemma 3.2. Now we prove that for each ¢ = 1,2,3,4, if
ki(v) < 3_2\/5, we can find X C E(G) satisfying |X| < 3_2\/57(G) and G — X has no directed
cycles. We consider four cases, respectively, according to Lemma 3.2, which k;(v) defined
in (3.2) is at most 3*2‘/5 for i € {1,2,3,4}.

Case 1 ki(v) = él(f)lfr?z(v) < 372\/5.
We consider the partition of V(G) as follows
V(G1) = Ni (v), V(G2) = {v} UN; (v) UC(v) UN; (v) U Ny (v).
The number of missing edges between V(G1) and V(G2) satisfies

|E(V(G1),V(G2))| = [E(Ny" (v), Ny (v))] + [E(Ny" (v), Ny (v))] = &1(v) + E2(v).
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It follows that
YG) =7(G1) +9(G2) +|E(V(G1), V(G2))| = 1(G1) +7(G2) + &(v) + E2(v).

For i = 1,2, since 0 < |V(G;)| < n, by the induction hypothesis, 5(G1) < 3_2‘/57(6‘1) and
B(Gsy) < 3*2‘/5’}/(6'2), we can choose X; C FE(G;) with |X;| < 3*2‘/57(6'2») such that G; — X; is
acyclic. Let X3 be the set of all edges from N; (v) to Ny (v). Then |X3| = e;(v). Since there
is no edge from N (v) to {v} UC(v) U N, (v) UN; (v) (because G is 4-free), every edge from
V(G1) to V(G2) belongs to X3. Let X = X7 U X2 U X3. Then G — X has no directed cycles.
Thus,

B(G) < |Xi| + | Xa| + [ X3]
= |Xq| + [ Xz| +e1(v)

3—5 3—5 3—-V5 _ _
<, v(G1) + ) v(G2) + ) (e1(v) + e2(v))
3—5
<, 6)
as desired.
Case 2 ko(v) = 51(5)24(-?3(7)) < 3_2\/5.

Using the following partition of V(G),
V(G1) = {v} UN{ (v) UNS (v) UC(v) UNy (v), V(G2) = Ny (v),
we get
[E(V(G1),V(G2))| = |E(N{ (v), Ny (v))] + [E(NS (v), Ny (v))] = &1(v) + &3(v),
which derives that
1(G) = (G1) +7(G2) + |[E(V(G1), V(G2))| = 7(G1) +7(G2) + &1 (v) + &(v).

By the induction hypothesis, 5(G1) < 3*2‘/57(6'1) and ((Gs) < 3*2‘/57(6'2), we can choose
X; C E(G;) with |X;] < 3*2‘/57(Gi) such that G; — X, is acyclic. Let X3 be the set of all
edges from N, (v) to Ny (v). Then |X3| = ez(v). Since there is no edge from {v} U N;" (v) U
N5 (v) UC(v) to Ni (v) (because G is 4-free), every edge from V(G1) to V(G2) belongs to X3.
Let X = X; U X5 U X3. Then G — X has no directed cycles. Thus,

B(G) < |Xq| + | Xa| + [ X5
= |X1| + | X2| + ea(v)

3-/5 35 35 .
<7 ) G+ TG+ @)+ es(v)
3—-5
< 5 @)
as desired.
Case 3 k3(v) = él<v>+§§§3+é3<v> s 3_2%'

Consider the following partition of V(G),
V(G1) = N (v) UN; (v), V(G2) ={v}UC(v) UN; (v)UNy (v).
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The number of missing edges between V(G1) and V(G2) satisfies

|E(V(G1),V(Ga))l
> |E(Ny (v), Ny ()| + |E(N{ (v), Ny (v))] + |E(N5 (v), Ny (v))]
=e1(v) + e2(v) + es(v).
It follows that
Y(G) =v(G1) +7(G2) + |E(V(G1), V(G2))| = ¥(G1) +v(G2) + &1 (v) + 2(v) + e3(v).

By the induction hypothesis, 5(G1) < 3*2‘/57(631) and (Gs) < 3*2\/57(632), we can choose
X; C E(G;) with |X;] < 3_‘/5 ~(G;) such that G; — X; is acyclic. Let X3 be the set of all
edges from N, (v) to C(v) U N2 (v). Then |X3| = e3(v). Since there is no edge from N; (v) to
{v}UC(v)UN; (v)UN; (v) and from Ny (v) to {v} UN; (v) (because G is 4-free), every edge
from V(G;) to V(G2) belongs to X3. Let X = X7 U Xy U X3. Then G — X has no directed
cycles. Thus, we get

B(G) < | X1 + | Xao| + [ X3
= |Xq| + [ Xz| + e3(v)

3—5 3—5 3—V5, _
S Y(G1) + 5 v(Ge) + ) (e1(v) + e2(v) + e3(v))
3—5
< 5, G
as desired.
Case 4 ky(v) = él(v)ézéz;%g(v) < 372‘/5.

Using the following partition of V(G),
V(G1) = {v} UN{ (v) UNS (v) UC(v), V(G2) =Ny (v) UNT (v),

we obtain

It follows that

YG) = 7(G1) +7(G2) + |E(V(G1), V(G2))| = 7(G1) +7(G2) + &1(v) + e2(v) + é3(v)-

By the induction hypothesis, 5(G1) < 3*2‘/57(631) and ((Gs) < 3*2\/57(632), we can choose
X; C E(G;) with |X;] < 3_2‘/57(01) such that G; — X; is acyclic. Let X3 be the set of
all edges from Ny (v) U C(v) to Ny (v). Then |X3| = e4(v). Since there is no edge from
{v} U N{ (v) U NS (v) U C(v) to Ny (v) and from N, (v) to {v} U Ny (v) (because G is 4-free),
every edge from V(G1) to V(G2) belongs to X5. Let X = X; U Xo U X3. Then G — X has no

directed cycles and

B(G) < | X + | Xao| + [ X3
= [ X1| + [ X2| + es(v)
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<37 Ve + 276w + 0 @) + o) + (o)
<7 Ve
as desired.
For each case there exists X C F(G) satisfying | X| < 3*2‘/57((}') and G — X has no directed
cycles. This implies that 5(G) < | X| < 372‘/57(6*). Theorem 1.4 follows. O

We now prove Theorem 1.5 starting with some notations and a lemma used in our proofs.
Let G be a 5-free digraph, for each v € V(G), set

e1(v) = [E(N; (v), N ()],
e2(v) = |[E(Ny (v), Ny (v))],
e3(v) = [E(N (v),C(v))],
es(v) = [E(C(v), Ny (v))],
e1(v) = [E(Ny (v), Ny (v))], (3.8)
é2(v) = |E(N; (v), Ny (v))],
e3(v) = |[E(Ny (v), Ny (v))],
ea(v) = [E(N; (v),C(v))],
es(v) = |E(Ny (v),C(v))],
and
() = e1(v)
! e1(v) + ezgvg +e4(v)’

k'Q(U) = 61(1]) + é3(U)—E§5(U)7 (39)
. e3(v

hs(v) = €1(v) 4+ ez (v) + e3(v) + é4(v)

(o) = ea(v)

Lemma 3.3 If G is a 4-free digraph, there exists some v € V(G) such that
i ; <2- .
i {ki(v)} <2 V3

Proof From (2.1)—(2.4), (3.9) and Proposition 2.2, we have

Z e1(v Z ea(v) = Z e1(v),

veV(G) veV(G) veV(G)

Yo=Y P)= Y Qu< > e),

veV(G) veV(G) veV(G) veV(G)

Yooesw)= Y P)= Y Ru)< > ev), (3.10)
VeV (@) VeV (@) VeV (@) VeV (G)

Yo=Y Ru= > Qu< Y eab),

VeV (@) VeV (@) VeV (@) VeV (@)

Z eq(v) = R'(v) = Z P'(v) < Z e4(v).

veV(G) veV(Q) veV(G) veV(Q)
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It follows from (3.10) that, for all «, 5 > 0,
> Jer(v) + e2(v) + (a + B)(es(v) + ea(v))]
veV(G)

< Y R2e1(v) + aea(v) + &(v)) + B(Ea(v) + & (v))]. (3.11)

Thus, the inequality (3.11) implies that there exists some v € V(G) such that

e1(v) + ea(v) + (v + B)(es(v) + ea(v))
< 2e1(v) + a(éa(v) + e5(v)) + B(es(v) + e5(v)). (3.12)
By (3.9), (3.12) and Lemma 3.1, we have

min {k;(v)}

1<i<4
< (e1(v) 4 ea(v) + (a + B)(e3(v) + es()) /(€1 (v) + e2(v) + €4(v)) + (&1 (v) + &3(v)
+e5(v)) + (o + B)[(e1(v) + e2(v) + é3(v) + es(v)) + (e1(v) + €2(v) + e3(v) + é5(v))])
(e1(v) + e2(v) + a(es(v) + es(v)) + Bles(v) + ea(v)))/
(2+2(a+ B)ler(v) + [2(a + B) + 1](e2(v) + e3(v)) + [(a + B) + 1](€a(v) + €5(v)))
< (2e1(v) + (e2(v) + €3(v)) + B(ea(v) + &5(v)))/([2 + 2(a + B)]ex(v)
+ [2(a+ B) + 1](E2(v) + es3(v)) + [(a + B) + 1](ea(v) + é5(v))). (3.13)

Let « = /3, f = 1. Then
2 « I6)
2+2(a+p8) 20@+B)+1  (a+p)+1 (8.14)
Substituting (3.14) into (3.13) yields the desired inequality

min {ki(0)} <23,

and so the lemma follows. O

Proof of Theorem 1.5  We proceed by induction on |V(G)|. Clearly, Theorem 1.5 holds for
[V(G)| < 6. Assume that Theorem 1.5 holds for all digraphs with |V(G)| < n. Let G be a 5-free
digraph with |V (G)| = n. We may assume that N;" (v) # 0 and N; (v) # 0 for any v € V(G).
Let v be the vertex satisfying Lemma 3.3. Now we prove that for each i = 1,2,3,4, if
ki(v) < 2—+/3, we can find X C E(G) satisfying | X| < (2—+/3)7(G) and G — X has no directed
cycles. Tt will derive that B(G) < |X| < (2 — v3)7(G). We consider four cases, respectively,
according to Lemma 3.3, which k;(v) defined in (3.9) is at most 2 — /3 for i € {1,2,3,4}.

_ e1(v)
Casel ki(v)= él(v)+é;(v)+54(v) <2-—4/3.

Consider the following partition of V(G),
V(G1) =N (v),  V(G2) ={v}UN; (v)UC(v) UNy (v) UNy (v).
The number of missing edges between V(G1) and V(G2) satisfies
[E(V(G1),V(Ga))l
> |E(N{" (v), Ny (v))| + [E(NY (v), Ny (v))| + [E(N (v), C(v))|
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Thus,

1(G) = 7(G1) +7(G2) + |[E(V(G1), V(G2))]
> 7(G1) +7(G2) + €1 (v) + €2(v) + ea(v).

For i = 1,2, since 0 < [V(G;)| < n, by the inductive hypothesis, 8(G1) < (2 — V/3)v(G1)
and B(G2) < (2 — V/3)v(Gs), we can choose X; C E(G;) with | X;| < (2 — v/3)y(G;) such that
G; — X; is acyclic. Let X3 be the set of all edges from N; (v) to Ny (v). Then |X3| = e1(v).
Since there is no edge from N, (v) to {v} U C(v) U N, (v) U Ny (v) (because G is 5-free), every
edge from V(G1) to V(G2) belongs to X3. Let X = X; UX3U X35. Then G — X has no directed
cycles. Thus, we can deduce the desired inequality

B(G) < | Xa] + [Xa| + [ X3
= |X1] + | X2| + €1 (v)
< (2= V3)y(G) + (2= V3)y(Ga) + (2 - VB)(e1(v) + E2(v) + ea(v))
< (2-V3)(G).

_ e2(v)
Case 2 ky(v) = ) ey Es(r) S 2 V3.

Using the following partition of V(G),
V(G1) = {v} UN{ (v) UN, (v) UC(v) UNy (v),  V(G2) = Ny (v),

we have

It follows that

1(G) = 7(G1) +7(G2) + |E(V(G1), V(G2))]
> 7(G1) +7(G2) + e (v) + es(v) + és(v).

By the induction hypothesis, 3(G1) < (2 — V3)y(G1) and B(Ga) < (2 — V3)v(Ga), we
can choose X; C F(G;) with |X;| < (2 — v/3)7(G;) such that G; — X is acyclic. Let X3 be
the set of all edges from N5 (v) to Ny (v). Then |X3| = ez(v). Since there is no edge from
{v} U N (v) U NS (v) U C(v) to Ny (v), every edge from V(G1) to V(Gs) belongs to X3. Let
X = X7 UX5UX3. Then G — X has no directed cycles. We can deduce the desired inequality

B(G) < [Xu| + [Xa| + | X3]
= [ Xa] + [ X2 + e2(v)
< (2= V3)Y(G1) + (2 = V3)¥(G2) + (2 — V3)(é1(v) + e3(v) + é5(v))
< (2-V3)v(G).

_ e3(v)
Case 3  k3(v) = el(v)+eg(v;+eg(v)+e4(v) 2—+/3.
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Consider the partition of V(G),
V(G1) = N{f (v) UNS (v), V(Gs) = {v}UC(v)UN; (v)UN; (v).
The number of missing edges between V(G) and V(G») satisfies
|E(V(G1), V(G2))l
> |E(N{" (v), Ny (v))| + [E(N (v), Ny (v))]
+IENT (v), C())] + [ E(WNS (v), Ny (v))]

= e1(v) + éa(v) + es(v) + e3(v).

Thus,
YG) = 7(G1) +7(G2) + [E(V(G1), V(Ga))|
> 9(G1) +7(Ga) + e1(v) + éa(v) + es(v) + e3(v).

By the induction hypothesis, 3(G1) < (2 — v/3)v(G1) and B(G2) < (2 — v/3)y(G2), we can
choose X; C E(G;) with |X;| < (2 — v/3)7(G;) such that G; — X; is acyclic. Let X3 be the set
of all edges from N (v) to C(v). Then |X3| = e3(v). Since there is no edge from N (v) to
{v} UC(v) UN; (v) UN; (v) and from N5 (v) to {v} U N; (v) U Ny (v) (because G is 5-free),
every edge from V(G1) to V(G3) belongs to X5. Let X = X; U Xo U X3. Then G — X has no
directed cycles. We can deduce the desired inequality

B(G) < [Xa| + [ Xa| + X
= [ Xa] + [Xa| +es(v)
< (2= V3)Y(G1) + (2= V3N(Ga) + (2 — VB)(@E:(0) + &(0) + E(0) + Ea(v))
< (2-V3)v(G).
Case 4  ky(v) = . ea(v) <92-—+/3.

e1(v)+ez(v)+es(v)
Using the partitions of V(G),

V(G1) = {v} UN{ (v) UN; () UC(v),  V(G2) = Ny (v) UNy (v),

we have

which derives

1(G) = 7(G1) +7(G2) + |[E(V(G1), V(G2))|
2 7(G1) +7(G2) + €1(v) + €2(v) + 5(v) + €3(v).
By the induction hypothesis, 3(G1) < (2 — V3)7(G1) and B(Ga) < (2 — V3)v(Ga), we

can choose X; C E(G;) with |X;| < (2 — v/3)7(G;) such that G; — X; is acyclic. Let X3 be
the set of all edges from C(v) to Ny (v). Then |X3| = es(v). Since there are no edges from
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{v} U N (v) U NS (v) U C(v) to Ny (v) and from {v} U N;F(v) U NS (v) to Ny (v) (because G
is 5-free), every edge from V(G;) to V(G2) belongs to X5. Let X = X; U X5 U X3, we can get
that G\ X has no directed cycles and

B(G) < | X1] + | Xa| + | X3]
= [ X1 + [ X2| + ea(v)
< (2= V3)9(G1) + (2= V3)y(G2) + (2 — V3)(e1(v) + €2(v) + €3(v) + e5(v))
< (2= V3)7(G).

The proof of Theorem 1.5 is complete. U
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